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1. Introduction
The Lidstone series approximates an entire function f of exponential type less than π in a neighborhood of two points

instead of one, that is

f (z) =
∞

∑
n=0

[
f (2n)(1)Λn(z)− f (2n)(0)Λn(z−1)

]
,

where {Λn(z)}n is a set of polynomials that called Lidstone polynomials (see [1, 2]). This expansion has played a key
role in the theoretical and computational studies related to entire functions and applied it to high order boundary value
problems (see [3–10]).

Recently, Ismail and Mansour [11] constructed a q-analog of Lidstone expansion theorem. They proved that, under
certain conditions, an entire function f (z) has a convergent representation as

f (z) =
∞

∑
n=0

[
(D2n

q−1 f )(1)An(z)− (D2n
q−1 f )(0)Bn(z)

]
,

where {An(z)}n and {Bn(z)}n are two sets of q-Lidstone polynomials defined by the generating functions
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Eq(zw)−Eq(−zw)
Eq(w)−Eq(−w)

=
∞

∑
n=0

An(z)w2n, (1)

Eq(zw)Eq(−w)−Eq(−zw)Eq(w)
Eq(w)−Eq(−w)

=
∞

∑
n=0

Bn(z)
wn

[n]q!
, (2)

respectively. Moreover, they proved that the polynomial Bn(z) is a constant multiplier of the q-Bernoulli polynomial of
order 2n+1. More precisely,

Bn(z) =
22n+1

[2n+1]q!
B2n+1(z/2; q), (3)

where {Bn(z; q)}n is a set of q-Bernoulli polynomials defined by the generating function

t Eq(zt)
Eq(t/2)eq(t/2)−1

=
∞

∑
n=0

Bn(z; q)
tn

[n]q!
. (4)

Here, Eq(z) and eq(z) are the q-exponential functions defined by Jackson, cf. e.g., [12, 13],

Eq(z): =
∞

∑
j=0

q j( j−1)/2 z j

[ j]q!
; z ∈ C

eq(z): =
∞

∑
j=0

z j

[ j]q!
; |z|< 1.

(5)

In [14], Al-Towailb introduced another set of q-Lidstone polynomials {Nn+1(z)}n defined by

Nn+1(z) =
22n+1

[2n+1]q!
E2n+1(z/2; q), (6)

where {En(z; q)}n is a set of q-Euler polynomials defined by the generating function

2Eq(zt)
eq(t/2)Eq(t/2)+1

=
∞

∑
n=0

En(z; q)
tn

[n]q!
. (7)

Also, the two sets {νn(z)}n and {τn(z)}n of complementary q-Lidstone polynomials was studied by Mansour and
AL-Towailb [15], where

Contemporary Mathematics 3140 | Maryam A. Al-Towailb, et al





ν0(z) = 1 = τ0(z),

Dq−1νn(0) = Dq−1τn(1) = 0,

D2
q−1τn(z) = τn−1(z) and D2

q−1νn(z) = νn−1(z).

(8)

For more details about a q-Lidstone expansion theorem, properties, and applications of q-Lidstone polynomials,
readers may refer to the literature (see [11, 14–18]).

Throughout this paper, we assume that q is a positive number less than one and N is the set of positive integers. We
follow the notations and terminologies in [12, 19].

Our aim is to present and study general classes of polynomial sequences including (3), (6) and (8), called odd and
even q-type Lidstone polynomials, respectively. For this, we consider a sequence of q-polynomials {Ln(z; q)}n (n ∈ N0),
which satisfies one of the following q-difference equations:

D2
qLn(z; q) = an Ln−1(z; q) or D2

q−1Ln(z; q) = an Ln−1(z; q), (9)

where an ∈ R. We say that {Ln(z; q)}n is a q-type Lidstone polynomial sequence, and in this situation, we write qLPS
shortly.

Note that when q → 1, Equation (9) reduces to

d2

dz2 Ln(z) = an Ln−1(z),

so, we may think of qLPS as a generalization of Lidstone-type polynomial sequences studied in [20–22].
This article is organized as follows: in the next section, we define the class of odd q-type I Lidstone polynomial

sequences, and we give some characterizations of this type, including matrix and determinate representations, the
generating function, recurrence relation, and conjugate sequences. In Section 3, we study the class of even q-type I
Lidstone polynomial sequences. We give some properties, and theoretical results related to them. In Section 4, an
analogywith q-type I Lidstone polynomial sequences, we introduce odd and even q-type II Lidstone polynomial sequences,
respectively. Finally, in Section 5, we give some illustrative examples.

2. Odd q-type I Lidstone polynomial sequences
In this section, we define and study the first class of q-type Lidstone polynomial sequences which satisfy the q-

difference equation:

D2
qLn(z; q) = an Ln−1(z; q), an ∈ R(n ∈ N). (10)

Definition 1 The odd q-type I Lidstone sequences (qOLS-I) is a set of polynomial sequences which satisfy
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
D2

q pn(z; q) = [2n+1]q [2n]q pn−1(z; q), n ∈ N;

pn(0) = 0, p0(z; q) = α0z, α0 ∈ R\{0}, n ∈ N0.

(11)

Notice, one can verify that pn(z; q) is a polynomial of degree 2n+1 for each n ∈ N0.
Proposition 1 A q-type Lidstone polynomial sequence {pn(z; q)}n is an element of the class qOLS-I if and only if

there exists a sequence (α2k)k of real numbers such that α0 ̸= 0, and

pn(z; q) =
n

∑
k=0

[
2n+1
2k+1

]
q

α2k

[2(n− k)+1]q
z2(n−k)+1

=
n

∑
k=0

[
2n+1
2k+1

]
q

α2(n−k)

[2(n− k)+1]q
z2k+1.

(12)

Proof. Let {pn(z; q)}n ∈ qOLS-I. Then, there exists a constant α0 ̸= 0 such that p0(z; q) = α0z. Therefore,

D2
q p1(z; q) = c1z, c1 = [2]q[3]q α0,

and then Dq p1(z; q) = c2z2 +α2 (c2, α2 ∈ R). This implies Dq p1(0) = α2, and by induction we can set

Dq pn(0; q) = α2n, α2n ∈ R. (13)

Now, assume that pn(z; q) =
n

∑
k=0

α(n)
k z2(n−k)+1. Then,

D2
q pn(z; q) =

n−1

∑
k=0

α(n)
k [2(n− k)+1]q[2(n− k)]q z2(n−k)−1. (14)

According to the q-difference equation in (11), we have

D2
q pn(z; q) = [2n+1]q [2n]q

n−1

∑
k=0

α(n−1)
k z2(n−k)−1. (15)

From (14) and (15), we get

m

∏
n=k+1

α(n)
k

α(n−1)
k

=
m

∏
n=k+1

[2n+1]q[2n]q
[2(n− k)+1]q[2(n− k)]q

.

Consequently, we obtain
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α(m)
k =

[2m+1]q!
[2(m− k)+1]q![2k+1]q!

α(k)
k =

[
2m+1
2k+1

]
q

α(k)
k

[2(m− k)+1]q
, (16)

where α(k)
k is the coefficient of z in pk(z; q). Using (13), we can replace α(k)

k by α2k and then we get the result in (12). On
the other hand, if (12) is satisfied and α0 ̸= 0, we get easily (11) which complete the proof.

Remark 1 From (12), we obtain
i. pn(z; q) an odd function for each n ∈ N;
ii. {z2n+1}n ∈ qOLS-I and qOLS-I⊂ P̃, where P̃ = span{z2 j+1| j ∈ N};

iii.
∫ 1

0 pn(z; q)dqz = [2n+1]q!
n

∑
k=0

α2(n−k)

[2k+2]! [2(n− k)+1]q!
, n ∈ N.

Proposition 2 Let n ∈ N and {pn(z; q)}n ∈ qOLS-I. Then

(1) D2m
q pn(z; q) = [2n+1]q!

[2(n−m)+1]q! pn−m(z; q), m = 1, 2, . . . , n;

(2) D2m+1
q pn(z; q) = [2n+1]q!

[2(n−m)+1]q! Dq pn−m(z; q), m = 1, 2, . . . , n;

(3) D2m
q pn(0) = 0; D2m+1

q pn(0) =
[2n+1]q!

[2(n−m)+1]q! α2(n−m), m = 1, 2, . . . , n.

Proof. The proof follows immediately from (11) and (12) by induction.

2.1 Matrix form

Recall that a matrix M = [mi j]i, j≥0 is infinite lower triangular if mi j = 0 whenever j > i. We denote by L the set of
all lower triangular matrices.

A matrix T = [ai j]i, j≥0 is a Toeplitz if and only if T ∈ L and ai j = ai− j for i ≥ j. That is,

T =



...
...

...
...

. . . a0 0 0 0 . . .

. . . a1 a0 0 0 . . .

. . . a2 a1 a0 0 . . .

. . . a3 a2 a1 a0 . . .
...

...
...

...


.

We need the following results from [23].
Lemma 1 Let A, B ∈ L . Then the product AB = [ci j]i, j≥0 is well-defined, and

cik =
i

∑
j=k

ai j b jk, i ≥ k.

Lemma 2 Let Ta be a Toeplitz matrix in L defined by
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Ta = [ai j]i, j≥0: =


ai− j, i ≥ j;

0, i < j.

If (Ta)
−1 = Tb: = [bn] (n = i− j), then

bn =
(−1)n

an+1
0

det


a1 a0

a2 a1 a0
...

...
...

. . .
an−1 an−2 an−3 . . . a0

an an−1 an−2 . . . a1

 .

Definition 2 The odd q-type I Lidstone matrix Aq = [ai j]i, j≥0 is an infinite lower triangular matrix with

ai j =

[
2i+1
2 j+1

]
q

α2(i− j)

[2(i− j)+1]q
(i ≥ j), (17)

where (α2k)k a sequence of real numbers and α0 ̸= 0.
Remark 2 According to Definition 2, Formula (12) can be written in the following matrix form

Pq = AqZq, (18)

where Pq and Zq are two vectors defined by

Pq = [p0(z; q), p1(z; q), . . . , pn(z; q), . . .]T , Zq = [z, z3, . . . , z2n+1, . . .]T .

Moreover, if we set Aq, n = [ai j] such that j = 0, 1, ..., i, i = 0, 1, ..., n, n ∈ N, and ai j defined in (17), then we have
a sequence (Aq, n)n of the principle submatrices of order n of Aq which satisfy

Pq, n = Aq, nZq, n, (19)

where

Pq, n = [p0(z; q), p1(z; q), . . . , pn(z; q)]T , Zq, n = [z, z3, . . . , z2n+1]T . (20)

Remark 3 From (20), we get
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D2
qPq, n = [D2

q p0, D2
q p1, . . . , D2

q pn]
T .

So, if we denote by C = [ci j] (i, j = 0, 1, 2, . . . , n) to the derivation matrix for Pq, n, i.e,

D2
qPq, n = C Pq, n (n ∈ N0),

then, according to (11), we obtain

ci j =


[2i+1]q[2i]q, i = j+1;

0, otherwise.

We define a q-type Toeplitz matrix Tqα as the matrix in L whose (i, j) entry is

tα
i j =

α2(i− j)

[2(i− j)+1]q!
for i ≥ j,

and zero otherwise. Also, we denote by D the diagonal matrix with entries dii = [2i+1]q!.
Proposition 3 The odd q-type I Lidstone matrix can be factorized as

Aq = DTqαD−1. (21)

Proof. According to Lemma 1, the product DTqαD−1 is well-defined and we easily get the result.
Proposition 4 The odd q-type I Lidstone matrix Aq is invertible and

(Aq)
−1 = DTqβ D−1, (22)

where (β2n)n is the numerical sequence satisfying

n

∑
j=0

β2 jα2(n− j)

[2 j+1]q![2(n− j)+1]q!
= δn0, (23)

with δn j the Kronecker’s delta.
Proof. It follows directly by using (21) and calculating (Tqα)

−1 from the result in Lemma 2.
Remark 4 Equation (23) can be considered as an infinite linear system which determines the numerical sequence

(β2n)n. According to Cramer’s rule, the first m+1 equations in (23) give
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β0 =
1

α0
,

β2n =(−1)n [3]q![5]q! . . . [2n+1]q!
αn+1

0

×det



α2
[3]q!

α0
[3]q! 0 . . . 0

α4
[5]q!

α2
[3]q![3]q!

α0
[5]q! 0 0

...
...

...
. . .

...
...

...
...

. . .
...

α2(n−1)
[2n−1]q!

α2(n−2)
[2n−3]q![3]q!

α2(n−3)
[2n−5]q![5]q! . . . α0

[2n−1]q!
α2n

[2n+1]q!
α2(n−1)

[2n−1]q![3]q!
α2(n−2)

[2n−3]q![5]q! . . . α2
[2n−1]q![3]q!


,

(24)

n = 1, 2, . . . , m.

Now, we consider the polynomials

p̂n(z; q) =
n

∑
k=0

[
2n+1
2k+1

]
q

β2(n−k)

[2(n− k)+1]q
z2k+1 (n ∈ N0), (25)

where (β2n)n is defined as in (24). Note that {p̂n(z; q)}n ∈ qOLS-I.
Definition 3 The two sequences {pn(z; q)}n and {p̂n(z; q)}n defined in (12) and (25), respectively, are called

conjugate odd q-type I Lidstone sequences.
We denote Bq = [bi j]i, j≥0 the infinite lower triangular matrix with

bi j =

[
2i+1
2 j+1

]
q

β2(i− j)

[2(i− j)+1]q
, i ≥ j.

Set P̂q = [ p̂0(z; q), p̂1(z; q), . . . , p̂n(z; q), . . .]T . Then, we have the matrix forms

P̂q = BqZq, (26)

and for n ∈ N,

P̂q, n = Bq, nZq, n. (27)

Proposition 5 The two sequences {pn(z; q)}n and {p̂n(z; q)}n are conjugate odd q-type I Lidstone sequences if and
only if
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Pq = A2
qP̂q, P̂q = B2

qPq,

and for n ∈ N,

Pq, n = A2
q, nP̂q, n, P̂q, n = B2

q, nPq, n.

Proof. The proof follows directly from (18), (19), (26) and (27), and taking into account A−1
q = Bq.

Remark 5 From Proposition 5, we can write

pn(z; q) =
n

∑
k=0

ãnk p̂k(z; q) and p̂n(z; q) =
n

∑
k=0

b̃nk pk(z; q),

where ãnk and b̃nk (k = 0, . . . , n, n ∈ N0) are elements of the matrices A2
q, n and B2

q, n, respectively.

2.2 Recurrence relations and q-difference equations
We start by deriving some recurrence relations for a sequence of odd q-type I Lidstone polynomials.
Theorem 1 Let {pn(z; q)}n ∈ qOLS-I. Then

pn(z; q) =
1
β0

[
z2n+1 −

n−1

∑
k=0

[
2n+1
2k+1

]
q

β2(n−k)

[2(n− k)+1]q
pk(z; q)

]
, (28)

where (β2n)n is defined as in (24).
Proof. Assume that Aq is an odd q-type I Lidstone matrix. Then, from Equation (19) we have

Zq, n = Bq, nPq, n, (29)

where Zq, n and Pq, n are defined as in (20), and Bq, n = A−1
q, n. Therefore, we obtain

z2n+1 =
n

∑
k=0

[
2n+1
2k+1

]
q

β2(n−k)

[2(n− k)+1]q
pk(z; q) (k = 0, 1, ..., n), (30)

and then we get the result.
Note that Relation (30) can be considered as infinite linear system in unknowns polynomials pn(z; q) (n ∈ N0). In

the following theorem, we use Cramer’s rule to solve the first m+1 equations (m = 0, 1, ..., n) of (30). Then, we obtain
a first determinate form of odd q-type I Lidstone sequences.

Theorem 2 Let {pn(z; q)}n ∈ qOLS-I. Then
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p0(z; q) =
1
β0

z,

pn(z; q) =
(−1)n

[3]q![5]q! . . . [2n−1]q!β n+1
0

×det



z z3 z5 . . . z2n−1 z2n+1

β0 β2 β4 . . . β2(n−1) β2n

0 [3]q!β0
[5]q!
[3]q! β2 . . .

[2n−1]q!
[2n−3]q! β2(n−2)

[2n+1]q!
[2n+3]q! β2(n−1)

...
. . . . . .

...
...

...
. . . . . .

...
...

0 . . . . . . [2n−1]q!β0
[2n+1]q!
[3]q! β2


,

(31)

where (β2n)n is defined as in (24).
The following theorem gives a recurrence relation for the sequence {p̂n(z; q)}n.
Theorem 3 Let {pn(z; q)}n be an odd q-type I Lidstone sequence. Then, the conjugate sequence {p̂n(z; q)}n satisfies

the recursive relation

p̂n(z; q) =
1

α0

[
z2n+1 −

n−1

∑
k=0

[
2n+1
2k+1

]
q

α2(n−k)

[2(n− k)+1]q
p̂k(z; q)

]
, (32)

where (α2n)n is defined as in (12). Moreover, {p̂n(z; q)}n can be expressed in a determinate form similar to (31) with α2k

instead of β2k, for k = 0, 1, ..., n and n ∈ N0.
Proof. The proof is similar to the proof of Theorem 1 and is omitted.
Now, we determine another recurrence relation by using the production matrix. Recall that the production matrix ΠA

of a nonsingular infinite lower triangular matrix A, defined by

ΠA = A−1Ā,

where Ā is the matrix A with its first row removed (see [24]).
Proposition 6 Let A be an infinite lower triangular matrix, and B be the inverse matrix of A. Then, the production

matrices ΠA and ΠB of A and B, respectively, satisfy

ΠBA = AD and ΠAB = BD, (33)

where D = [δ(i+1) j]i, j≥0 and δi j is the Kronecker’s delta.
Lemma 3 Let Aq = [ai j]i, j≥0 be an odd q-type I Lidstone matrix, Bq = [bi j]i, j≥0 be the inverse of Aq, and ΠB =

[πi j]i, j≥0 be the production matrix of Bq. Then
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πi j =
i

∑
n=0

ainb(n+1) j

=



α0β2, i = j = 0,

0, j > i+1,

i− j+1

∑
n=0

[
2i+1

2(n+ j)−1

]
q

β2nα2(i− j−n)+2[2(n+ j)+1]q!
(2(i− j−n)+3)[2 j+1]q![2n+1]q!

, otherwise,

(34)

where (α2n)n and (β2n)n are numerical sequences defined as in (23).

Proof. From (33), we have ΠB = ADB. Thus, πi j =
i

∑
n=0

ainb(n+1) j, and by Proposition 4, we get the result.

Theorem 4 Let {pn(z; q)}n ∈ qOLS-I. If Aq an odd q-type I Lidstone matrix related to {pn(z; q)}n, and Πq =

[πi j]i, j≥0 is the production matrix of A−1
q , then

p0(z; q) =
1
β0

z,

pn+1(z; q) =
1

πn(n+1)

[
z2 pn(z; q)−

n

∑
k=0

πnk pk(z; q)
]
(n ∈ N0).

(35)

Proof. From (18) and (33), we have ΠqPq = Aq(DZq). Since DZq = [z3, z5, ...]T = z2Zq, we obtain

ΠqPq = z2AqZq = z2Pq. (36)

Consider the (n+1)th equations of (36), we have
n+1

∑
k=0

πnk pk(z; q) = z2 pn(z; q). Hence, after some calculations, we

get (35).
Theorem 5 Let {pn(z; q)}n ∈ qOLS-I. Then

p0(z; q) =
1
β0

z,
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pn+1(z; q) =
(−1)n+1 p0(z; q)
π01π12 . . .πn(n+1)

×det



π00 − z2 π01 0 . . . . . . 0
π10 π11 − z2 π12 . . . . . . 0

π20 π21 π22 − z2 . . . . . . 0
...

...
...

. . . . . .
...

...
...

...
. . . . . . π(n−1)n

πn0 πn1 πn2 . . . . . . πnn − z2


,

where πi j are defined as in (34).
Proof. According to Theorem 4, we have the linear system (36) which can be expressed in a matrix form as


π01 0 0 0 . . .

π11 − z2 π12 0 0 . . .

π21 π22 − z2 π23 0 . . .

π31 π32 π33 − z2 π34 . . .
...

...
...

...
. . .




p1

p2

p3

p4
...

= p0


z2 −π00

−π10

−π20

−π30
...

 .

By using Cramer’s rule, we get the solution of first n+1 equations and then, we obtain the result.
We end this section by proving that the odd q-type I Lidstone sequences satisfy some of q-difference equations.
Theorem 6 Let {pn(z; q)}n be an odd q-type I Lidstone sequence. Then, it satisfies the following linear q-difference

equations

n

∑
k=0

β2k

[2k+1]q!
D2k

q u(z)− z2n+1 = 0, (37)

n

∑
k=1

[2k+1]q!
[2n+1]q!

πnkD2(n−k+1)
q u(z)−D2

q(z
2u(z))+ [2n+3]q[2n+2]qπn(n+1)u(z) = 0. (38)

Proof. From Proposition 2, we have

D2k
q pn(z; q) =

[2n+1]q!
[2(n− k)+1]q!

pn−k(z; q). (39)

Substituting (39) into (28), we obtain

pn+1(z; q) =
1
β0

[
z2n+3 −

n

∑
k=0

[2n+3]q[2n+2]q
[2k+3]q!

β2k+2D2k
q pn(z; q)

]
.

Contemporary Mathematics 3150 | Maryam A. Al-Towailb, et al



Therefore,

D2
q pn+1(z; q) =

1
β0

[
[2n+3]q[2n+2]qz2n+1 −

n

∑
k=0

[2n+3]q[2n+2]q
[2k+3]q!

β2k+2 D2k+2
q pn(z; q)

]
.

Since

D2
q pn+1(z; q) = [2n+2]q[2n+3]q pn(z; q) and D2n+2

q pn(z; q) = 0,

we obtain (37). On the other hand, from Theorem 4, we have

πn(n+1)pn+1(z; q) = z2 pn(z; q)−
n

∑
k=0

πnk pk(z; q). (40)

By taking the second q-derivative of (40), we obtain

[2n+3]q[2n+2]qπn(n+1)pn(z; q) = D2
q(z

2 pn(z; q))−
n

∑
k=1

[2k+1]q[2k]qπnk pk−1(z; q). (41)

According to Proposition 2, we get

D2(n−k+1)
q pn(z; q) =

[2n+1]q!
[2k−1]q!

pk−1(z; q). (42)

Substituting (42) into (41) yields (38) and completes the proof.

2.3 Generating function
Our aim here is to get the generating function of odd q-type I Lidstone sequences.
Recall that the q-trigonometric functions

Sinq(z): =
Eq(iz)−Eq(−iz)

2i
, sinq(z) =

eq(iz)− eq(−iz)
2i

,

Cosq(z): =
Eq(iz)+Eq(−iz)

2
, cosq(z) =

eq(iz)+ eq(−iz)
2i

,

where Eq(z) and eq(z) are the q-exponential functions defined in (5). The q-analog of hyperbolic functions sinhz and
coshz are defined by

sinhq(z): =− isinq(iz) =
∞

∑
n=0

z2n+1

[2n+1]q!
,
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coshq(z): =cosq(iz) =
∞

∑
n=0

z2n

[2n]q!
. (43)

Moreover, Sinhq(z) = sinh1/q(z) and Coshq(z) = cosh1/q(z).
Let {pn(z; q)}n be the odd q-type I Lidstone sequence related to the numerical sequence (α2n)n, and consider the

following power series

gq(t) =
∞

∑
n=0

α2n

[2n+1]q!
t2n. (44)

Lemma 4 Let gq(t) be the power series defined in (44). Then 1
gq(t)

is a well-defined function, and it has the series
representation

1
gq(t)

=
∞

∑
n=0

β2n

[2n+1]q!
t2n, (45)

where (β2n)n is defined as in (24).
Proof. Since α0 ̸= 0, gq(t) is invertible. To get Equation (45), we prove that

(
∞

∑
n=0

α2n

[2n+1]q!
t2n

)(
∞

∑
n=0

β2n

[2n+1]q!
t2n

)
= 1.

By using the Cauchy product for power series and Equation (23), we obtain

(
∞

∑
n=0

α2n

[2n+1]q!
t2n

)(
∞

∑
n=0

β2n

[2n+1]q!
t2n

)

=
∞

∑
n=0

t2n
n

∑
k=0

β2k

[2k+1]q!
α2(n−k)

[2(n− k)+1]q!

=1,

which implies the result.
Theorem 7 Let {pn(z; q)}n and {p̂n(z; q)}n be the conjugate odd q-type I Lidstone sequences. Then

gq(t)
sinhq(zt)

t
=

∞

∑
n=0

pn(z; q)
t2n

[2n+1]q!
, (46)

Contemporary Mathematics 3152 | Maryam A. Al-Towailb, et al



1
gq(t)

sinhq(zt)
t

=
∞

∑
n=0

p̂n(z; q)
t2n

[2n+1]q!
, (47)

where gq(t) is defined as in (44).
Proof. From Equation (30), we have

n

∑
k=0

[
2n+1
2k+1

]
q

β2(n−k)

[2(n− k)+1]q
pk(z; q) = z2n+1. (48)

Multiplying both sides of (48) by t2n+1

[2n+1]q! and adding on n, we obtain

∞

∑
n=0

( n

∑
k=0

[
2n+1
2k+1

]
q

β2(n−k)

[2(n− k)+1]q
pk(z; q)

) t2n+1

[2n+1]q!
=

∞

∑
n=0

(zt)2n+1

[2n+1]q!
.

Therefore,

t
∞

∑
n=0

β2n
t2n

[2n+1]q!

∞

∑
n=0

pn(z; q)
t2n

[2n+1]q!
= sinhq(zt).

By using Lemma 4, we obtain (46).
Similarly, from Equation (32), we can derive the generating function of {p̂n(z; q)}n and get Equation (47).
Example 1 Ismail and Mansour [11, Eq.(3.37)] introduced the identity

n

∑
k=0

(−1)k22k β2k(q)
[2k]q!

T2n−2k+1(q)
[2n−2k+1]q!

= δn0, (49)

where δn0 the Kroncker’s delta function, βn(q) the q-Bernoulli number, and (Tn)n a sequence of tangent numbers that
defined by

Tanqt = tanq t =
∞

∑
n=0

T2n+1
t2n+1

[2n+1]q!
. (50)

It is worth noting that there was a small typo in [11] [Eq.(3.37)], which we have corrected in (49).
We define (α2 j) j and (β2 j) j by

α2 j = T2 j+1, β2 j = (−1) j22 j[2 j+1]qβ2 j(q).

Then, the two sequences {pn(z; q)}n and {p̂n(z; q)}n:
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pn(z; q) : =
n

∑
k=0

[
2n
2k

]
q

T2n−2k+1

[2n−2k+1]q
z2k+1,

p̂n(z; q) : =
n

∑
k=0

[
2n+1
2k+1

]
q
(−1)k22kβ2kz2n−2k+1

are conjugate odd q-type I Lidstone sequences. By using (46) and (50), one can verify that

tanq t
t

sinhq(zt)
t

=
∞

∑
n=0

pn(z; q)
t2n

[2n+1]q!
.

On the other hand, since

tCotqt = t cotq t =
∞

∑
n=0

(−1)nβ2n(q)
t2n

[2n]q!

(see [11]), we obtain

t cothq t
sinhq(zt)

t
=

∞

∑
n=0

pn(z; q)
t2n

[2n+1]q!
.

2.4 Relationship with q-Appell polynomial sequences

Recall that, for n ∈ N0, an Appell polynomial an(z) is a polynomial that has the following series representation

an(z) =
n

∑
k=0

(
n
k

)
an−k(0)zk.

Or equivalently, it defined by the generating function

g(t)ezt =
∞

∑
n=0

an(z)
tn

n!
,

where g(t): =
∞

∑
n=0

an(0)
tn

n!
, |t| ≤ M for some M > 0 (see [25]).

The sequence {an(z; q)}n of q-Appell polynomials was introduced by Sharma, Chak and Al-Salam [26, 27]. They
defined an(z; q) by the generating function

Aq(t)Eq(zt) =
∞

∑
n=0

an(z; q)
tn

[n]q!
,
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where Eq(z) the exponential function defined in (5), and Aq(t) is the determining function for {an(z; q)}n which given by

Aq(t) =
∞

∑
n=0

an
tn

[n]q!
(an ∈ R).

Furthermore, the q-Appell polynomials satisfy the following properties:
1. a0(z; q) ̸= 0;
2. Dqan(z; q) = [n]qan−1(z; q);
3. an(0; q) = an, n ∈ N0.
The following result gives a characterization of q-Appell polynomial sequence (see [28]):
Proposition 7 The sequence {an(z; q)}n is a q-Appell polynomial sequence if and only if there exists a numerical

sequence (ak)k, independent of n, such that a0 ̸= 0 and

an(z; q) =
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )akzn−k.

In the following, we establish a relationship between odd q-type I Lidstone sequences and q-Appell polynomial
sequences.

Theorem 8 Let {an(z; q)}n be a sequence of q-Appell polynomials. If a2n+1(0; q) = 0 (n ∈ N), then the sequence
{ fn(z; q)}n, where

fn(z; q): = 22n+1a2n+1(
z
2

; q) (n ∈ N) (51)

is an odd q-type I Lidstone sequence.
Proof. Since {an(z; q)}n is a sequence of q-Appell polynomials, it satisfies

Dqan(z; q) = [n]qan−1(z; q) (52)

By using the assumption a2n+1(0; q) = 0 with Equation (52), we conclude that the functions fn(z; q) satisfy (11).
This implies { fn(z; q)}n ∈ qOLS-I.

3. Even q-type I Lidstone polynomial sequences
We study the sequence of polynomials {ωn(z; q)}n which satisfy


D2

qωn(z; q) = [2n]q [2n−1]q ωn−1(z; q),

Dqωn(0; q) = 0 (n ∈ N0), ω0(z; q) = γ0, γ0 ∈ R\{0}.
(53)

In this case, {ωn(z; q)}n is an element of even q-type I Lidstone sequences (qELS-I).
Remark 6 From (53), one can verify that ωn(z; q) is a polynomial of degree 2n for each n ∈ N0.
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Throughout this section, the proofs are omitted because they follow along similar lines as the corresponding proofs
of Section 2..

Proposition 8 The sequence {ωn(z; q)}n ∈ qELS-I if and only if there exists a sequence (γ2k)k of real numbers such
that γ0 ̸= 0 and

ωn(z; q) =
n

∑
k=0

[
2n
2k

]
q

γ2(n−k) z2k, n ∈ N. (54)

Remark 7 From (54), we obtain
i. ωn(z; q) is an even function for all n ∈ N;
ii. {z2n}n ∈ qELS and qELS ⊂ P̂, where P̂: = span{z2 j| j ∈ N};

iii.
∫ 1

0
ωn(z; q)dqz =

n

∑
k=0

[
2n
2k

]
q

γ2(n−k)

[2k+1]q
, n ∈ N.

Proposition 9 Let n ∈ N and {ωn(z; q)}n ∈ qELS-I. Then

1. D2m
q ωn(z; q) = [2n]q!

[2(n−m)]q! ωn−m(z; q), m = 0, 1, . . . , n;

2. D2m+1
q ωn(z; q) = [2n]q!

[2(n−m)]q! Dqωn−m(z; q), m = 0, 1, ..., n−1;

3. D2m+1
q ωn(0) = 0 and D2m

q ωn(0) =
[2n]q!

[2(n−m)]q! γ2(n−m), m = 1, 2, . . . , n.

3.1 Matrix form

Definition 4 The even q-type I Lidstone matrix is an infinite lower triangular matrix Fq = [ fi j]i, j≥0 with

fi j =

[
2i
2 j

]
q

γ2(i− j), i ≥ j, (55)

where (γ2k)k a sequence of real numbers and γ0 ̸= 0.
Remark 8 The polynomials (54) can be written in the matrix form

Ωq = FqẐq, (56)

where Ωq and Ẑ are two vectors defined by

Ωq = [ω0(z; q), ω1(z; q), . . . , ωn(z; q), . . .]T , Ẑ = [1, z2, . . . , z2n, . . .]T .

Moreover, if we set Fq, n = [ fi j] such that j = 0, 1, ..., i, i = 0, 1, ..., n for n ∈N and fi j defined in (55), then we have
a sequence (Fq, n)n of the principle submatrices of order n of Fq which satisfy Ωq, n = Fq, nẐn, where

Ωq, n = [ω0(z; q), ω1(z; q), . . . , ωn(z; q)]T , Ẑn = [1, z2, . . . , z2n]T . (57)

In the following, we assume that Tqγ = [tγ
i j]i, j≥0 is a q-Toeplitz matrix whose (i, j) entry defined by
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tγ
i j =


γ2(i− j)

[2(i− j)]q! , i ≥ j;

0, otherwise,

and D̂ is the diagonal matrix with entries d̂ii = [2i]q!.
Proposition 10 An even q-type I Lidstone matrix Fq can be factorized as

Fq = D̂TqγD̂
−1. (58)

Proposition 11 The even q-type I Lidstone matrix is invertible and

(Fq)
−1 = D̂Tqξ D̂−1, (59)

where (ξ2n)n is a numerical sequence satisfying

n

∑
j=0

γ2 jξ2(n− j)

[2 j]q![2(n− j)]q!
= δn0 (n ∈ N0), (60)

with δn j is the Kronecker’s delta.
Remark 9 Equation (60) describes an infinite linear system which determines the numerical sequence (ξ2n)n.

According to Cramer’s rule, the first n+1 equations give

ξ0 =
1
γ0
,

ξ2n =(−1)n [2]q![4]q! . . . [2n]q!
γn+1

0

×det



γ2
[2]q!

γ0
[2]q! 0 . . . 0

γ4
[4]q!

γ2
[2]q![2]q!

γ0
[4]q! 0 0

...
...

...
. . .

...
...

...
...

. . .
...

γ2(n−1)
[2n−2]q!

γ2(n−2)
[2n−4]q![2]q!

γ2(n−3)
[2n−6]q![4]q! . . . γ0

[2n−2]q!
γ2n

[2n]q!
γ2(n−1)

[2n−2]q![2]q!
γ2(n−2)

[2n−4]q![4]q! . . . γ2
[2n−2]q![2]q!


.

(61)

As in the odd q-type I Lidstone sequences, we consider the polynomials
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ω̂n(z; q) =
n

∑
k=0

[
2n
2k

]
q

ξ2(n−k) z2k, (62)

where (ξ2n)n is defined as in (61). The two sequences {ωn(z; q)}n and {ω̂n(z; q)}n are called conjugate even q-type I
Lidstone sequences.

We denote Gq = [gi j]i, j≥0 the infinite lower triangular matrix with

gi j =

[
2i
2 j

]
q

ξ2(i− j), i ≥ j,

and set Ω̂q = [ω̂0(z; q), ω̂1(z; q), . . . , ω̂n(z; q), . . .]T . Then,

Ω̂q = GqẐ and Ω̂q, n = Gq, nẐn (n ∈ N). (63)

Proposition 12 The two sequences {ωn(z; q)}n and {ω̂n(z; q)}n are conjugate even q-type I Lidstone sequences if
and only if

Ωq = F2
q Ω̂q, Ω̂q = G2

qΩq,

and for n ∈ N,

Ωq, n = F2
q, nΩ̂q, n, Ω̂q, n = G2

q, nΩq, n.

Remark 10 From Proposition 12, we can write

ωn(z; q) =
n

∑
k=0

f̃nk ω̂n(z; q) and ω̂n(z; q) =
n

∑
k=0

g̃nk ωn(z; q) (n ∈ N0),

where f̃nk and g̃nk (k = 0, . . . , n) are elements of the matrices F2 and G2, respectively.

3.2 Recurrence relations and determinant form
Theorem 9 (First recurrence relation) Let {ωn(z; q)}n and {ω̂n(z; q)}n be the conjugate even q-type I Lidstone

sequences. Then

ωn(z; q) =
1
ξ0

[
z2n −

n−1

∑
k=0

[
2n
2k

]
q

ξ2(n−k) ωk(z; q)
]
,
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ω̂n(z; q) =
1
γ0

[
z2n −

n−1

∑
k=0

[
2n
2k

]
q

γ2(n−k) ω̂k(z; q)
]
, (64)

where (γ2k)n and (ξ2n)n are the numerical sequences satisfying (61).
Theorem 10 Let {ωn(z; q)}n ∈ qELS-I. Then

ω0(z; q) =
1
ξ0

z,

ωn(z; q) =
(−1)n

ξ n+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z2 z4 . . . z2n−2 z2n

ξ0 ξ2 ξ4 . . . ξ2(n−2) ξ2n

0 ξ0
[4

2

]
qξ2 . . .

[2n−2
2

]
qξ2(n−2)

[2n
2

]
qξ2(n−1)

...
. . . . . .

...
...

...
. . . . . .

...
...

0 . . . . . . ξ0
[ 2n

2(k−1)

]
q
ξ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(65)

where (ξ2n)n is defined as in (61). Moreover, {ω̂n(z; q)}n can be expressed in a determinate form similar to (65) with γ2k

instead of ξ2k, for k = 0, 1, ..., n, and n ∈ N0.
Lemma 5 Let Fq = [ fi j]i, j≥0 be an even q-type I Lidstone matrix, Gq = [gi j]i, j≥0 be the inverse matrix of Fq, and

Π̄G = [π̄i j]i, j≥0 be the production matrix of Gq. Then

π̄i j =
i

∑
n=0

fing(n+1) j

=


0, j > i+1;

i

∑
n=0

[
2i
2n

]
q

[
2(n+1)

2 j

]
q

γ2(i−n)ξ2(n− j+1), otherwise,

(66)

where (γ2n)n and (ξ2n)n are the numerical sequences defined as in (60).
Theorem 11 (Second recurrence relation) Let {ωn(z; q)}n ∈ qELS-I. Assume that Fq is the even q-type I Lidstone

matrix related to {ωn(z; q)}n, and Π̄G = [π̄i j]i, j≥0 is the production matrix of F−1
q . Then ω0(z; q) = 1

ξ0
, and for n ∈ N

ωn+1(z; q) =
1

π̄n(n+1)

[
z2ωn(z; q)−

n

∑
k=0

π̄nkωk(z; q)
]
. (67)

Theorem 12 Let {ωn(z; q)}n ∈ qELS-I. Then
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ω0(z; q) =
1
ξ0

,

ωn+1(z; q) =
(−1)n+1ω0(z; q)
π̄01π̄12 . . . π̄n(n+1)

×det



π̄00 − z2 π̄01 0 . . . . . . 0
π̄10 π̄11 − z2 π̄12 . . . . . . 0

π̄20 π̄21 π̄22 − z2 . . . . . . 0
...

...
...

. . . . . .
...

...
...

...
. . . . . . π̄(n−1)n

π̄n0 π̄n1 π̄n2 . . . . . . π̄nn − z2


,

where π̄i j are defined as in (66).

3.3 The Generating function and relationship with q-Appell polynomial sequences

Let {ωn(z; q)}n be an even q-type I Lidstone polynomial sequence related to the numerical sequence (γ2n)n. Consider
the following power series

hq(t) =
∞

∑
n=0

γ2n

[2n]q!
t2n (68)

Lemma 6 Let hq(t) be the power series defined in (68). Then, 1
hq(t)

is a well-defined function and

1
hq(t)

=
∞

∑
n=0

ξ2n

[2n]q!
t2n, (69)

where (ξ2n)n is defined as in (61).
Theorem 13 Let {ωn(z; q)}n and {ω̂n(z; q)}n be the conjugate even q-type I Lidstone sequences. Then

hq(t)coshq(zt) =
∞

∑
n=0

ωn(z; q)
t2n

[2n]q!
,

1
hq(t)

coshq(zt) =
∞

∑
n=0

ω̂n(z; q)
t2n

[2n]q!
,

where hq(t) is defined as in (68).
Example 2 Consider Equation (60). From Identity (49), we can take
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γ2 j = (−1) j22 jβ2 j(q) and ξ2 j =
T2 j+1

[2 j+1]q
.

Hence, the two sequences {wn(z; q)}n and {ŵn(z; q)}n which defined by

wn(z; q) : =
n

∑
k=0

[
2n
2k

]
q
(−1)k22kβ2k(q)z2n−2k,

ŵn(z; q) : =
n

∑
k=0

[
2n
2k

]
q

T2n−2k+1

[2n−2k+1]q
z2k,

are conjugate even q-type I Lidstone sequences. Furthermore, since

Tanqt = tanq t =
∞

∑
n=0

T2n+1
t2n+1

[2n+1]q!
and tCotqt = t cotq t =

∞

∑
n=0

(−1)nβ2n(q)
t2n

[2n]q!
,

we can verify that

tanq t
t

coshq(zt) =
∞

∑
n=0

wn(z; q)
t2n

[2n]q!
and t cothq t coshq(zt) =

∞

∑
n=0

ŵn(z; q)
t2n

[2n]q!
,

which coincide with the results of Theorem 13.
The following result gives a relationship between even q-type I Lidstone polynomial sequences and q-Appell

polynomial sequences.
Theorem 14 Let {an(z; q)}n be a sequence of q-Appell polynomials. Assume that a2n+1(0; q) = 0 for n ∈N. Then,

the sequence {ωn(z; q)}n which defined by

ωn(z; q): = 22na2n(
z
2

; q) (70)

is an even q-type I Lidstone polynomial sequence.

4. Odd and even q-type II Lidstone polynomial sequences
In this section, we consider two general classes of q-type Lidstone polynomial sequences (called odd and even q-type

II Lidstone polynomial sequences, respectively).
In this type, a sequence of polynomials {Ln(z; q)}n satisfies the q-difference equation

D2
q−1Ln(z; q) = an Ln−1(z; q), an ∈ R(n ∈ N).
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4.1 Odd q-type II Lidstone polynomial sequences
Definition 5 The odd q-type II Lidstone sequences (qOLS-II) is the set of polynomial sequences satisfying


D2

q−1 p̃n(z; q) = [2n]q−1 [2n+1]q−1 p̃n−1(z; q),

p̃n(0; q) = 0(n ∈ N0), p̃0(z; q) = α̃0z, α̃0 ∈ R\{0}.
(71)

Without loss of generality, we may assume that the sequence {p̃n(z; q)}n satisfies the q-difference equation

D2
q−1 p̃n(z; q) = [2n]q [2n+1]q p̃n−1(z; q).

The following result gives a characterization of qOLS-II.
Proposition 13 The sequence {p̃n(z; q)}n is an element of qOLS-II if and only if there exists a numerical sequence

(α̃2k)k such that α̃0 ̸= 0, and

p̃n(z; q) =
n

∑
k=0

[
2n+1
2k+1

]
q

q2(n−k)2+(n−k) α̃2k

[2(n− k)+1]q
z2(n−k)+1

=
n

∑
k=0

[
2n+1
2k+1

]
q

qk(2k+1) α̃2(n−k)

[2(n− k)+1]q
z2k+1.

(72)

An odd q-type II Lidstone matrix is an infinite lower triangular matrix Ãq = [ãi j]i, j≥0 with

ãi j =

[
2i+1
2 j+1

]
q

q j(2 j+1) α̃2(i− j)

[2(i− j)+1]q
, i ≥ j,

where (α̃2k)k is a numerical sequence, and α̃0 ̸= 0.
Notice, Formula (72) can be written in the matrix form P̃q = ÃqZ, where P̃q and Z are two vectors defined by

P̃q = [ p̃0(z; q), p̃1(z; q), . . . , p̃n(z; q), . . .]T , Z = [z, z3, . . . , z2n+1, . . .]T .

Proposition 14 The odd q-type II Lidstone matrix Ãq can be factorized as

Ãq = DTqα̃D−1,

where Tqα̃ = [tα̃
i j ]i, j≥0 with

Contemporary Mathematics 3162 | Maryam A. Al-Towailb, et al



tα̃
i j =


q j(2 j+1) α̃2(i− j)
[2(i− j)+1]q! , i ≥ j;

0, otherwise,

and D a diagonal matrix with entries dii = [2i+1]q!. Moreover, the matrix Ãq is invertible and

(Ãq)
−1 = DTqβ̃ D−1,

where (β̃2n)n is a numerical sequence satisfying

n

∑
j=0

β̃2 jα̃2(n− j)

[2 j+1]q![2(n− j)+1]q!
= δn0 (n ∈ N0). (73)

Definition 6 Let (α̃2n)n and (β̃2n)n be two numerical sequences which satisfy Equation (73). If

p̂n(z; q) =
n

∑
k=0

[
2n+1
2k+1

]
q

qk(2k+1) β̃2(n−k)

[2(n− k)+1]q
z2k+1 for n ∈ N0,

then, the two sequences {p̃n(z; q)}n and {p̂n(z; q)}n are called conjugate odd q-type II Lidstone sequences.
Remark 11 If B̃q = [b̃i j]i, j≥0 is the infinite lower triangular matrix with entities

b̃i j =

[
2i+1
2 j+1

]
q

q j(2 j+1) β̃2(i− j)

[2(i− j)+1]q
, i ≥ j,

and P̃∗
q = [ p̂0(z; q), p̂1(z; q), . . . , p̂n(z; q), . . .]T , then we have the matrix form

P̃∗
q = B̃qZ.

Proposition 15 The two sequences {p̃n(z; q)}n and {p̂n(z; q)}n are conjugate odd q-type II Lidstone sequences if
and only if

P̃q = Ã2
qP̃∗

q and P̃∗
q = B̃2

qP̃q.

In the following theorem, we determine recurrence relations for the two sequences {p̃n(z; q)}n and {p̂n(z; q)}n.
Theorem 15 Let {p̃n(z; q)}n and {p̂n(z; q)}n be conjugate odd q-type II Lidstone sequences. Then,
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p̃n(z; q) =
q−n(2n+1)

β̃0

[
z2n+1 −

n−1

∑
k=0

[
2n+1
2k+1

]
q

qk(2k+1) β̃2(n−k)

[2(n− k)+1]q
p̃k(z; q)

]
;

p̂n(z; q) =
q−n(2n+1)

α̃0

[
z2n+1 −

n−1

∑
k=0

[
2n+1
2k+1

]
q

qk(2k+1) α̃2(n−k)

[2(n− k)+1]q
p̂k(z; q)

]
,

where (α̃2n)n and (β̃2n)n are the numerical sequences which satisfy Equation (73).
Corollary 1 The conjugate sequences {p̃n(z; q)}n and {p̂n(z; q)}n satisfy the q-difference equations

n

∑
k=0

β̃2k

[2k+1]q!
q(n−k+1)(2n−2k+3)D2k

q−1u(z)− z2n+1 = 0,

n

∑
k=0

α̃2k

[2k+1]q!
q(n−k+1)(2n−2k+3)D2k

q−1u(z)− z2n+1 = 0.

Lemma 7 Let Ãq = [ãi j]i, j≥0 be an odd q-type II Lidstone matrix, B̃q = [b̃i j]i, j≥0 be the inverse of Ãq, and Π̃B =

[π̃i j]i, j≥0 be the production matrix of B̃q. Then

π̃i j =



α̃0β̃2, i = j = 0,

0, j > i+1,

∑i− j+1
n=0

[ 2i+1
2(n+ j)−1

]
q

q(n+ j−1)(2(n+ j)−1 β̃2nα̃2(i− j−n)+2[2(n+ j)+1]q!
(2(i− j−n)+3)[2 j+1]q![2n+1]q! , otherwise,

(74)

where (α̃2n)n and (β̃2n)n are defined as in (73).
Theorem 16 Let {p̃n(z; q)}n ∈ qOLS-II. Assume that Ãq is the odd q-type II Lidstone matrix related to {p̃n(z; q)}n,

and Π̃q = [π̃i j]i, j≥0 is the production matrix of Ã−1
q . Then

p̃0(z; q) =
1
β̃0

z,

p̃n+1(z; q) =
1

π̃n(n+1)

[
z2 p̃n(z; q)−

n

∑
k=0

π̃nk p̃k(z; q)
]

(n ∈ N) .

(75)

Moreover, the conjugate sequence {p̂n(z; q)}n has a relation similar to (75) with α̃0 instead β̃0, and Π̃q is the
production matrix of Ãq instead of Ã−1

q .
Theorem 17 (Generating functions) Let {p̃n(z; q)}n and {p̂n(z; q)}n be the conjugate odd q-type II Lidstone

sequences. Then
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g̃q(t)
Sinhq(zt)

t
=

∞

∑
n=0

p̃n(z; q)
t2n

[2n+1]q!
, (76)

1
tg̃q(t)

Sinhq(zt)
t

=
∞

∑
n=0

p̂n(z; q)
t2n

[2n+1]q!
, (77)

where g̃q(t) the power series defined by

g̃q(t) =
∞

∑
n=0

α̃2n

[2n+1]q!
t2n.

Consider the q-Appell polynomials that satisfy

Dq−1 ãn(z; q) = [n]qãn−1(z; q) (n ∈ N0). (78)

Theorem 18 Let {ãn(z; q)}n be a sequence of q-Appell polynomials. Assume that ã2n+1(0; q) = 0, and

fn(z; q): = 22n+1ã2n+1(
z
2

; q) for n ∈ N. (79)

Then, { fn(z; q)}n ∈ qOLS-II.

4.2 Even q-type II Lidstone polynomial sequences

Definition 7 An even q-type II Lidstone sequences (qELS-II) is a set of polynomial sequences satisfying


D2

q−1ω̃n(z; q) = [2n]q [2n−1]q ω̃n−1(z; q),

ω̃n(0; q) = 0(n ∈ N0), ω̃0(z; q) = γ̃0z, γ̃0 ∈ R\{0}.
(80)

Proposition 16 The sequence {ω̃n(z; q)}n ∈ qELS-II if and only if there exists a sequence (γ̃2k)k of real numbers
such that γ̃0 ̸= 0, and

ω̃n(z; q) =
n

∑
k=0

[
2n
2k

]
q

qk(2k−1)γ̃2(n−k) z2k. (81)

Note that Equation (81) can be written in the matrix form Ω̃q = F̃qẐ, where

Ω̃q = [ω̃0(z; q), ω̃1(z; q), . . . , ω̃n(z; q), . . .]T , Ẑ = [1, z2, . . . , z2n, . . .]T ,
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and F̃q = [ f̃i j]i, j≥0 with

f̃i j =

[
2i
2 j

]
q

q j(2 j−1) γ̃2(i− j)

[2(i− j)+1]q
, i ≥ j.

Proposition 17 The even q-type II Lidstone matrix F̃q can be factorized as

F̃q = D̂Tqγ̃D̂
−1,

where Tqγ̃ = [t γ̃
i j]i, j≥0 with

t γ̃
i j =


q j(2 j−1) γ̃2(i− j)

[2(i− j)]! , i ≥ j,

0, otherwise,

and D̂ is the diagonal matrix with entries d̂ii = [2i]q!. Moreover, the matrix F̃q is invertible and

(F̃q)
−1 = D̂Tqξ̃ D̂−1,

where (ξ̃2n)n is a numerical sequence satisfying

n

∑
j=0

ξ̃2 j γ̃2(n− j)

[2 j]q![2(n− j)]!
= δn0 (n ∈ N0), (82)

and δn0 is the Kronecker’s delta.
Definition 8 Let (γ̃2n)n and (ξ̃2n)n be two numerical sequences satisfying Equation (82), and {ω̂n(z; q)}n be a

sequence of polynomials that satisfy

ω̂n(z; q) =
n

∑
k=0

[
2n
2k

]
q

qk(2k−1) ξ̃2(n−k) z2k (n ∈ N0).

Then, the two sequences {ω̃n(z; q)}n and {ω̂n(z; q)}n are called conjugate even q-type II Lidstone sequences.
Remark 12 If G̃q = [g̃i j]i, j≥0 is the infinite lower triangular matrix with

g̃i j =

[
2i
2 j

]
q

q j(2 j−1) ξ̃2(i− j), i ≥ j,

and Ω̃∗
q = [ω̂0(z; q), ω̂1(z; q), . . . , ω̂n(z; q), . . .]T , then we have
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Ω̃∗
q = G̃qẐ.

Proposition 18 The two sequences {ω̃n(z; q)}n and {ω̂n(z; q)}n are conjugate even q-type II Lidstone sequences if
and only if

Ω̃q = F̃2
q Ω̃∗

q and Ω̃∗
q = G2

qΩ̃q.

Theorem 19 Let {ω̃n(z; q)}n and {ω̂n(z; q)}n be conjugate even q-type II Lidstone sequences. Then

ω̃n(z; q) =
qn(1−2n)

ξ̃0

[
z2n −

n−1

∑
k=0

[
2n
2k

]
q

qk(2k−1)ξ̃2(n−k) ω̃k(z; q)
]
;

ω̂n(z; q) =
qn(1−2n)

γ̃0

[
z2n −

n−1

∑
k=0

[
2n
2k

]
q

qk(2k−1)γ̃2(n−k) ω̂k(z; q)
]
,

where (γ̃2n)n and (ξ̃2n)n are defined as in Equation (82).
The following theorem gives the generating functions of an even q-type II Lidstone sequences.
Theorem 20 Let {ω̃n(z; q)}n and {ω̂n(z; q)}n be the conjugate even q-type II Lidstone sequences. Then

h̃q(t)Coshq(zt) =
∞

∑
n=0

ω̃n(z; q)
t2n

[2n]q!
, (83)

1
h̃q(t)

Coshq(zt) =
∞

∑
n=0

ω̂n(z; q)
t2n

[2n]q!
, (84)

where h̃q(t) is a power series defined by

h̃q(t) =
∞

∑
n=0

γ̃2n

[2n]q!
t2n.

Example 3 From Equation (49), we can take

γ̃2 j = (−1) j22 jβ2 j(q) and ξ̃2 j =
T2 j+1

[2 j+1]q
.

Then, the sequences {w̃n(z; q)}n and {ŵn(z; q)}n defined by
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w̃n(z; q): =
n

∑
k=0

[
2n
2k

]
q
qk(2k−1)(−1)n−k22n−2kβ2n−2k(q)z2k,

ŵn(z; q): =
n

∑
k=0

[
2n
2k

]
q
qk(2k−1) T2n−2k+1

[2n−2k+1]q
z2k,

are conjugate even q-type II Lidstone sequences. Moreover,

∞

∑
n=0

wn(z; q)
t2n

[2n]q!
=

∞

∑
n=0

t2n

[2n]q!

n

∑
k=0

[
2n
2k

]
q
qk(2k−1)(−1)n−k22n−2kβ2n−2kz2k

=

(
∞

∑
k=0

T2n+1

[2n+1]q!
t2n

)(
∞

∑
n=0

qn(2n−1)

[2n]q!
(zt)2k

)

=
tanq t

t
Coshq(zt).

Similarly, we obtain

∞

∑
n=0

ŵn(z; q)
t2n

[2n]q!
= (t cotq t)Coshq(zt).

Theorem 21 Let {ãn(z; q)}n be a sequence of q-Appell polynomials that satisfy (78). If ã2n+1(0; q) = 0 (n ∈ N),
then the function

ω̃n(z; q) = 22nã2n(
z
2

; q)

is in the class of even q-type II Lidstone sequences.

5. Examples
We consider some illustrative examples of odd and even q-type Lidstone polynomial sequences. These sequences

are associated with q-Bernoulli and q-Euler’s polynomials generated by the first and second Jackson q-Bessel functions
(see [11]).

Example 4 Let 0 < q < 1 and {bn(z; q)}n be a set of q-Bernoulli polynomials which defined by the generating
function

t eq(zt)
eq(t/2)Eq(t/2)−1

=
∞

∑
n=0

bn(z; q)
tn

[n]q!
,
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where Eq(z) and eq(z) are the q-exponential functions defined as in (5). We define the sequence {pn(z; q)}n by

pn(z; q): = 22n+1b2n+1(
z
2

; q), n ∈ N. (85)

Since Dqbn(z; q) = [n]qbn−1(z; q) (see [11]), {pn(z; q)}n is an odd q-type I Lidstone sequence. Therefore, it satisfies
(11). By using Equation (13), we have Dq pn(0; q) = α2n. This implies

α2n = 22n[2n+1]qβ2n(q) (n ∈ N0), (86)

where β2n(q) denotes the q-Bernoulli numbers, i.e., βn(q): = bn(0; q).
Ismail and Mansour in [11] introduced the expansion

t cothq t =
∞

∑
n=0

β2n
(2t)n

[2n]q!
.

Therefore, by using (44), we get

gq(t)
t

=
1
t

∞

∑
n=0

α2n
t2n

[2n+1]q!
=

1
t

∞

∑
n=0

22n β2n(q)
[2n]q!

t2n = cothq(t).

Consequently, from (46), the generating function of the sequence {pn(z; q)}n is
gq(t)

t sinhq zt, i.e.,

cothq(t)sinhq(tz) =
∞

∑
n=0

pn(z; q)
t2n

[2n+1]q!
.

Moreover, from (47), the generating function for the conjugate sequence {p̂n(z; q)}n is

tanhq(t)sinhq(tz) =
∞

∑
n=0

p̂n(z; q)
t2n+2

[2n+1]q!
.

Since

tanhq t = Tanhqt =−
∞

∑
n=0

Ẽ2n+1(q)
[2n+1]q!

22n+1t2n+1

(see [11] [Eq. (3.36)]), we obtain

p̂n(z; q) =−
n

∑
k=0

[
2n+1
2k+1

]
q

Ẽ2k+1(q)
[2n−2k+1]q

22k+1z2n−2k+1 (n ∈ N0).
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Example 5 Let {Bn(z; q)}n be a set of q-Bernoulli polynomials generated by the second Jackson q-Bessel functions
defined as in (4). Consider the sequence {p̃n(z; q)}n defined by

p̃n(z; q) = 22n+1B2n+1(
z
2

; q).

By the same argument as in Example 4, the sequence {pn(z; q)}n is an odd q-type II Lidstone sequence with α̃2n =

22n[2n+1]qβ2n(q) for every n ∈ N0. According to Equation (72), we get

p̃n(z; q) =
n

∑
k=0

[
2n+1
2k+1

]
q

qk(2k+1)22(n−k)β2(n−k)(q)z2k+1.

Also, the conjugate sequences {p̃n(z; q)}n and {p̂n(z; q)}n have the following generating functions:

Cothq(t)Sinhq(tz) =
∞

∑
n=0

p̃n(z; q)
t2n

[2n+1]q!
,

Tanhq(t)Sinhq(tz) =
∞

∑
n=0

p̂n(z; q)
t2n

[2n+1]q!
.

Thus,

p̂n(z; q) =−
n

∑
k=0

[
2n+1
2k+1

]
q

Ẽ2k+1(q)
[2n−2k+1]q

22n−2k+1qk(2k+1)z2k+1 (n ∈ N0).

Remark 13 In Example 5, the sequence {pn(z; q)}n up to a constant [2n+1]q! coincides with the set of q-Lidstone
polynomials {Bn(z)}n which defined in (3).

Example 6 Let {En(z; q)}n be the set of q-Euler polynomials generated by the second Jackson q-Bessel functions,
and defined as in (7). Consider the sequence { fn(z; q)}n defined by

fn(z; q) = 22n+1E2n+1(
z
2

; q).

Then, the sequence { fn(z; q)}n is an odd q-type II Lidstone sequence with

α̃2n = 22n[2n+1]qẼ2n(q),

where Ẽ2n(q) = E2n(0; q). Taking into account that Ẽ2n(q) = δn0 where δn0 is the Kronecker’s delta, we get α̃0 = 1 and
α̃2n = 0 for every n ∈ N. This implies hq(t) = 1 and then the conjugate sequences { fn(z; q)}n and { f̂n(z; q)}n have the
following generating functions:
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1
t
Sinhq(tz) =

∞

∑
n=0

fn(z; q)
t2n

[2n+1]q!
,

t Sinhq(tz) =
∞

∑
n=0

f̂n(z; q)
t2n

[2n+1]q!
.

Remark 14 In Example 6, the sequence { fn(z; q)}n multiplied by 2
[2n+1]q! coincides with the set of q-Lidstone

polynomials {Nn+1(z)}n which defined in (6).
Example 7 Let {ωn(z; q)}n be a sequence of polynomials defined by

ωn(z; q) = 22ne2n(
z
2

; q), n ∈ N0, (87)

where {en(z; q)}n is the set of q-Euler polynomials defined by the generating function

2eq(zt)
eq(t/2)Eq(t/2)+1

=
∞

∑
n=0

en(z; q)
tn

[n]q!
.

By Theorem 14, the sequence {ωn(z; q)}n which defined in (87) is an even q-type I Lidstone sequence, and then it
satisfies Equation (54). According to Proposition 9, we get

γ2n = ωn(0) = 22nẼ2n(q) = 22nδn0 (n ∈ N0). (88)

This implies

hq(t) =
∞

∑
n=0

γ2n
t2n

[2n]q!
= 1.

So, the generating function of the sequence {ωn(z; q)}n is

coshq(tz) =
∞

∑
n=0

ωn(z; q)
t2n

[2n]q!
. (89)

Example 8 Let {En(z; q)} be the set of q-Euler polynomials generated by the second Jackson q-Bessel functions
which defined in (7). Consider the sequence {ω̃n(z; q)}n:

ω̃n(z; q) = 22nE2n(
z
2

; q) (n ∈ N0).
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By the same argument as in Example 7, the sequence {ω̃n(z; q)}n is an even q-type II Lidstone sequence with
γ̃2n = Ẽ2n(q) for every n ∈ N0. Here, the conjugate sequences {ω̃n(z; q)}n and {ω̂n(z; q)}n have the same generating
functions:

Coshq(tz) =
∞

∑
n=0

ω̃n(z; q)
t2n

[2n]q!
=

∞

∑
n=0

ω̂n(z; q)
t2n

[2n]q!
.

6. Conclusion
We considered a sequence {Ln(z; q)}n of polynomials which satisfies one of the following q-difference equations:

D2
qLn(z; q) = an Ln−1(z; q) or D2

q−1Ln(z; q) = an Ln−1(z; q),

where an ∈R. The sequence {Ln(z; q)}n is a generalization of Lidstone-type polynomial sequence defined in [20–22] and
called the q-type Lidstone polynomial sequence.

We studied some classes of these sequences. More precisely, we considered the q-Lidstone polynomials of odd and
even degrees in two types (I and II), called odd and even q-type Lidstone polynomial sequences, respectively. Then,
we gave some characterizations of these classes including matrix form, generating function, recurrence relations, and
conjugate sequences.
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