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1. Introduction

The Lidstone series approximates an entire function f of exponential type less than 7 in a neighborhood of two points
instead of one, that is

where {A,(z)}, is a set of polynomials that called Lidstone polynomials (see [1, 2]). This expansion has played a key
role in the theoretical and computational studies related to entire functions and applied it to high order boundary value
problems (see [3—10]).

Recently, Ismail and Mansour [11] constructed a g-analog of Lidstone expansion theorem. They proved that, under
certain conditions, an entire function f(z) has a convergent representation as

=

)= X [0 H(1)An) — (D )(0)B (),

n=0

where {A,(z) }» and {B,(z) }, are two sets of g-Lidstone polynomials defined by the generating functions
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=Y Au(xw?, (1)

1 @

respectively. Moreover, they proved that the polynomial B,(z) is a constant multiplier of the g-Bernoulli polynomial of
order 2n+ 1. More precisely,

22n+1

Bu(2) = i

Bont1(2/2; q), 3)

where {B,(z; q) }, is a set of g-Bernoulli polynomials defined by the generating function

tE,(zt) > "

B 2)eq /D —1 ~ SO @

n=0

Here, E,(z) and e,(z) are the g-exponential functions defined by Jackson, cf. e.g., [12, 13],

o
Ey(z): =Y ¢'V 1)/27[ ; - z€C
Jj=0 Jlg*

(5)
eg(z): =Y ﬁ 7| < 1.
j=0 J]q'
In [14], Al-Towailb introduced another set of g-Lidstone polynomials {N,+(z) }, defined by

22n+1
N, =——F 2; 6
n+1(z) [2n+ ]]q' 2n+1(Z/ > Q)a ( )

where {E,(z; ¢) }, is a set of g-Euler polynomials defined by the generating function
2E,(zt) > "
=Y E(zq9)—-. (7
eq(t/2)Eq(t/2) +1 n;(] " [n]!

Also, the two sets {Vv,(z)}, and {7,(z)}, of complementary g-Lidstone polynomials was studied by Mansour and
AL-Towailb [15], where
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vo(z) = 1=1(2),
D, 1V,(0) = D,17,(1) =0, (®)

Di—l Tn(2) = Tn1(z) and D£21—1 Va(2) = Vu-1(2).

For more details about a g-Lidstone expansion theorem, properties, and applications of g-Lidstone polynomials,
readers may refer to the literature (see [11, 14—18]).

Throughout this paper, we assume that ¢ is a positive number less than one and N is the set of positive integers. We
follow the notations and terminologies in [12, 19].

Our aim is to present and study general classes of polynomial sequences including (3), (6) and (8), called odd and
even g-type Lidstone polynomials, respectively. For this, we consider a sequence of g-polynomials {L,(z; g) }» (n € No),
which satisfies one of the following g-difference equations:

D,ZILn(Z; CI) = anLnfl(Z; CI) or Dz—an(Z; 61) = anLnfl(Z; Q)v (9)

where a, € R. We say that {L,(z; ¢)}, is a g-type Lidstone polynomial sequence, and in this situation, we write gLPS
shortly.
Note that when g — 1, Equation (9) reduces to

d2
TZZLn (Z) =au,L,—1 (Z)a

so, we may think of gLPS as a generalization of Lidstone-type polynomial sequences studied in [20-22].

This article is organized as follows: in the next section, we define the class of odd g-type I Lidstone polynomial
sequences, and we give some characterizations of this type, including matrix and determinate representations, the
generating function, recurrence relation, and conjugate sequences. In Section 3, we study the class of even g-type I
Lidstone polynomial sequences. We give some properties, and theoretical results related to them. In Section 4, an
analogy with g-type I Lidstone polynomial sequences, we introduce odd and even g-type I Lidstone polynomial sequences,
respectively. Finally, in Section 5, we give some illustrative examples.

2. Odd g-type I Lidstone polynomial sequences

In this section, we define and study the first class of g-type Lidstone polynomial sequences which satisfy the g-
difference equation:

D;Ln(z; q)=a,L,—1(z;q), a,€R(mneN). (10)

Definition 1 The odd g-type I Lidstone sequences (qOLS-I) is a set of polynomial sequences which satisfy
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Dipa(z; q) = 2n+1]4 [2nlg pa-i1(z: q), n€N;
(11)
Pn(0) =0, po(z; q) = a0z, Ao € R\{0}, n € No.

Notice, one can verify that p,(z; q) is a polynomial of degree 2n+ 1 for each n € Ny.
Proposition 1 A g-type Lidstone polynomial sequence {p,(z; ¢)}, is an element of the class gOLS-I if and only if
there exists a sequence () of real numbers such that o # 0, and

i [2”+ 1] Qok 2n=k)+1
= 12k + 1], [2(n—k) + 1],

(12)

_y [2”+1] Dnb) ket
k1), Pl—k)+ 1,

Proof. Let {p,(z; ) }» € qOLS-I. Then, there exists a constant o # 0 such that py(z; g) = oz. Therefore,

Dipi(zq) =ciz, 1= [2]4[3]4 00,

and then D, p(z; q) = 222+ o (¢2, ap € R). This implies Dyp1(0) = o, and by induction we can set
Dypn(0; q) = 0, 0p €R. (13)

Now, assume that p,(z; ¢) = Z a,En)zz(”fk)H. Then,
k=0

D;pa(z: g Z o 2(n—k)+1],2(n — k)], 2001, (14)
According to the g-difference equation in (11), we have
n—1 (n—1)
Dipa(z: q) = 2n+ 1]y [2n], Y o 2007 (15)
k=0

From (14) and (15), we get

m a}gn) _ ﬁ [2n+1]4[2n], .
n=k+1 0615" Do 20 2=k +1]42(n —k)]y

Consequently, we obtain
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(m) _ 2m+1],! *) _ {Zer 1] a1£k>

= - 16

M T Rk + 2k 1% T (21, 2=k + 1], (16)
where Oclgk) is the coefficient of z in py(z; ¢). Using (13), we can replace a,gk) by oy and then we get the result in (12). On
the other hand, if (12) is satisfied and o # 0, we get easily (11) which complete the proof. O

Remark 1 From (12), we obtain
i. pu(z; q) an odd function for each n € N;
ii. {z2"*1}, € gOLS-I and gOLS-IC P, where P = span{z%/*!| j € N};

n

ol Q) (n—k)

iii. fy pu(zs q)dgz=[2n+1],! ,neN.
0 £ 1 1 ,(;)[Zk+2]![2(n—k)+1]q!

Proposition 2 Letn € N and {p,(z; ¢)}» € gOLS-I. Then

7 . 2 1 ' . .
(1) D2"pu(23 ) = ol Pl ), m=1,2,m;

2n41],!
(2) D2 (53 9) = o i Dapnm(z5 @), m= 1,2, m;
2n+1],!
3) D},’”pn(O) =0; ngﬂpn(o) = [Z(LfT)ll—ll]q' Bp-myy m=1,2,....n
Proof. The proof follows immediately from (11) and (12) by induction. O

2.1 Matrix form

Recall that a matrix M = [m; j],-7 j>0 is infinite lower triangular if m;; = 0 whenever j > i. We denote by .Z the set of
all lower triangular matrices.
A matrix T = [a;;];, j>0 is a Toeplitz if and only if T € .Z and a;; = a;_; for i > j. That is,

ag 0 0 O
alaOO

=)

a d; Q 0
as a; dp ao

We need the following results from [23].
Lemma 1 LetA, B € .Z. Then the product AB = [c;j]; j>0 is well-defined, and

Cik = ajjbjr, i > k.

i

j=k

Lemma 2 Let T, be a Toeplitz matrix in .# defined by
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aji—j, 2]
T = [aijli, j>0: =

0, i<j.
If (T,) ' =Tp,: = [by] (n =i~ j), then
i aq ap ]
an aj ao
b= 1" et
n
aﬁ—H
ap—-1 ap-2 d4p-3 ... QA
L 9n ap-1 ap-2 ... 41 |

Definition 2 The odd g-type I Lidstone matrix A, = [a;;];, j>0 is an infinite lower triangular matrix with

o |2i+1 (i) L
v LJ’HL FEREST (47

where (o)) a sequence of real numbers and o # 0.
Remark 2 According to Definition 2, Formula (12) can be written in the following matrix form

P, =AZ,, (18)

where P, and Z, are two vectors defined by

P, =[po(z ) p1(zq)s -y Pulzs q), - T Zy=z, 2, ..., 2" LT
Moreover, if we set A, , = [a;] such that j=0, 1, ...,i,i=0, 1, ..., n,n € N, and a;; defined in (17), then we have
a sequence (Ay, »), of the principle submatrices of order n of A, which satisfy
Fyon=AgnZg.n; (19)
where
Pon=1p0za) () @)y Zgn=[2, ... 2" (20)

Remark 3 From (20), we get
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Dépqm = [Dél?O’ D;PI» sy D;pn]T~
So, if we denote by € = [c;;] (i, j =0, 1, 2, ..., n) to the derivation matrix for P, ,, i.e,
DPyn=%Pyn (n€No),
then, according to (11), we obtain

Ri+ 120, i=j+1;
Cij =
0, otherwise.

We define a g-type Toeplitz matrix 7}, as the matrix in . whose (i, j) entry is

0 (i—j) L
tf=—"Y — for i>],
T Rl )+ 1! =7
and zero otherwise. Also, we denote by 2 the diagonal matrix with entries d;; = [2i + 1] q"

Proposition 3 The odd g-type I Lidstone matrix can be factorized as

Ag=9Ty0 .

Proof. According to Lemma 1, the product .@Tqa.@_l is well-defined and we easily get the result.

Proposition 4 The odd g-type I Lidstone matrix A, is invertible and
(A ' =2T,D7",
where (B2,), is the numerical sequence satisfying

< B2j0tn-j)

SR R0 )+ 1,

n0

with &, the Kronecker’s delta.
Proof. It follows directly by using (21) and calculating (7T,¢) ! from the result in Lemma 2.

@1

(22)

(23)

O

Remark 4 Equation (23) can be considered as an infinite linear system which determines the numerical sequence

(Ban)n- According to Cramer’s rule, the first m + 1 equations in (23) give
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1
.BO = 0507
3Jg![5]g! .- [2n+1]
ﬁ2n —(_ ) OCSH
S _
% " @;" 0(30 0 (24)
oy )
S B SRR 0
| f S
[;Q(';If)' 2 %3(3;_'2[)3] i B %éi;_'?ﬂ o Bl 0;011 '
nocz,, - nool(anl) - naQ(n‘iZ) “ noc2 ”
| Rntilg! o130 a3~ 2110l |
n=1,2,....m
Now, we consider the polynomials
i [21’1—!— 1:| MZ2k+l (n c NO) (25)
=12k + 1], [2(n—k) +1], ’

where (B2,), is defined as in (24). Note that {p,(z; ¢) }» € gOLS-L
Definition 3 The two sequences {p,(z; q)}n and {p(z; ¢)}n defined in (12) and (25), respectively, are called
conjugate odd g-type I Lidstone sequences.

We denote B, = [b;];, j>o the infinite lower triangular matrix with

b — {Zi—l-]} ﬁz(,;j)
Yo 2i ], 6= 0) + 1

Set 134 =[po(z: @), P1(z:Q); ---, Pu(z; q), -..]T. Then, we have the matrix forms
Py =ByZy, (26)
and forn € N,
Pyn=Byg.nZy.n- 27)

Proposition 5 The two sequences {p,(z; ¢) }» and {p»(z; ) }» are conjugate odd g-type I Lidstone sequences if and
only if
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2p %) 2
P,=A2P,, P,=BP,

and forn € N,
Ppn =A% Pyn, Pyn=Bl Py
Proof. The proof follows directly from (18), (19), (26) and (27), and taking into account A;l =B,. O

Remark 5 From Proposition 5, we can write

n n
Pa(z9) =Y dupr(zq) and  pu(zq) =Y bupi(z: ),
k=0 k=0

2

where @, and b, (k=0, ..., n, n € Ny) are elements of the matrices Aé, nand By

respectively.

2.2 Recurrence relations and q-difference equations

We start by deriving some recurrence relations for a sequence of odd ¢-type I Lidstone polynomials.
Theorem 1 Let {p,(z; ¢)}, € gOLS-I. Then

n—1
1 Y [Z”H] Pty g, (28)

pn(Z; Q) = E = 2%+ 1 . [2(n—k)—|— 1}q

where (B2,), is defined as in (24).
Proof. Assume that A, is an odd g-type I Lidstone matrix. Then, from Equation (19) we have

Zg,n=Bg,nFy,n, 29)

where Z,, , and P, ,, are defined as in (20), and B, , = A;ln. Therefore, we obtain

"2 1 e
2t Z { n+ ] Bon—)

2+ 1 qmpk@ q) (k: 0,1, .., ”)7 (30)

k=0

and then we get the result. O
Note that Relation (30) can be considered as infinite linear system in unknowns polynomials p,(z; ¢) (n € Np). In
the following theorem, we use Cramer’s rule to solve the first m + 1 equations (m =0, 1, ..., n) of (30). Then, we obtain
a first determinate form of odd g-type I Lidstone sequences.
Theorem 2 Let {p,(z; ¢)}n € gOLS-1. Then
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_ (-1
314!l [2n— 1], 1B

o 3 2 221 L2+l 7 (31)
Bo B Bs ... Ban—1) /3
5),! [2n—1 2n+1]
0 [3}q!BO %ZyﬁZ o e 3}Z!ﬁ2n 2) %2,113 lﬁZn 1)
xdet| . . . ,
0 2n—1],1Bo [2'5;34’132

where (B2,), is defined as in (24).
The following theorem gives a recurrence relation for the sequence {p,(z; g) }n-

Theorem 3 Let {p,(z; ¢) }» be an odd g-type I Lidstone sequence. Then, the conjugate sequence {p,(z; ¢) }, satisfies
the recursive relation

. 1oy S 2n+1 Dty
n\Zs = - 2 , ; ) 2
Pn(z: ) ao[z =0 2k+1], [Z(nfk)+1]qpk(z 9) (32)

where (0,), is defined as in (12). Moreover, {p,(z; ¢) }» can be expressed in a determinate form similar to (31) with oy
instead of By, fork =0, 1, ..., n and n € Ny.
Proof. The proof is similar to the proof of Theorem 1 and is omitted. O
Now, we determine another recurrence relation by using the production matrix. Recall that the production matrix IT4
of a nonsingular infinite lower triangular matrix A, defined by

I, =A"'A,

where A is the matrix A with its first row removed (see [24]).
Proposition 6 Let A be an infinite lower triangular matrix, and B be the inverse matrix of A. Then, the production
matrices IT4 and ITp of A and B, respectively, satisfy

MzpA=AD and II4B=BD, (33)

where D = [§(41);li, j>0 and &;; is the Kronecker’s delta.
Lemma 3 Let A; = [a;j];, j>0 be an odd g-type I Lidstone matrix, B, = [b;j]; j>0 be the inverse of A,, and ITp =
[7;;]i, j>0 be the production matrix of B,. Then
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i
Tij =Y @inbur1);

n=0

oo, i=j=0,
(34)

)0 j>i+1,

PO 2i41 Bon0(ijny+22(n+ j) + 14! .
N — - TPERINE otherwise,
= [2(n+))-1 g 2i—j—n)+3)[2j+ 1], 2n+1],!
where (), and (B,,), are numerical sequences defined as in (23).
i

Proof. From (33), we have [1g = ADB. Thus, 7;; = Z ainb (41> and by Proposition 4, we get the result. O

n=0
Theorem 4 Let {p,(z; ¢)}n» € gOLS-I. If A; an odd g-type I Lidstone matrix related to {p,(z; ¢)}, and IT, =
[7;;]i, j>0 is the production matrix of Aq’l, then

1

po\z; q) = 7%,
(za) =5
(35)
’ n
Pus1(259) = ——[Zpalz @)= ¥ Al )] (n € No).
Tn(n+1) k=0
Proof. From (18) and (33), we have I1,P, = A,(DZ,). Since DZ, = [*, 2°, ...]T = z%Z,, we obtain
P, = 7?AZ, = 2P, (36)
n+1
Consider the (n+ 1)th equations of (36), we have Z Tupk(z: ) = 22pa(z: ). Hence, after some calculations, we
k=0
get (35). O

Theorem 5 Let {p,(z; ¢)}» € gOLS-1. Then

1
po(z: q) “B

Volume 5 Issue 3|2024| 3149 Contemporary Mathematics



(=1)""po(z; q)
q)=
Pu41(Z q) 172 - - - Tp(n+1)

oo — 22 o1 0 0
Tio T — 22 T2 0
20 m1 -z . 0
x det )
e n—1)n
| o Toul p e T — 2

where 7;; are defined as in (34).

Proof. According to Theorem 4, we have the linear system (36) which can be expressed in a matrix form as

o1 0 0 0 D1 22 — o
mi—7 W 0 0 P2 —Tio
Ty -2t M3 0 P3| =py| M0
31 32 33 — 2 T34 ... P4 —T30
By using Cramer’s rule, we get the solution of first n+ 1 equations and then, we obtain the result. O

We end this section by proving that the odd g-type I Lidstone sequences satisfy some of g-difference equations.

Theorem 6 Let {p,(z; ¢)}, be an odd g-type I Lidstone sequence. Then, it satisfies the following linear g-difference
equations

Y s DR =2 =0 37)
k=0 q°

2k +1],! .

k; {ZH AZ , T D24 2 — D} (2°u(z)) + [2n 4 3]g[2n + 2)g Ty 1)u(2) = 0. (38)

Proof. From Proposition 2, we have

2 1],!
D pa(z: q) = m Puk(zq). 39)

Substituting (39) into (28), we obtain

1

n
. _ | .2n4+3
pn+1(Z, q) — B() |:Z k;() [2k+3]q‘

[2n+3}q{2n+2}q ﬁ2k+2D2kP (Z' 6])}
q Fni\e> 471
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Therefore,

1 " [2n+3],2n+2]
2 . _ 5 2n+1 _ = gt T Alg
Dypn+1(z q) = Bo [2n+3]q[2n+2]yz kgb 2k +3],!

Since
Dypnsi1(z: q) = [2n+2]4[2n43]4pu(z; q) and D} p,(z; q) =0,

we obtain (37). On the other hand, from Theorem 4, we have

n
Ty 1) Pt (22 4) = 2Pn(2: @) — Y, Tuepi(2: q).
k=0

By taking the second g-derivative of (40), we obtain

=

21+ 3] [2n+ 2]y 1) P (25 @) = D2(2% pa(z: 9)) —

=~
Il
=

According to Proposition 2, we get

[2n+1],!

| pkfl(Z; 61)-

D3<n7k+1)pn(z; q) = M

Substituting (42) into (41) yields (38) and completes the proof.

2.3 Generating function

Our aim here is to get the generating function of odd g-type I Lidstone sequences.
Recall that the g-trigonometric functions

Siny (s = BB oy ealiD—ey(oiD)

Cos,(2): = E,(iz) —|—2Eq(—iz)7 eq(iz) +eq(—iz)

cosy(z) = % ;

4 Baxs2 D7 palz: q) |-

[2k + 1]¢[2k] g ok pr—1 (23 q)-

(40)

(41)

(42)

where E,(z) and e,(z) are the g-exponential functions defined in (5). The g-analog of hyperbolic functions sinhz and

coshz are defined by

oo Z2n—t—1

sinh,(z): = —ising(iz) = _—
q(Z) l q(lZ) = [2}’l+ 1]q|
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cosh, (z): =cos,(iz) = i SR (43)

Moreover, Sinh,(z) = sinh; ,(z) and Cosh(z) = cosh; /,(2).
Let {pa(z; g)}n be the odd g-type I Lidstone sequence related to the numerical sequence (04, ),, and consider the
following power series

g(t)=Y L.IZ". (44)

Lemma 4 Let g, (1) be the power series defined in (44). Then ( 3 is a well-defined function, and it has the series
representation

1 — ﬁZn 2n
P I e T 45)
84(t) ,1;()[2”+1]q'
where (B2,), is defined as in (24).
Proof. Since o # 0, g,(¢) is invertible. To get Equation (45), we prove that
i Qon £2n i ﬁZn 2] —1.
= 2n4-1],! = 2n+-1],!
By using the Cauchy product for power series and Equation (23), we obtain
o o o
Z 2n ' t2n Z ﬁZn ‘ t2n
= 2n+1],! = 2n+-1],!
> i 0y
-y Yy Box 2(n—k)
= = 2k 1] [2(n— k) + 1],
:1 s
which implies the result. O
Theorem 7 Let {p,(z; )}, and {p,(z; ¢) }. be the conjugate odd ¢-type I Lidstone sequences. Then
smh "
; 46
gl] Z pn Z5 2 T 1] (46)
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=) Pn(ziq ) 47)
gq(t) t n=0 n( ) [21’l+ 1]‘1'
where g,(¢) is defined as in (44).
Proof. From Equation (30), we have
" [2n+ 1} Ba(n-r) 21
o @)=z (48)
k;) [2k+ 1], 2(n—k)+1],
Multiplying both sides of (48) by . P +1] ; and adding on n, we obtain
i ( z": [Zn + 1] Ba(n—r) nelz q)) 2+l i (zt) 21
k\<s = .
S NE 12k 2(n—k)+ 1], 2n+1],! = [2n+1],!
Therefore,
I t2n o 2n
t _— 5 q) —— = sinh,(zz).
};}an [2n+1}q!£;)p"(z Dot 1,1 o)
By using Lemma 4, we obtain (46).
Similarly, from Equation (32), we can derive the generating function of {p,(z; ¢) }, and get Equation (47). O
Example 1 Ismail and Mansour [11, Eq.(3.37)] introduced the identity
n
T
Y (—1)ka B2k(‘]') wm-ur1(q) S0, (49)

P [2k],! 2n—2k+1],!

where 8,9 the Kroncker’s delta function, 3,(¢) the g-Bernoulli number, and (7,), a sequence of tangent numbers that
defined by

t2n+1

EZEa 0

Tangt = tangt = Y Tony
n=0

It is worth noting that there was a small typo in [11] [Eq.(3.37)], which we have corrected in (49).
We define (a;); and (B2;); b

0 =Tjr1,  Poj=(—1)72%[2j+1],B2;(q).

Then, the two sequences {p,(z; q)}» and {pn(z; g) }u:
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= [ 2n Dnsit1 2ks1
pn(ziq) = { } [T S
' k;) 2k| , [2n—2k+1],

R = [2n+1 kn2kp. 2n—2k+1
Pulcia) = { } (12 By

are conjugate odd g-type I Lidstone sequences. By using (46) and (50), one can verify that

tan, 7 sinhy (zf) 1
e
On the other hand, since
oo t2n
tCotyt =tcotyt = Y (=1)"Bon(q) 57
n=0 [2 ]4'
(see [11]), we obtain
t2n
tcoth,t ;
Cco Z pn Z; et 1}

2.4 Relationship with q-Appell polynomial sequences

Recall that, for n € Ny, an Appell polynomial a,(z) is a polynomial that has the following series representation

an(z) = zn: (Z) an_(0)5.

k=0

Or equivalently, it defined by the generating function

w i
g
where g(t Z an(0)—, \t\ < M for some M > 0 (see [25]).

The sequence {an (z, q) }n of g-Appell polynomials was introduced by Sharma, Chak and Al-Salam [26, 27]. They
defined a,(z; g) by the generating function

Zt) = ioan(z; Q) [r:]nq'a
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where E,(z) the exponential function defined in (5), and A,(¢) is the determining function for {a,(z; ¢) }, which given by

Py 7[n}q! (a, €R).

Furthermore, the g-Appell polynomials satisfy the following properties:

1. ag(z; q) #0;

2. Dyan(z; q) = [nlgan—1(z; q);

3. a,(0; ¢) = an, n € No.

The following result gives a characterization of g-Appell polynomial sequence (see [28]):

Proposition 7 The sequence {a,(z; )} is a g-Appell polynomial sequence if and only if there exists a numerical
sequence (ay)x, independent of n, such that ag # 0 and

an(z:q) = an mqq(ngk)akz"_k.

In the following, we establish a relationship between odd g-type I Lidstone sequences and g-Appell polynomial
sequences.

Theorem 8 Let {a,(z; g)}» be a sequence of g-Appell polynomials. If az,+1(0; g) = 0 (n € N), then the sequence
{fn(z; q) }n, Where

fulz: ) 222”“azn+1(§;q) (neN) 1)

is an odd g-type I Lidstone sequence.

Proof. Since {a,(z; ¢)}, is a sequence of g-Appell polynomials, it satisfies

Dyan(z; q) = [n]qan—1(2; q) (52)

By using the assumption ay,+1(0; ¢) = 0 with Equation (52), we conclude that the functions f,(z; ¢) satisfy (11).
This implies { f,(z; ¢) }» € gOLS-L. O

3. Even g-type I Lidstone polynomial sequences

We study the sequence of polynomials {®,(z; ¢)}, which satisfy

Diw,(z; q) = [2n] [2n = 1] 0,-1(z; q),
(53)
D,@,(0; q) =0 (n€Np), oz q) =1, N <R\{0}.

In this case, {®,(z; )} is an element of even g-type I Lidstone sequences (gELS-I).
Remark 6 From (53), one can verify that @, (z; g) is a polynomial of degree 2n for each n € Ny.
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Throughout this section, the proofs are omitted because they follow along similar lines as the corresponding proofs
of Section 2.

Proposition 8 The sequence {®,(z; ) }» € gELS-Lif and only if there exists a sequence (), of real numbers such
that ¥ # 0 and

2n
(z9) =Y, [Zk} Puni, neN. (54)
k=0 q

Remark 7 From (54), we obtain
i. @y(z; g) is an even function for all n € N;

ii. {z?"}, € gELS and gELS C P, where P: = span{z%/| j € N};
! * [2n Y(n—k)
. [ o,(zq)dz= [ } ————, nel

/0 ! 1 k;) 2k], [2k+1],

Proposition 9 Letn € N and {®,(z; ¢) }» € gELS-1. Then

2n]g!
L. D" (2 q) = D(Lji],z)]q!wn—m(z; q), m=0,1,....n;
2nlq!
2. DY (25 4) = (e Dy (i @), m=0, 1, .on—1;

m m 2nl,!
3. D" @,(0) = 0 and D wn(O):mLfﬁ)Myz(n_m), m=1,2,....n.

3.1 Matrix form

Definition 4 The even g-type I Lidstone matrix is an infinite lower triangular matrix F, = [f;;]; j>o0 with

2i
- o P>
fl/ |:2J:| q’}/z(lf‘])7 =], (55)

where (21 )r a sequence of real numbers and 7y # 0.
Remark 8 The polynomials (54) can be written in the matrix form

Q,=F2, (56)
where Q, and 7 are two vectors defined by
T T

Q, = [wo(z; q), wi(z; q), ..., 0u(z5 q), ...]", Z:[l,zz,...7z L

Moreover, if we set F, , = [fij] suchthat j=0,1,...,i,i=0, 1, ..., n forn € Nand f;; defined in (55), then we have
a sequence (F,, ), of the principle submatrices of order n of F;, which satisfy Q, , = F;, wZn, Where

Qq,n: [CUO(Z, 61)7 a)1<Z; C])> LR wl’l(z; Q)]T7 Zn: [lazzv "-7Z2n]T- (57)

In the following, we assume that 7, = [tf;], j>0 is a g-Toeplitz matrix whose (i, j) entry defined by
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0, otherwise,

and & is the diagonal matrix with entries dj; = [2i],!.

Proposition 10 An even g-type I Lidstone matrix F;; can be factorized as
F,= 9T, 97"

Proposition 11 The even g-type I Lidstone matrix is invertible and

where (&;,), is a numerical sequence satisfying

Lo RS-

L)l 2= )y 0 (el

with &, is the Kronecker’s delta.

(58)

(39)

(60)

Remark 9 Equation (60) describes an infinite linear system which determines the numerical sequence (&)

According to Cramer’s rule, the first n 4 1 equations give

o= %
21,4, ... [2n|,!
§2n :( l)n[ ]11 [ ];%+1 [ ](1
) %
gy my} ; S 0
N —_—te (U
A I Ay 0 0
x det )
yZ(n.—l) 7’2(»1'72) 7’2(»1'73) );0
[2n—2]q! [2n74]q![2]q! [2n76]q![4]q! [2n72]q!
Vou H(n—1) Y (n—2) %
[2n]4! [2n—2]412]4! [2n—4]q1[4]4! [2n—2]4![2]4!

As in the odd g-type I Lidstone sequences, we consider the polynomials
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i[ :| éZn k) < Zka (62)

k=0

where (&), is defined as in (61). The two sequences {®,(z; )}, and {@,(z; ¢)}. are called conjugate even g-type I
Lidstone sequences.

We denote G, = [g;]i, j>o0 the infinite lower triangular matrix with
2 o
ij = [Zj} 52(1'7,‘), 12,
q
and set Q, = [ (z; q), D1(z; q), ..., Du(z q), ...]7. Then,

Q,=G,2 and Q, ,=G,,2, (neN). (63)

Proposition 12 The two sequences {@,(z; ¢)}, and {@®,(z; ¢) }» are conjugate even g-type I Lidstone sequences if
and only if

Q,=F}Q, Q,=GQ,,
and forn € N,

oA ~ 5
Qgn=F; Q0 Qqn=GCy ,Qqn-

Remark 10 From Proposition 12, we can write

n
(J)n(Z; Q) = ankd)n(z; Q) and wn %49 Zgnkwn 9 nENo),
k=0
where fi; and g, (k =0, ..., n) are elements of the matrices F> and G, respectively.

3.2 Recurrence relations and determinant form

Theorem 9 (First recurrence relation) Let {®,(z; q)}» and {@,(z; ) }» be the conjugate even g-type I Lidstone
sequences. Then

1 n=lToy
oz q) =+ |2 =) [ } Eatnt) k(23 q) |,
50{ =0 L2k], -
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1 n=lmp
On(zq)=—|" =) { } Vi) (2 q) |, (64)
}/0[ &2k, 200 }

where (), and (&), are the numerical sequences satisfying (61).
Theorem 10 Let {®,(z; ) }» € gELS-1. Then

(2 Q):éz,
1 2 T ... 7?2 72"
& & & .. Sa(n-2) Ean 65
Cop| O 8 Blg o PG BlEey “
a)n(Z; q)_ n+1 . : : . . 9
0
0 So [2<,ff,)]q§z

where (&;,), is defined as in (61). Moreover, {®,(z; g) }» can be expressed in a determinate form similar to (65) with
instead of &y, for k=0, 1, ..., n, and n € N.

Lemma 5 Let F, = [fi;]; j>0 be an even g-type I Lidstone matrix, G, = [gi;];, j>0 be the inverse matrix of F;, and
I = [7;;];, />0 be the production matrix of G,. Then

i

Tij =Y fn8ns1)j
n=0

0, it (66)

Lo[2i] [2(n+1 .
nzb|:2n:|q|: (2] ):|q’}/2(i—n)§2(n—j+1), OthCI'WISe,

where (5,), and (&), are the numerical sequences defined as in (60).
Theorem 11 (Second recurrence relation) Let {@,(z; ¢) }» € gELS-I. Assume that F; is the even g-type I Lidstone
matrix related to {®,(z; g) }», and I = [@;;];, j>0 is the production matrix oqu*I. Then wy(z; ¢) = %o’ and forn € N

1 1
011(2; q) = = [zzwn(z; q)— Y Tt (z: q)]. (67)
n(n+1) k=0

Theorem 12 Let {®,(z; )}, € gELS-L. Then

Volume 5 Issue 3|2024| 3159 Contemporary Mathematics



(2 q) =%

(=)o (z; q)

0 41(2 ) == -
17012 - - - Tp(n+1)

7_500—22 o1 0 0
o Ty —22 T2 0
Mo M o 712 . . 0
X det . ] ) ) . _ 7
ﬁ(nfl)n
= = = = 2
T Tn1 T2 cee e Ty — 25

where 7;; are defined as in (66).

3.3 The Generating function and relationship with q-Appell polynomial sequences

Let {w,(z; ¢) }» be an even g-type I Lidstone polynomial sequence related to the numerical sequence (7»,),. Consider
the following power series

=Y (68)

Lemma 6 Let /,(t) be the power series defined in (68). Then, ( 3 is a well-defined function and

1 _ . éZn 2n
he(t) =4 12n),!

(69)

where (&), is defined as in (61).
Theorem 13 Let {®,(z; ) }» and {@,(z; g) }» be the conjugate even g-type I Lidstone sequences. Then

[2n

2n],!

hg(t) coshy( Z n(z; q

t2n

cosh Z a,(z; q ]

1
hq(t)

where h,(t) is defined as in (68).
Example 2 Consider Equation (60). From Identity (49), we can take
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T2j+1

Y= (—1)2%B,;(q) and &; = ity

Hence, the two sequences {w,(z; q) }» and {W,(z; q) }» which defined by

wn(z;q) = Zj:

2n —
{ZIJ (—1)*2% By (q) 22K,
k=0 q

~ " [2n T2n72k+1 2%k
Wa(zq) = { } YT A
" k;) 2k|, [2n—2k+ 1],

are conjugate even g-type I Lidstone sequences. Furthermore, since

t2n+1 o t2n

Tangt =tan,t = Y Toyr1:=——— and tCotyt =tcotyt = Y (—1)"Bon(q) o=,
¢ ! n;) " 2n+ 1], 1 1 n;) " 2],

we can verify that

t2n

coshy(zr) = i)wn(z; Q)[ZTM

t2n
[2n],!”

tan, ¢

and 7cothytcosh,(zt) = Z Wi (z; q)
n=0

which coincide with the results of Theorem 13.

The following result gives a relationship between even g-type I Lidstone polynomial sequences and g-Appell
polynomial sequences.

Theorem 14 Let {a,(z; g) }» be a sequence of g-Appell polynomials. Assume that az,+1(0; g) = 0 for n € N. Then,
the sequence {w,(z; ¢) }» which defined by

0n(z; q): = 22”azn(§; q) (70)

is an even g-type I Lidstone polynomial sequence.

4. Odd and even g-type II Lidstone polynomial sequences

In this section, we consider two general classes of g-type Lidstone polynomial sequences (called odd and even g-type
II Lidstone polynomial sequences, respectively).
In this type, a sequence of polynomials {L,(z; q) }, satisfies the g-difference equation

Dz_.Ln(z; q)=anLy1(z:q), a,€R(neN).
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4.1 Odd g-type 11 Lidstone polynomial sequences

Definition 5 The odd g-type II Lidstone sequences (gOLS-II) is the set of polynomial sequences satisfying

Dé—lﬁn(z; 6]) = [27’1]6]71 [2n+ l]q*I ph’nfl(z; C]),

(71)
p~n(0; q) = O(I’l € NO)) ﬁO(Z; Q) = d()Z, 6‘0 € R\{O}

Without loss of generality, we may assume that the sequence {p,(z; ¢) }, satisfies the g-difference equation

D2 (2 q) = [2n)g 20+ 1)y Pu-1(2: ).

The following result gives a characterization of gOLS-II.

Proposition 13 The sequence {p,(z; g) }, is an element of gOLS-II if and only if there exists a numerical sequence
(@t ) such that & # 0, and

20417 PRk gy 2(n—k)+1

= e e 4
=0 2k+1], 2(n—k)+1],

(72)

_i 2n+1] ¢+ D(n-k) okt

& [2k+1], Rn—k)+1],

An odd g-type II Lidstone matrix is an infinite lower triangular matrix A, = [@;;];, j>0 With

~H:[2i+l} ¢/ i) P>
Yo 2j, G-+ T

where (&) is a numerical sequence, and & # 0.
Notice, Formula (72) can be written in the matrix form £, = A,Z, where P, and Z are two vectors defined by

P=1po(z9), 1(zQ)s s Pulzs q), - )Ty Z=[z, 2, ., 2T

Proposition 14 The odd g-type II Lidstone matrix Aq can be factorized as

Aq = .@Tqa.@_l,

where Tqa = [l‘g]hjz() with
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0, otherwise,

and 7 a diagonal matrix with entries d;; = [2i 4 1],!. Moreover, the matrix Aq is invertible and

(A) ' =910,

where (B2,,), is a numerical sequence satisfying

n

B i0(n—j)
L 1, 20— )+ 1!

=60 (neNp). (73)

Definition 6 Let (&), and (B2,), be two numerical sequences which satisfy Equation (73). If

—k
) erss!

n znﬂ gD By,
—_— for neNy,
{ , 2=k + 1], °

Pn(zq) =
k;o 2k+1

then, the two sequences {p,(z; ¢) }» and {p,(z; ¢) }» are called conjugate odd g-type II Lidstone sequences.

Remark 11 If B, = [b;;]; j>o is the infinite lower triangular matrix with entities

; J2+D B, .
3;—{21“} T Pin s,

2j+1], G- ) +1]g’

and P} = [po(z: 9), p1(z: q), -, Pu(2: @), ...]", then we have the matrix form

Proposition 15 The two sequences {p,(z; g) }» and {pn(z; q) }» are conjugate odd ¢-type II Lidstone sequences if
and only if

P =AP: and P =BP,

In the following theorem, we determine recurrence relations for the two sequences {p,(z; ¢)}» and {pn(z; q) }n-
Theorem 15 Let {p,(z; ¢) }» and {p,(z; g) }» be conjugate odd g-type II Lidstone sequences. Then,
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—n(2nt1 n=1r 1 ;

Pn(z; q) = Bo & 2k+1] Rn—k)+1), 7"

—n(2n+1) n=1rs 17 a
£y _4 1 n+ kakt1)  R2—k)
Pule q) =" — [Z k;) k1), Bk 11, q)},

where (&), and (ﬁz,,),, are the numerical sequences which satisfy Equation (73).
Corollary 1 The conjugate sequences {jn(z; q) }» and {pn(z; q) }» satisfy the g-difference equations

N Bu
(n—k+1)(2n—2k+3) 42k 2l
IS P = =0

" N
%ok (n—k-+1)(2n—2k+3) py2k _ntl
k;) Rk+1],! e =2 :

Lemma 7 Let A, = [G;j]; j>0 be an odd g-type II Lidstone matrix, B, = [b;;; j>0 be the inverse of A,, and [Tz =
[7;;];, />0 be the production matrix of B,. Then

&P, i=j=0,

ﬁ:ij — 0, j>i+1, (74)

Zi—j+1 [2(2i+1 ] gD @)1 BanO(ij—n)422(n+j)+1]g!

n=0 " LR(ntj)-1lg @ -m IR et Otherwise,

where (&), and (Bz,,),, are defined as in (73).
Theorem 16 Let {/,(z; g)}» € gOLS-II. Assume that A, is the odd g-type II Lidstone matrix related to {5, (z; g) }n,
and I1, = [;];, >0 is the production matrix of A;l. Then

1
Po(z:q) = =z,
Bo

(75)

. 1 - oL
Pui1(z9) = = [zzpn(z; q)— Y fou Pr(2: q)} (neN).
n(n+1) k=0

Moreover, the conjugate sequence {p,(z; g)}. has a relation similar to (75) with & instead f, and I1, is the
production matrix of Aq instead of A~;1.

Theorem 17 (Generating functions) Let {p,(z; q)}n and {p,(z; ¢q)}. be the conjugate odd g-type II Lidstone
sequences. Then
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Sinh(zt) 12"
GO—"==Y &) (76)
1 t ; 8 2n+1],!
1 Sinhgy(zt) e
— = p N ) 71
18,(t) ¢ ,;)p"(z 9 2n+1],! 77
where g,(¢) the power series defined by
~ - (052 2n
)=
&) ; 2n+1],!
Consider the g-Appell polynomials that satisfy
D, 1dy(z; q) = [n]qdn—1(z; q) (n € No). (78)
Theorem 18 Let {d,(z; ¢) }» be a sequence of g-Appell polynomials. Assume that dz,+1(0; ¢) = 0, and
falz @): =2 a1 q) for meN. (79)
Then, {fu(z; ¢) }n € gOLS-IL.
4.2 Even q-type II Lidstone polynomial sequences
Definition 7 An even g-type II Lidstone sequences (¢ELS-II) is a set of polynomial sequences satisfying
D3 @ (2: q) = [2n)g [2n — 1]y @1 (23 ),
(80)

@,(0;9) =0(meNy), @(zq) =%z o cR\{0}.

Proposition 16 The sequence {®,(z; ¢)}, € ¢ELS-II if and only if there exists a sequence (), of real numbers
such that # # 0, and

- = [2n -
n(z:q) =}, [%] A T (81)
k=0 q

Q =[xz q), ™ (zq), ..., 0z q),..)", Z=[1,2, ... 22 ..,
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and F'q = [fij]i,jZO with

. 20 i Yai-j) L
Jij= { ] Clj(zj 1>%, 2]
T 24, [2(i= ) +1q

Proposition 17 The even g-type II Lidstone matrix Fq can be factorized as

where Tq7 = [t,?;‘]i,jzo with

L) >

0, otherwise,

where (&), is a numerical sequence satisfying

gz/?Z(n— 7)
e g | 2
& 12/11 20— ))]! 0 (neNy) o
and &, is the Kronecker’s delta.

Definition 8 Let (%), and (SZn)n be two numerical sequences satisfying Equation (82), and {®,(z; ¢)}, be a
sequence of polynomials that satisfy

N 2n 1 E
Wy, (Z; Q) = Z |:2k:| qk(Zk D éz(nfk) ZZk (11 S N0>
k=0 q

Then, the two sequences {@,(z; ¢) }» and {®,(z; q) },, are called conjugate even g-type II Lidstone sequences.
Remark 12 If Gq = [gij]i, j>0 is the infinite lower triangular matrix with

- Zl i(2i—1) £ . .
8ij = {2]}(14’(’ )éz(i—j), 12 ],

and Q; = [@o(z: q), B1(z: q), ..., Du(z: q), ...]7, then we have
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QO =G,2

Proposition 18 The two sequences {®,(z; ¢) }, and {®,(z; ¢) },, are conjugate even g-type I Lidstone sequences if
and only if

Qq = F(;Q; and f); = Géﬁq.

Theorem 19 Let {@,(z; ) }» and {@,(z; q) }» be conjugate even g-type II Lidstone sequences. Then

(1—-2n) n=1rs, 5
o) =T [ =Y ] 45 )
0 k=0 q
n(1-2n) n—1 2
_q 2n | k(2k—1) 5
W, (25 9) =—— = n—k) O (25
(z9) % [ Py LkLCI Pon—t) D ( 61)]

where ($2,,), and (EZH)H are defined as in Equation (82).
The following theorem gives the generating functions of an even g-type II Lidstone sequences.
Theorem 20 Let {®,(z; q)}» and {@,(z; q) }» be the conjugate even g-type II Lidstone sequences. Then

o t2n
hy(t)Coshy( Z 2l (83)
n=0
t2n
Cosh Z (2 q (84)

hq( )

where /,(t) is a power series defined by

Example 3 From Equation (49), we can take

Tjt1

:}721' = (—]>j22jﬁ2j(Q) and 52/' = m

Then, the sequences {wy(z; ¢) }» and {W,(z; q) }» defined by
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n

L [2k] HEED (1) By ()2,

k=0
n

NN 2n ror-1) D2kl
wn(z,CI)-—kZa{szq [2r172k+1}qZ ’

are conjugate even g-type II Lidstone sequences. Moreover,

o 2n n
k(2k—1) n—kn2n—2k 2k
WZCI {] (1) 2 Ban-2xz
D e M "
v Dnr1 o &gy
= ——t (at)
(kgb 2n+1],! ngb [2n],!
t
anq Cosh,(zt).
Similarly, we obtain
t2n

i Wa(z; q) = (tcot,1)Coshy(z1).
= [2n],!

Theorem 21 Let {d,(z; ¢)}, be a sequence of g-Appell polynomials that satisfy (78). If d2,+1(0; ¢) =0 (n € N),
then the function

~ ~ Z
wn(Z; Q) = 22”0211(7

2;61)

is in the class of even g-type II Lidstone sequences.

5. Examples

We consider some illustrative examples of odd and even g-type Lidstone polynomial sequences. These sequences
are associated with g-Bernoulli and g-Euler’s polynomials generated by the first and second Jackson g-Bessel functions
(see [11]).

Example 4 Let 0 < ¢ < 1 and {b,(z; ¢)} be a set of g-Bernoulli polynomials which defined by the generating
function

tey(zt) = "
eq(1/2)Eq(1/2) = ; ]q
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where E,(z) and e,(z) are the g-exponential functions defined as in (5). We define the sequence {p,(z; g)}, by

Z
pu(zq): =22 by (2

~iq), neN. (85)

Since Dyby(z; q) = [n]gbn—1(z; q) (see [111), {pn(z; ¢) }» is an odd g-type I Lidstone sequence. Therefore, it satisfies
(11). By using Equation (13), we have D, p,(0; ¢) = 0,. This implies

00, = 2""2n+1],B2(q) (n € No), (86)

where B,,(g) denotes the g-Bernoulli numbers, i.e., B,(q): = b,(0; g).
Ismail and Mansour in [11] introduced the expansion

g (20)"
tcothyt =) B .
1 ngb " [2”]11

Therefore, by using (44), we get

2

.- 22 ﬁZn 61) 2 —
Z 2112 +1* *Z " ‘ n—COthq([).

()

Consequently, from (46), the generating function of the sequence {p,(z; )}, is £ sinh, zt, i.e.,

[2”

coth smh an 29 2 +1]

Moreover, from (47), the generating function for the conjugate sequence {p,(z; g) }» is

t2n+2

tanh, ( hy( ;
anh, () sin Z Pnlz: 2n+ T

Since

tanh,t = Tanh,t = — i Mzh-&-ltbﬂ—l
! ! n=0 [21’14— ]]q'

(see [11] [Eq. (3.36)]), we obtain

L2017 Exci(q9)  ox -
2 +1 _2n—2k+1 e Np).
,;){ZkJrl} 2n—2k+1)," ° (n € No)

Volume 5 Issue 3|2024| 3169 Contemporary Mathematics



Example 5 Let {B,(z; ¢) }» be a set of g-Bernoulli polynomials generated by the second Jackson g-Bessel functions
defined as in (4). Consider the sequence {p,(z; q) }» defined by

Pn(z:q) = 22" 1 Bay i (2, q)-

By the same argument as in Example 4, the sequence {p,(z; ¢) }, is an odd g-type II Lidstone sequence with &, =
222n+ 1],B2n(q) for every n € Ny. According to Equation (72), we get

(201 k1) 20—k 21
Pl g kzb[%“] 1220708y, (@) 2

Also, the conjugate sequences {p,(z; ¢) }» and {p,(z; q) }» have the following generating functions:

2n

t
Cothy(r) Sinh ( an 29 2 2ot 1!

t2n
Tanh,(¢) Sinh, ( an %q 2 n 1]

Thus,

Lo2n+1] 0 Exii(q)  onen
D202k (2K+1) 2kt 1 No).
,;){Zk—i—l} 2n—2k+ 1], ¢ (el

Remark 13 In Example 5, the sequence {p,(z; ¢) }» up to a constant [2n+ 1],! coincides with the set of g-Lidstone
polynomials {B,(z)}, which defined in (3).

Example 6 Let {E,(z; )} be the set of g-Euler polynomials generated by the second Jackson g-Bessel functions,
and defined as in (7). Consider the sequence { f,(z; ¢) }» defined by

Z
fn(Z; Q) = 22nJrlEZn-H (7

2;q)-

Then, the sequence {f,(z; ¢)}» is an odd g-type II Lidstone sequence with
oy = 22 2n+1],E2(q),

where E>,(q) = E»,(0; ¢). Taking into account that E5,(q) = 8,0 where &, is the Kronecker’s delta, we get & = 1 and

0, = 0 for every n € N. This implies 4,(t) = 1 and then the conjugate sequences {f,(z; ¢)}» and {f,(z; )} have the
following generating functions:
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1 > 2
,S h [
i ; D n 1,1

t2n
1 Sinhy ( ;
" Zf" S 1

Remark 14 In Example 6, the sequence {f,(z; ¢)}, multiplied by [2%1]; coincides with the set of g-Lidstone
polynomials {N,(z)}, which defined in (6).
Example 7 Let {®,(z; ¢) }, be a sequence of polynomials defined by

z
(On(Z; Q) = 22ne2n(§; ('I)a n € Ny, (87)
where {e,(z; )} is the set of g-Euler polynomials defined by the generating function

2e4(zt) d "

et/DE t/2)+1 A" D0

By Theorem 14, the sequence {®,(z; ¢) }» which defined in (87) is an even g-type I Lidstone sequence, and then it
satisfies Equation (54). According to Proposition 9, we get

Yon = @,(0) = 2% Er,(q) =2%"8,0  (n € Np). (88)
This implies
oo t2n
h (t) = Von =1
1 ,,g(') [Zn]q'

So, the generating function of the sequence { @, (z; ¢)}» is

cosh Z 0, (z; g (89)

Example 8 Let {E,(z; ¢)} be the set of g-Euler polynomials generated by the second Jackson g-Bessel functions
which defined in (7). Consider the sequence {@,(z; q) }n:

s w2
@n(z; q) = 2° E2n(§; q) (n€Ny).
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By the same argument as in Example 7, the sequence {®,(z; ¢)}, is an even g-type II Lidstone sequence with
Pn = E2n(q) for every n € Ny. Here, the conjugate sequences {@,(z; ¢)}, and {@,(z; ¢)}, have the same generating
functions:

t2n 0 t2n

Cosh,(z) = i)(bn(z; 9) 2n],! ;)cbn(z; q) 2l

6. Conclusion

We considered a sequence {L,(z; ¢) }» of polynomials which satisfies one of the following g-difference equations:

DiLu(zq) =anln-1(zq) or D} Ly(%q) = anLn-1(z q);

where a, € R. The sequence {L,(z; ¢) } is a generalization of Lidstone-type polynomial sequence defined in [20-22] and
called the g-type Lidstone polynomial sequence.

We studied some classes of these sequences. More precisely, we considered the ¢g-Lidstone polynomials of odd and
even degrees in two types (I and II), called odd and even g-type Lidstone polynomial sequences, respectively. Then,
we gave some characterizations of these classes including matrix form, generating function, recurrence relations, and
conjugate sequences.
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