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1. Introduction
In recent years, a new concept in sequences of integer of Balancing numbers was first introduced in the year 1999

by Behera and Panda [1] as solutions of the equation

1+2+ ...+(n−1) = (n+1)+(n+2)+ ...+(n+ r) (1)

They call n ∈ Z+ a balancing number and r, the balancer corresponding to n. For example: the corresponding of the
balancing numbers are 6, 35 and 204 with 2, 14 and 84, respectively.

In [1], Behera and Panda obtained the recurrence relation

Bn+1 = 6Bn −Bn−1 (2)

and then developed in [1–7] the Binet formula by solving this recurrence relation as a second order linear homogeneous
difference equation. Also, they studied the generating functions and some interesting results.
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By slightly modifying equation (1), Panda and Ray [3, 4, 8] introduced n ∈ Z+ a cobalancing number if

1+2+ ...+n = (n+1)+(n+2)+ ...+(n+ r)

for some r ∈ Z+. r is called cobalancer corresponding to the cobalancing number n. The first three cobalancing numbers
are 2, 14 and 84 with cobalancers 1, 6 and 35, respectively. They developed the recurrence relation

bn+1 = 6bn −bn−1 +2 (3)

for cobalancing numbers. Using this recurrence relation, they obtained the generating function for cobalancing numbers
and proved some interesting results between balancing and cobalancing numbers.

The family of quaternion arithmetic plays an important role in mathematics such as algebraic systems, skew field or
non commutative division algebras and matrices in commutative rings. We can find studying areas in mathematics in [9].

The real quaternions were first introduced by Irish Mathematician William Rowan Hamilton in 1843 [10]. Hamilton
defined the set of real quaternions which can be represented as

H = {q = q0e0 +q1e1 +q2e2 +q3e3 : qi ∈ R, i = 0, 1, 2, 3}

as the four-dimensional vector space over R having a basis {e0, e1, e2, e3} where

e2
1 = e2

2 = e2
3 =−1

e1e2 =−e2e1 = e3, e2e3 =−e3e2 = e1, e3e1 =−e1e3 = e2

Note that the set of real quaternions form an associative but non commutative algebra.
The quaternion q is a hyper-complex number and can be written as

q = q0e0 +q1e1 +q2e2 +q3e3 =
3

∑
i=0

qiei ∈ H.

Also, q is shown in two parts as q = Sq +
−→
Vq where Sq = q0e0 and −→

Vq = q1e1 + q2e2 + q3e3. Here, the first part
Sq is called the scalar part and the second part −→Vq is called the vector part of the quaternion q. If two quaternions as

q = Sq +
−→
Vq = q0e0 +

3

∑
i=1

qiei and p = Sp +
−→
Vp = p0e0 +

3

∑
i=1

piei then the addition and subtraction of them are

q± p = (q0 ± p0)e0 +(q1 ± p1)e1 +(q2 ± p2)e2 +(q3 ± p3)e3

=
3

∑
i=0

(qi ± pi)ei
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and the multiplication of q and p is defined by

q · p = Sq ·Sp +Sq ·
−→
Vp +

−→
Vq ·Sp −

−→
Vq ·

−→
Vp +

−→
Vq ×

−→
Vp

where −→Vq ·
−→
Vp = q1 p1 +q2 p2 +q3 p3 and

−→
Vq ·

−→
Vp = (q2 p3 −q3 p2)e1 − (q1 p3 −q3 p1)e2 +(q1 p2 −q2 p1)e3.

The conjugate of the quaternion q is defined by q,

q = Sq −
−→
Vq = q0e0 −q1e1 −q2e2 −q3e3

= q0e0 −
3

∑
i=1

qiei

Also, let q and p be two quaternions, then q = q, (qp) = pq.
The norm of q is defined by N(q),

∥q∥= N(q) = q ·q = q2
0 +q2

1 +q3
2 =

3

∑
i=0

q2
i

If N(q) = 1, the quaternion of q is called a unit quaternion.
The inverse of q is denoted in [11] by q−1 as

q−1 =
q

N(q)
=

q
q ·q

.

William Clifford introduced dual numbers in 1873 when dealing with the theory of engines which used a nilpotent
noted ε . The dual numbers extend to the real numbers has the form in [12, 13]

d = a+ εa∗ with a, a∗ ∈ R

where ε is the dual unit and ε2 = 0, ε ̸= 0. Their application to the study of kinematics of rigid articulated bodies was
developed by Kotelnikov in [14, 15].

The dual quaternion is shown in the form as

DQ = q+ εq∗

where q and q∗ are quaternions and ε is a dual unit.
Let q and q∗ be two quaternions such that q = q0e0 + q1e1 + q2e2 + q3e3 and q∗ = q∗0e0 + q∗1e1 + q∗2e2 + q∗3e3, then

the dual quaternion DQ can be described as:
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DQ = q+ εq∗

= (q0e0 +q1e1 +q2e2 +q3e3)+ ε(q∗0e0 +q∗1e1 +q∗2e2 +q∗3e3)

= (q0 + εq0∗)e0 +(q1 + εq1∗)e1 +(q2 + εq2∗)e2 +(q3 + εq3∗)e3

=
3

∑
i=0

(qi + εq∗i )ei.

Hence, the dual quaternion DQ has eight real parameters. So, DQ can be written as

DQ = SDQ +
−−→
VDQ

where SDQ is called scalar part as SDQ = q0 + εq∗0 = Sq + εSq∗ and
−−→
VDQ is called vectoral part as −−→VDQ = (q1 + εq1∗)e1 +

(q2 + εq2∗)e2 +(q3 + εq3∗)e3 =
−→
Vq + ε−→Vq∗ , respectively.

If two dual quaternions are DQ = q+ εq∗ and DP = p+ ε p∗, then the addition and subtraction are defined by the
following:

DQ±DP = (q± p)+ ε(q∗± p∗)

and multiplication is given by

DQ ·DP = q · p+ ε(q · p∗+q∗ · p)

where q =
3

∑
i=0

qiei, q∗ =
3

∑
i=0

q∗i ei, p =
3

∑
i=0

piei and p∗ =
3

∑
i=0

p∗i ei.

The conjugate of the dual quaternion DQ = q+ εq∗ is defined as

DQ = q+ εq∗

= (q0 + εq∗0)e0 − (q1 + εq∗1)e1 − (q2 + εq∗2)e2 − (q3 + εq∗3)e3.

The norm of DQ is written as

∥DQ∥= N(DQ) = DQ ·DQ = A2 +B2 +C2 +D2

where A = q0 + εq∗0, B = q1 + εq∗1, C = q2 + εq∗2 and D = q3 + εq∗3. If N(DQ) = 1, the dual quaternion of DQ is called a
unit dual quaternion.
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To explore the vast landscape of quaternion and dual quaternion theory, readers are encouraged to refer to [9, 10, 16],
where a wealth of results and insights on these fascinating mathematical constructs can be found.

Quaternions and dual quaternions have been the subject of numerous studies. Horadam’s pioneering work in [17]
introduced nth Fibonacci and Lucas quaternions in 1963, and later in [18] examined the recurrence relations of quaternions
and defined Pell quaternions and generalized Pell quaternions. In [19], many intriguing properties of Fibonacci and
Lucas quaternions were presented. Halıcı further explored these concepts in [20], providing Binet’s formulas, generating
functions, and various properties. In [21], Halıcı extended the research to complex Fibonacci quaternions, and presented
their generating function and Binet formula. More recently, Torunbalcı and Yüce introduced the dual Pell quaternions in
[22], and Torunbalcı and Yüce defined generalized dual Pell quaternions in [23]. Patel and Ray’s work in [24] focused on
Balancing and Lucas-Balancing Quaternions. Collectively, these studies have significantly advanced our understanding
of quaternions and their various applications.

This paper delves into the unexplored territory of Dual Balancing and Cobalancing numbers, introducing their
corresponding quaternions. By providing Binet’s formulas, generating functions, and various properties, we present a
comprehensive study of these concepts. Additionally, we showcase matrix representations to offer new insights into the
Dual Balancing and Cobalancing quaternions. The results of this study are poised to make significant contributions to the
field and open up new avenues for research and practical applications.

2. Dual balancing quaternions and dual cobalancing quaternions
Horadam in [17] introduced complex fibonacci numbers as

Cn = Fn + iFn+1, i2 =−1

where Fn is the nth Fibonacci number.
Also Ascı and Aydinyuz in [24] defined the nth Balancing and Cobalancing quaternions as follows:

QBn = Bne0 +Bn+1e1 +Bn+2e2 +Bn+3e3 (4)

Qbn = bne0 +bn+1e1 +bn+2e2 +bn+3e3 (5)

where Bn and bn are nth Balancing and Cobalancing numbers, respectively.
Clifford introduced dual numbers as

d = a+ εa∗

where ε is the dual unit and ε2 = 0, ε ̸= 0.
Now, with the same logic we can define dual Balancing and dual Cobalancing numbers, dual Balancing Quaternions

and dual Cobalancing quaternions.
Definition 1 The nth dual Balancing and nth dual Copbalancing numbers are defined by
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DBn = Bn + εBn+1 (6)

Dbn = bn + εbn+1 (7)

respectively, where ε is the dual unit and ε2 = 0, ε ̸= 0. Here, Bn is the nthBalancing number and bn is the nthCobalancing
number.

Definition 2 The nth dual Balancing quaternion DQBn and the nth dual Cobalancing quaternion DQbn are defined,
respectively, as shown

DQBn = QBn + εQBn+1 (8)

and

DQbn = Qbn + εQbn+1 (9)

where QBn = Bne0 +Bn+1e1 +Bn+2e2 +Bn+3e3 is the nth Balancing quaternions and Qbn = bne0 + bn+1e1 + bn+2e2 +

bn+3e3 is the nth Cobalancing quaternions.
The dual Balancing quaternions and Cobalancing quaternions has four dual elements and can be shown that

DQBn = QBn + εQBn+1

= (Bne0 +Bn+1e1 +Bn+2e2 +Bn+3e3)

+ ε(Bn+1e0 +Bn+2e1 +Bn+3e3 +Bn+4e4)

= (Bn + εBn+1)e0 +(Bn+1 + εBn+2)e1

+(Bn+2 + εBn+3)e2 +(Bn+3 + εBn+4)e3

= DBne0 +DBn+1e1 +DBn+2e2 +DBn+3e3

Now we show the dual Cobalancing quaternions as follows:
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DQbn = Qbn + εQbn+1

= (bne0 +bn+1e1 +bn+2e2 +bn+3e3)

+ ε(bn+1e0 +bn+2e1 +bn+3e2 +bn+4e3)

= (bn + εbn+1)e0 +(bn+1 + εbn+2)e1

+(bn+2 + εbn+3)e2 +(bn+3 + εbn+4)e3

= Dbne0 +Dbn+1e1 +Dbn+2e2 +Dbn+3e3.

Also the scalar part of the dual Balancing quaternion is

SDQBn = Bn + εBn+1

= DBn

and vectorel part is

−−−→
VDQBn = (Bn+1 + εBn+2)e1 +(Bn+2 + εBn+3)e2 +(Bn+3 + εBn+4)e3

= DBn+1e0 +DBn+2e1 +DBn+3e3.

Let DQBn and DQMn be two dual Balancing quaternions such that DQBn = QBn + εQBn+1 and DQMn = QMn +

εQMn+1. The addition, subtraction and multiplication of them is shown as

DQBn ±DQMn = (QBn ±QMn)+ ε(QBn+1 ±QMn+1)

DQBn ·DQMn = QBn ·QMn + ε(QBn ·QMn+1 +QBn+1 ·QMn)

where QBn = Bne0+Bn+1e1+Bn+2e2+Bn+3e3, QBn+1 = Bn+1e0+Bn+2e1+Bn+3e2+Bn+4e3, QMn = Mne0+Mn+1e1+

Mn+2e2 +Mn+3e3 and QMn+1 = Mn+1e0 +Mn+2e1 +Mn+3e3 +Mn+4e4 are Balancing quaternions.
The conjugates of DQBn is defined by
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DQBn = QBn + εQBn+1

= QBn + εQBn+1

= (Bn + εBn+1)e0 − (Bn+1 + εBn+2)e1

− (Bn+2 + εBn+3)e2 − (Bn+3 + εBn+4)e3

= SDQBn −
−−−→
VDQBn

(10)

and the norm of DQBn can be shown as

∥DQBn∥= N(DQBn) = DQBn ·DQBn = A2 +B2 +C2 +D2

where A = Bn + εBn+1, B = Bn+1 + εBn+2, C = Bn+2 + εBn+3 and D = Bn+3 + εBn+4. If N(DQBn) = 1 then DQBn is a
unit dual Balancing quaternion.

The inverse of the dual Balancing quaternions DQBn is given by

DQB−1
n =

DQBn

NDQBn

=
DQBn

DQBn ·DQBn

Proposition 1 For n ≥ 2, we have the following properties:

DQBn +DQBn = 2(Bn + εBn+1) = 2DBn (11)

DQB2
n +DQBn ·DQBn = 2DBn ·DQBn (12)

DQBn ·DQBn = DB2
n +DB2

n+1 +DB2
n+2 +DB2

n+3 (13)

Proof. From (8) and (10), we get
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DQBn +DQBn = (QBn + εQBn+1)+(QBn + εQBn+1)

=
3

∑
i=0

(Bn+i + εBn+i+1)ei +(Bn + εBn+1)e0

−
3

∑
i=1

(Bn+i + εBn+i+1)ei

= 2(Bn + εBn+1).

Also, from (6), we get

DQBn +DQBn = 2DBn.

From (11), we obtain

DQB2
n = DQBn ·DQBn

= DQBn ·
(

2(Bn + εBn+1)−DQBn

)

= 2(Bn + εBn+1) ·DQBn −DQBn ·DQBn.

We get (12)

DQB2
n +DQBn ·DQBn = 2(Bn + εBn+1) ·DQBn

= 2DBn ·DQBn.

From (8) and (10), we get
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DQBn ·DQBn = (QBn + εQBn+1) · (QBn + εQBn+1)

=

(
3

∑
i=0

(Bn+i + εBn+i+1)ei

)

×

(
(Bn + εBn+1)e0 −

3

∑
i=1

(Bn+i + εBn+i+1)ei

)

= (Bn + εBn+1)
2 +(Bn+1 + εBn+2)

2

+(Bn+2 + εBn+3)
2 +(Bn+3 + εBn+4)

2

= DB2
n +DB2

n+1 +DB2
n+2 +DB2

n+3.

Proposition 2 For n ≥ 2, we have the following identities:

DQbn +DQbn = 2(bn + εbn+1) = 2Dbn

DQb2
n +DQbn ·DQbn = 2Dbn ·DQbn

DQbn ·DQbn = Db2
n +Db2

n+1 +Db2
n+2 +Db2

n+3.

Proof. The proof is made similar to the above.
Theorem 1 The dual Balancing and dual Cobalancing quaternions have the second order linear recurrence sequence

as for n ≥ 0,

DQBn+2 = 6DQBn+1 −DQBn (14)

DQbn+2 = 6DQbn+1 −DQbn +2(e0 + e1 + e2 + e3) · (1+ ε) (15)

Proof. From (8), we get
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6DQBn+1 −DQBn = 6

(
3

∑
i=0

(Bn+1+i + εBn+2+i)ei

)

−

(
3

∑
i=0

(Bn+i + εBn+i+1)ei

)

and since from the recurrence relation of Balancing numbers [1]

Bn+2 = 6Bn+1 −Bn

and from the recurrence of Balancing quaternions [24]

QBn+2 = 6QBn+1 −QBn.

we obtain (14)

DQBn+2 = 6DQBn+1 −DQBn.

Now, we find the recurrence of dual Cobalancing quaternions. From (9), we get

6DQbn+1 −DQbn +2(e0 + e1 + e2 + e3)(1+ ε) = 6

(
3

∑
i=0

(bn+1+i + εbn+2+i)ei

)

−

(
3

∑
i=0

(bn+i + εbn+1+i)ei

)

+2(e0 + e1 + e2 + e3)(1+ ε)

and since from the recurrence relation of Cobalancing numbers [8] and the recurrence relation of Cobalancing quaternions
[24]

bn+2 = 6bn+1 −bn +2

and

Qbn+2 = 6Qbn+1 −Qbn +2(e0 + e1 + e2 + e3)
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we get (15)

DQbn+2 = 6DQbn+1 −DQbn +2(e0 + e1 + e2 + e3)(1+ ε).

Theorem 2 We have the following identities for DQBn dual Balancing quaternion and DQbn dual Cobalancing
quaternion:

DQBn =
DQbn+1 −DQbn

2
(16)

DQBn+1 −DQBn = 2DQbn+1 +(e0 + e1 + e2 + e3)(1+ ε) (17)

DQBn −DQBn+1e1 −DQBn+2e2 −DQBn+3e3 = 204DBn+3. (18)

Proof. From (9), we get

DQbn+1 −DQbn = (Qbn+1 + εQbn+2)− (Qbn + εQbn+1)

=

(
3

∑
i=0

(bn+1+i + εbn+2+i)ei

)
−

(
3

∑
i=0

(bn+i + εbn+1+i)ei

)
.

Also from [2]

Bn =
bn+1 −bn

2

and from [24]

QBn =
Qbn+1 −Qbn

2

we obtain (16)

DQBn =
DQbn+1 −DQbn

2
.

From (8), we have
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DQBn+1 −DQBn = (QBn+1 + εQBn+2)− (QBn + εQBn+1)

=

(
3

∑
i=0

(Bn+1+i + εBn+2+i)ei

)
−

(
3

∑
i=0

(Bn+i + εBn+1+i)ei

)

and from [4, 5]

Bn+1 −Bn = 2bn+1 +1

we obtain (17)

DQBn+1 −DQBn = 2DQbn+1 +(e0 + e1 + e2 + e3)(1+ ε).

Finally, from (8), we have

DQBn −DQBn+1e1 −DQBn+2e2 −DQBn+3e3 =

(
3

∑
i=0

(Bn+i + εBn+i+1)ei

)

−

(
3

∑
i=0

(Bn+1+i + εBn+i+2)ei

)
e1

−

(
3

∑
i=0

(Bn+2+i + εBn+i+3)ei

)
e2

−

(
3

∑
i=0

(Bn+3+i + εBn+i+4)ei

)
e3.

Since from [1]

Bn+2 = 6Bn+1 −Bn

and from [24]

3

∑
i=0

Bn+2i = 204Bn+3

(18) is obtained by making necessary arrangement.
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Definition 3 SinceB−n =−Bn [25, 26], b−n =(−1)n+1bn+1 [3, 8] andQB−n =−QBn,Qb−n =
3

∑
i=0

(−1)n+1+ibn+1+iei

[24], the dual Balancing and the dual Cobalancing quaternions with negative subscripts are defined by

DQB−n = QB−n + εQB−n+1

=−QBn − εQBn+1

=−DQBn

(19)

and

DQb−n = Qb−n + εQb−n+1

=
3

∑
i=0

(−1)n+1+i(bn+1+i − εbn+2+i)ei

=
3

∑
i=0

(−1)n+1+iDbn+1+i

(20)

Corollary 1 The following relations are easily seen from the definition of the dual Balancing and the dual
Cobalancing quaternions with negative subscripts:

DQB−n +DQB−n =−2(Bn + εBn+1) =−2DBn

DQb−n +DQb−n = 2(−1)n+1(bn+1 − εbn+2)

Theorem 3 [Binet’s Formula for the dual Balancing Quaternions] For n ≥ 0, the Binet’s formula for the dual
Balancing quaternions is as follows

DQBn =
1

α −β
(α∗αn −β ∗β n)

where α ′ = 1+αe1 +α2e2 +α3e3, α∗ = α ′(1+ εα) and β ′ = 1+ βe1 + β 2e2 + β 3e3, β ∗ = β ′(1+ εβ ) for taking
α = 3+

√
8 and β = 3−

√
8.

Proof. We can write the Binet’s formula for Balancing quaternions QBn in (8) from [24],
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DQBn = QBn + εQBn+1

=

(
1

α −β
(α ′αn −β ′β n)

)
+ ε
(

1
α −β

(α ′αn+1 −β ′β n+1)

)

=
1

α −β
(
α ′αn −β ′β n + εα ′αn+1 − εβ ′β n+1)

=
1

α −β
(
αnα ′(1+ εα)−β nβ ′(1+ εβ )

)

=
1

α −β
(α∗αn −β ∗β n)

where α∗ = α ′(1+ εα) and β ∗ = β ′(1+ εβ ). Finally, the Binet’s formula for the dual Balancing quaternions as follows:

DQBn =
1

α −β
(α∗αn −β ∗β n) .

Theorem 4 [Binet’s Formula for the dual Cobalancing Quaternions] For n ≥ 0, the Binet’s formula for the dual
Cobalancing quaternions is as follows:

DQbn =
1

4
√

2

(
α∗α2n−1 −β ∗β 2n−1)− 1

2
(e0 + e1 + e2 + e3)(1+ ε)

where α ′ = 1+α2e1 +α4e2 +α6e3, β ′ = 1+β 2e1 +β 4e2 +β 6e3 and α∗ = α ′(1+ εα2), β ∗ = β ′(1+ εβ 2) for taking
α = 1+

√
2 and β = 1−

√
2.

Proof. We can write the Binet’s formula for Cobalancing quaternions Qbn in (9) from [24],
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DQbn = Qbn + εQbn+1

=

(
1

4
√

2

(
α ′α2n−1 −β ′β 2n−1)− 1

2
(e0 + e1 + e2 + e3)

)

+ ε
(

1
4
√

2

(
α ′α2n+1 −β ′β 2n+1)− 1

2
(e0 + e1 + e2 + e3)

)

=

(
1

4
√

2

(
α ′α2n−1 −β ′β 2n−1 + εα ′α2n+1 −β ′β 2n+1))

− 1
2
(e0 + e1 + e2 + e3)− ε

1
2
(e0 + e1 + e2 + e3)

=

(
1

4
√

2

(
α ′α2n−1(1+ εα2)−β ′β 2n−1(1+ εβ 2)

))

− 1
2
(e0 + e1 + e2 + e3)(1+ ε)

=
1

4
√

2

(
α∗α2n−1 −β ∗β 2n−1)− 1

2
(e0 + e1 + e2 + e3)(1+ ε)

where α∗ = α ′(1+εα2) and β ∗ = β ′(1+εβ 2). Consequently, the Binet’s formula for the dual Cobalancing quaternions
as follows:

DQbn =
1

4
√

2

(
α∗α2n−1 −β ∗β 2n−1)− 1

2
(e0 + e1 + e2 + e3)(1+ ε).

Theorem 5 The generating function for the dual Balancing quaternions DQBn is

G(x, t) =
(t + ε)e0 +(1+ ε(6− t))e1 +((6− t)+ ε(35−6t))e2 +((35−6t)+ ε(204−35t))e3

1−6t + t2 .

Proof. Let

G(x, t) =
∞

∑
n=0

DQBn(x) · tn

be the generating function of the dual Balancing quaternions.
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G(x, t) = DQB0 +DQB1t +DQB2t2 +
∞

∑
n=3

DQBntn

= DQB0 +DQB1t +DQB2t2 +
∞

∑
n=3

(6DQBn−1 −DQBn−2) tn

= DQB0 +DQB1t +DQB2t2 +6
∞

∑
n=3

DQBn−1tn −
∞

∑
n=3

DQBn−2tn

= DQB0 +DQB1t +DQB2t2 +6t
∞

∑
n=3

DQBn−1tn−1 − t2
∞

∑
n=3

DQBn−2tn−2

= DQB0 +DQB1t +DQB2t2 +6t

(
∞

∑
n=2

DQBntn

)
− t2

(
∞

∑
n=1

DQBntn

)

= DQB0 +DQB1t +DQB2t2 +6t (G(x, t)−DQB0 −DQB1t)− t2 (G(x, t)−DQB0)

by making necessary arrangement, the generating function of the dual Balancing quaternion is found as follows:

G(x, t) =
(t + ε)e0 +(1+ ε(6− t))e1 +((6− t)+ ε(35−6t))e2 +((35−6t)+ ε(204−35t))e3

1−6t + t2 .

Theorem 6 The generating function of dual Cobalancing quaternion DQbn is

G(x, t) =
2(e0 + e1 + e2 + e3)(1+ ε)t2

(1− t)(1−6t + t2)

+
2εte0 +[2ε(1+ t)+2t]e1 +(2+2t +14ε)e2 +(14+84ε −12εt)e3

1−6t + t2

Proof. The proof easily can be done similarly.
Now we give the matrix representation of dual Balancing quaternions. Throughout this section, u0 is a 2×1 matrix

defined by u0 =

[
0
1

]
, A is a 2×2matrix defined by A=

[
0 1
−1 6

]
andQ is a 2×2matrix defined byQ=

[
−QB0 QB1

−QB1 QB2

]
.

In [24], we showed that for n ≥ 1,

[
−QBn−1 QBn

−QBn QBn+1

]
=

[
−QB0 QB1

−QB1 QB2

]
·

[
0 1
−1 6

]n−1
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and S is 2×2 matrix defined by S = Q ·An−1.
Theorem 7 Let n ≥ 2 be integer. Then

[
−DQBn−1 DQBn−2

−DQBn DQBn−1

]
=

[
−QB0 QB1

−QB1 QB2

]
·

[
0 1
−1 6

]n−1

·

[
1 6− ε
−ε 1

]
.

Corollary 2 Let E be 2×2 matrix defined by E =

[
1 6− ε
−ε 1

]
and D be 2×2 matrix defined by D = S ·E. Then

DQBn−1 = uT
0 ·D ·u0.

Theorem 8 Let n ≥ 2 be integer. Then

DQB2
n−1 −DQBn ·DQBn−2 = (2+12ε)+(−12−72ε)e1 +(2+12ε)e2 +(−204−1224ε)e3.

Proof. If |D| is deteminant of matrix D, then from [24],

|D|= |S| · |E|

=
∣∣Q ·An−1∣∣ · |E|

= |Q| · |A|n−1 · |E|

= (−QB0 ·QB2 +QB2
1) · (1+6ε − ε2)

and ε2 = 0. So, we get as follows:

−DQB2
n−1 +DQBn ·DQBn−2 = (−2−12ε)+(12+72ε)e1 +(−2−12ε)e2 +(204+1224ε)e3.

Consequently; we obtain

DQB2
n−1 −DQBn ·DQBn−2 = (2+12ε)+(−12−72ε)e1 +(2+12ε)e2 +(−204−1224ε)e3.
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3. Conclusion
This paper presents a study of the dual Balancing and dual Cobalancing numbers, as well as their corresponding

quaternions. We provide proofs of Binet’s formulas and generating functions, and investigate several interesting results
related to these concepts. In addition, we derive E and D matrices for obtaining DQBn, and establish various properties
of the dual Balancing and dual Cobalancing quaternions. Finally, we demonstrate Cassini’s identity and its proof using
the derived matrix.
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