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1. Introduction

In recent times, fractional calculus have been studied by many researchers because the fractional differential
systems describe many real-world processes related to memory and hereditary properties of various materials more
accurately compared to classical differential equations. For more details on fractional calculus and their applications,
see [1-6]. The fractional differential system is now receiving a lot of interest because of its amazing implications
in displaying the splendours of science and technology. Fractional systems may be used to solve broad spectrum of
issues in a number of fields, like elasticity, power systems, electrolysis, fluid circulation, and others. The enlargement
of differential equations and inequalities known as differential inclusions, which is sometimes referred to as optimal
control theory, has several users and applications. When one is adept at employing differential inclusions, dynamical
systems with velocities that aren’t solely determined by the system’s state are easier to analyse. Numerous studies have
been undertaken on boundary value problems. There have been several investigations conducted to find out if there
are solutions for fractional differential systems as well as fractional differential inclusions. The following research
publications can be referenced to support the concept and the implications discussed in relation to fractional calculus:
[7-16].

The concept of controllability, which is important in both pure and applied mathematics, is a central one in
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the field of mathematical control theory. At present, controllability plays a significant role in fractional calculus.
Researchers are now working on a novel concept and notion connected to control theory, specifically how to apply
control theory to fractional differential systems. The understanding of the exact and approximate controllability of
various types of dynamical systems, such as delay or not, has advanced significantly over the past few years thanks
to the efforts of numerous researchers. Exact controllability enables to steer the system to arbitrary final state while
approximate controllability means that system can be steered to arbitrary small neighbourhood of final state. Moreover,
approximate controllable systems are more prevalent and very often approximate controllability is completely adequate
in applications. In [17, 18] authors studied the approximate controllability of Caputo fractional differential systems.
In [19, 20] studied the approximate coontrollability of stochastic differential systems. Recently, in [21-23] discussed
the approximate controllability of fractional stochastic differential systems of order 1 < r < 2. It is possible to support
discussions of theory and applications related to controllability by citing the research papers [24-29].

Impulsive differential systems have an important role in mathematical science and real world. Impulsive effects
have a huge impact on how a system behaves. They may create abrupt shifts, breaks, or leaps in the system’s variables,
causing deviations from the behaviour that was anticipated or forecasted. This modification may have an impact on
system dynamics generally, convergence, and stability. The impulsive effect can be purposefully used to affect or control
a system. It is possible to influence a system’s behaviour, stabilise unstable dynamics, or move it towards desirable
states by carefully placing impulses into it. Engineering, physics, and biology are just a few of the disciplines that use
impulsive control techniques. The system state can abruptly change in many phenomena and processes, including those
in the fields of electronics, telecommunications, economics, mechanics, biology, and medicine, where the impulsive
effects can occur, we refer [30-37].

In particular, ones like the fractional derivative with respect to another function are examples of the generic
fractional derivative that have recently been established. In order to increase the precision of the objective modelling,
Almeida [38] and colleagues presented a novel version of fractional derivative in 2017 by accounting for the Caputo
fractional derivative with respect to a second function ¥, or the W-Caputo fractional derivative. Then, in [39] presented
the so-called W-Hilfer derivative, a fractional derivative with respect to an another function. The W-Caputo and V-Hilfer
models, which are here stated, have the advantage of allowing the choice of the classical differential operator and the
Y function, i.e., from the decision of the ¥ function, the conventional differentiation operator may act on the fractional
integral operator, or else the fractional integral operator may act on the conventional differentiation operator. These two
papers served as inspiration for further study into W-Caputo and W-Hilfer, which led to the creation of novel works.
For Caputo fractional differential systems with an infinitesimal generator .o7, writers [40] investigated the existence,
uniqueness, and stability of several sorts of mild solutions. The fixed-point approach was used by the authors [41] to
analyse the existence and uniqueness of W-Hilfer neutral equations with indefinite delays. A recent study of the W-Caputo
derivative’s approximate controllability was published in article [42].

We investigate the approximate controllability of W-Caputo fractional differential equations with impulsive
conditions, nonlocal conditions, and indefinite delay since, to our knowledge, no paper has been published on this topic.
Inspire by the aforementioned studies, we also investigate the approximate controllability of the impulsive systems
provided by:

cDgi‘i’u(t) :,Q/u(t)+<@v(t)+®(t,u,, (:e(t,s,us)ds), tel0,b],t#t,,k=12,---,m,

u(t)) — () = I(u(t,)), ey
u(0) =y +&(u, 1,00, ) € (D, ;). t € (~0,0],

AR

where .07 is an infinitesimal generator of the analytic semigroup {7(¢), ¢ > 0} on ®. “DJ:* represents the ¥-Caputo
fractional derivative of order 7, 0 < < 1. Let w(?) be the control function in L*(%, %), where % is the Banach space,
and u(?) be the state in a Banach space ® with || - ||. The bounded linear operator from % into ® is represented here by
B.Let 7' =1[0,b],® : 7 x J,x % — D be the relevant function, e : #'x #'x I, > Dand 0<t, <t,<--<t,<h,¢:
I, — 7, are the relevant functions, where .7, is a phase space. The memories of u, : (o0, 0] — D, such that u,(s) = u(¢
+ s) correspond to the phase space .7, and [, : ©® — © are the impulsive functions with the jump of # at points of #,.
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The organisation of the work is divided as follows: The W-Caputo fractional, semigroup, and principles of
fractional calculus are covered in Section 2. Before expanding to the approximate controllability of systems, we
first prove the existence of the mild solution in Section 3. In Section 4, we gave an illustration to highlight our key
principles. In the end, a few observations are offered.

2. Preliminaries

The key concepts, theorems, and lemma that are utilised throughout the whole work are discussed here.
Let us assume YV is an non-decreasing function with W'(¢) # 0, for every t € 7.
Definition 2.1 [43] The Laplace transform of the functions & : [0, o] — R with respect to ¥ is presented by

LSO x) =6(x) = j‘” &(t)e OO G\ (1)dt for all y e C. ©)

Definition 2.2 [39] Let > 0, & be an integrable function defined on [a, ] and ¥ € C'([a, b]) be an increasing
function with W'(¢) # 0 for all ¢ € [a, b]. The W-Riemann-Liouville fractional integral of order # of the function & is
presented by

I¥8() = —— [ W (O () - PO B0y, @)
a NG

where n € (m— 1, m).

Definition 2.3 [39] Let m — 1 <5 < m, & be an integrable function defined on [a, b] and ¥ € C'([a, b]) be an
increasing function with W'(¢) # 0 for all ¢ € [a, b]. The W-Riemann-Liouville fractional derivative of order # of the
function & is presented by

Vs oy ] L d Y 1y gy
D W)_r(m—n)(wm dl] IR AGE PR 10 Ao S )

Definition 2.4 [38] Letm — 1 < <m, & € C"([a, b]) and ¥ € C"([a, b]) be an increasing function with P'(z) # 0
for all ¢ € [a, b]. The W-Caputo fractional derivative of order # is defined by

DI = [ (VO - W) S ()W () )
a m— 77) 0

(

where m =[5] + 1.
Theorem 2.5 [38] Let & € C"(a, b) and 5 > 0.Then we have

Y [ C nymV¥ _ _n—l 1 i ‘ + _ k
1" (DI F @) = () ;[—w dt] (&a))(¥()-¥(@)". (©)
Especially, given 0 <7 < 1, we have
Y (CD:;‘“ (’5(t)) = B(1) - B(a). )
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By referring [31], we define the abstract phase space .7,. Let w : (—o, 0] — (0, +o) be continuous along Y = J-_O

w(f)dt < +oo. Now, for every n > 0, we have
I ={@ :[-n,0] > D there exists @(¢) is bounded and measurable},
and set the space .7~ with the norm

@0y = Sup0]||w(r)\|, VoeT.

re[-n,

Now, we define
T, = {w :(—0,0] - D, such that Vn>0,a|_,, €7 and j:o w(z)|| @l 0 d7 < +oo}.
If 7, is endowed with

0
|y = [ w@)l @l odr, Vo e,

w

thus (Z,, || - ||) is a Banach space.
Now, we consider the set

= {u (0,01 > D, € C(I;,D), there exists u(f;) and u(z, ) with u(,) = u(t,),

w0)e g, k=0,1,---,m},
where [, = (¢, t,.,)- Let || - ||% in .7, be the seminorm classified as

T

W

Il =gl +sup{llu(@)]l: 7 €[0,5]}, u e

Lemma 2.6 Ifu € 7', then fort € 7, u, € .7,. Moreover,

0
Y u(0)] < iy < Jully + Y sup [u() |, Y= [ wiode <

rel0,t]

Lemma 2.7 [12] Let the linear operator .07 be the infinitesimal generator of a C; semigroup if and only if
(c;) o7 is closed and D(&/)=2D.
(c;) p(7) be the resolvent set of .27 contains R" and, VA > 0, we write

1
R(A, )| < —
R )] < 2

where R(A, /)= (A" -o/) "z = | 0°° e T (t)zdt.
Definition 2.8 Let 0 <# < 1, the Wright type function W,(¢) is defined as

®)

)

(10)

(11)
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) )k
W,(z) _kz—k'r( k17 zeC. (12)

Proposition 2.9 The Wright type function /¥, is an entire function with satisfy the succeeding conditions:
W(£) >0, for £ >0, j: W, (e)de =1,

C(1+k)
r(1+nk)’

3. .[: W, (e)e“de=E,(-z), zeC.

2. .[:W,](g)gkdgz ork>-—1;

Lemma 2.10 [9] The W-Caputo fractional differential systems (1) is equivalent to the integral equation

() =g + & (110w )+ D L (u(E) )+—J YO -v(2)

O<ty <t

x[,ja/u(t)+<@v(t)+®()(, u,, Ole(;(, s, us)dsﬂ‘l”(;()d;(, (13)

where ¢ € [0, b].
Proof. Let 0 <t < b, 0 <7 < 1, applying the operator 1" to left-hand side (LHS) of Equation (1), by using Theorem
2.5 we get

Igfp(CD0+u(t)):u(t)—u0—§(u,1,u,2,...,utn), te[0,4], (14)
1% (€D u(0) = w) ~ () =L, (w1 € (1.15), (15)
17 (€D w(0)) = () = wle) = £ (w1 € (] (16)

Thus, the operator ;" act on the right hand side of Equation (1),

I(')’j\y (Ja/u(t) + Bv(t) + ®(t, u,, (:e(t, S, )ds)j I ¥ () (Y(@)-F ()" Au(y)dy

I~

n-1
ok L[ - W) Brndy

o )J‘F(;{)(‘P(t) PO (2, [ eCrisu )ds | d (7)

Now, we can deduce the above equations,

-1

W) = 1+ & (1 1ot )+ 3 L)+ (¥ -¥(2)

O<ty <t ( )
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><|}Q/u(t) +Bv(t)+ @( PR j: e(y,s,u, )ds)}‘l”( 2, (18)

where ¢ € [0, b]. ]
Lemma 2.11 [40] If integral equation (13) holds, then we have

u(t) =8I (t,O)[uO NS (T )]+ 3 SE 1) (u(t))

O<ty <t
‘ -1
[ (FO-¥() Q@ DBV (Ddx

I PO-P) Qe 28,0 [ e, )ds |V 7, for 110,81 (19)

Proof. Let 4 > 0. Consider the generalized Laplace transform, take

Y () =[O OuUN Y () 1, (20)
Y,() = [ e OO () 1, 1)
T = [ OB g, [ ez, s )V G (22)

Now, apply generalized Laplace transform on Equation (13),

T, (A) = %[uo + &y )+ Y Ik(u(tk))j +ﬂl—n(mrl (A)+BY,(A) + Y, (A)).

O<ty <t

We can deduce that

Y,(A) = A" (A -7 ) (u0+§(u,1,ut2,...,utn)+ Z Ik(u(tk))J

O<ty <t
+A -2 ) BY (A + (A - 7)Y (A)
=1L +1,+1.

Since (A" -o7) 'z = I: e’ﬂ’T(I)zdt. By using Lemma 3.1 in [40], we can derive the values of [, [, and 7;. Then
we get,

Y,(A) = [ oo { [“p,0r [(\P(’);ﬂ}(% + & (w1 et ))d9 (1) dt
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N Z [I —ACP(D)-W(0)) [J‘ (Q)T(M}k(ugk))Jd&]‘l"(t)dt

O<ty <t

e [ an @O @ (0w

7 o v(;()‘I"(;()dé’d;(}P’(r)dr

© p i Y- (P -F(n)
N T B

y es( o[ elrs, u‘v)ds)‘{”( 2)dod ;(J‘P'(r)dr.
Applying Laplace inverse transform, we obtain

u(t) = I:pﬂ(H)T((lP(t);—;P(()))nJ(uo +§(u,1 Uyl ))dé’

Y { [ p@T{W}k(u(rk»] do

O<ty <t

e (PO-Y()) (PO -P(0)
+’7.[o Io p"(g) 9" r "

JV(;()‘P’(z)dz

‘P(f) ‘P(){) Y0 -Y()
""’7J. J.o ’7 ) T[( " ) J
><Qﬁ(;{,ul,jole(;(,s,us)ds)‘l"(;()d;(

= SHEO) g + & (1t o, ) |+ 3 SEEEIL(u(E)

O<ty <t

(PO -¥() Qe BV ()

L (PO - ¥(0) Q208w [ el )ds |z

where

Volume 5 Issue 1/2024| 181 Contemporary Mathematics



St 2= §,OT((¥(O)-¥(x))'0)udo, (23)
and
QU(t, 1w =n 05, (O ((¥())~ ¥ (1)) 6)ud, (24)
L L
for 0 < y <#< b and the probability density function ¢, (6) = l49 " p,(@7) on (0, ), ie., ¢, (0)20 for & € (0, )
n

and jo“’ £,(0)do=1. o
Definition 2.12 A function u € PC([0, b], ©) is called mild solution of the system (1) if satisfies

w(t) = SL0) g+ & (ot ) [+ D SEEEL ()

O<ty <t

(PO - (0)" Qe DBV () x

(PO ¥ )8 200, [ s s | ¥ Gz, for <0, 25)

Lemma 2.13 [40] The operator Sy(¢, ) and Q. (¢, x) hold the following properties:
(a) Forany 0 <y <t, S{(t, x) and Qy(t, x) are bounded linear operators with

).
I'(l+n)

"S\Z (t, ;()u" <K, ||u|| and "Q\Z (t,;()u" <

forallu e Y.
(b) The operator Sy(¢, x) and Qy (¢, ) are strongly continuous for all 0 < ¢, < ¢, < b we write

|8t )u =St )| >0 and [ Q1 (1, )~ Q1 )| >0, as 1, >4,

(c) If T(#) is a compact operator V¢ > 0, then Sj/(¢, ¥) and QJ(z, y) are compact for all ¢, y > 0.

(d) If S{(¢, y) and Qg (¢, x) are the compact strongly continuous semigroup of bounded linear operator for ¢, y > 0,
then Sy/(¢, y) and Q,(¢, ) are continuous in the uniform operator topology.

Lemma 2.14 (Schauder Fixed Point Theorem) [5] If D is a closed, bounded, and convex subset of a Banach space
Xand & : D — D is completely continuous, then & has a fixed point in D.

We give the preceding description of an appropriate system, its controllers, and its essential assumptions:

¢ Dg;“" u(t) = 2u(t) + #Bv(t), te I' =(0,b], (26)

u(0) = u,. 27)

The approximate controllability for the linear fractional system (26) is a natural generalization of approximate
controllability of linear first order control system. It is convenient at this point to introduce the following controllability
and resolvent operators associated with (26)
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Tt = j;gg(b,m)@@*gg*(b,w)dw, (28)

R(n%)=(r1+52) " y>0, (29)

here %" and Qy" are the adjoint of % and Q, respectively, also %! be the linear bounded operator.
Lemma 2.15 The linear fractional control system (26) is approximately controllable on Z if and only if yR(y, ()
— 0 as y — 0 in the strong operator topology.
Proof. The proof of the Lemma is similar to proof of Theorem 2 in [44]. o
Next, for every y >0, and u, € 9, take

v(t) = QY (b.OR (7,5 ) P(u(), (30)
where

POO) =1, = SHE0) 1+ & (1,1t ) |= D SLELL ()

O< g <t
_I;’(\y(b)—\y(w))"’lgn(b,w)cj(w,uw, Owe(a),s,ux)ds)‘}”(w)dw. 31

We introducing the succeeding hypotheses:
(H)) {T(1)},-o is the C,-semigroup, such that sup |[T(¢)|= M, where M, >1 and "R(;/, sg’)" <1Vy>0.

te[0,0)
(H,) Fort € 7, ®(t,-,"): I xD > D,elt,s,): I, —» D are continuous functions and for every u € X, &(-, u,,

e): W —Dande(-, -, u): 7 *x ¥ — 2 are strongly measurable.
(H,) There exists an increasing function A : R" — (0, o) and L ,(-) € L'(#", R), such that ||&(#, y,, 7)|| < L (1)
Ayl + |lyol]) for every (¢, y,, 7,) € 7 % .F,, x D, and there exist a constant M > 0, then

=M.

L LorOA(l +[7l)
imsup

P P

(H,) There exists a constant E, > 0, such that |le(¢, s, P) || S E(1 + ||y llv) V(t,8,9) € ' x W' X T,
(H;) The functions /, : ® — ® are continuous and there exists continuous nondecreasing functions Ly : [0, +o0) — [0,
+o0], such that || Z,(u)|| < Lg(||u]]), and

limsup Lk}()P) :ﬂk <OO’ k :17 29m

P+

(Hg) The continuous function ¢: .7," — .7, and E,(&) > 0 such that

n

< 2 EOa-b];

k=0

@, ay,a5,....a,) = E(b, by, by, ..., b,)

forall a,, b, € 7, and assume P. = sup {||{(a,, ay, as, ..., a,)|| 1 a; € T, }.
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3. Approximate controllability

Theorem 3.1 If (H,)-(H,) satisfies, then the Equation (1) has atleast mild solution on 7 with:

Y(b)-¥(0 +K' ﬁ .
F( ) nlk

Proof. Let us consider the operator & : .7, — .7/, classified

B () + &€ (1,100 tty )(O), (20,00,
8, O 1(0)+ & (u,10,.n, )|+ [ (PO =¥ () Qne, )P (1)

2O e ( P Ole(;(,s,us)ds)d;(+O;k<t&',§(t,tk)1k(u(t;)) ¢
+ (PO =Y Qe BV () 7, 1€ (0,b].
For E, € .7, we define Q by
) B (1) +E(u, 1, bty ), LE(—0,0],
(®) { (33)

S,],C(t,O)[u(O)Jrf(ull,ulz,...,uln )(0)}, tel,
then Q € 7. Let u=[y+ f),], oo <t < b. It is simple to expose that u meets from (2.12) if and only if v fulfils y,. and

YO = [ (PO Qe8| 1.0, 40 [ e 53, 10, )ds | P ()

+ 3 SEt)L( + Q)

O<ty <t

[ (FO-Y )" Q, (1. NBH Qb IR@ T 1 =S, GO 8(O) + S0 1w, )|

- e -r@)o, (b,w)@(w,vw +Q,,. [ e(@,5,0,+Q, )ds)‘l"(w)dw

= X St (v6)+ Q) [Pz,

0<ay, <b
Let7,)"={ye I, :y,€ 7,}.Foranyy € 7/,
Iy 1k = 1yo Iy +sup{l[ (@) [|:0 <@ < b}
=sup{|| y(@)|: 0< o < b}.
Thus, (Z,", || - ||) is a Banach space.
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For P> 0, choose .= {y € I, : ||y < P}, then 7, < .7, is uniformly bounded, and Vy € .7,, from Lemma 2.6,

v+ | <l U+ Iy

SY(Pr, [+ P )+ 11 + €ty 0w, |

= P
Consider the operator Q : 7" — .7,", defined by
0, t € (—,0],
[ O-Y0" Q0.8 7.3, + 0. e 5.7, +€.)ds | ¥
DO S SUa1 (v +00)

O<ty <t

[ (PO @), B (), 1V

(34

Now we expose  has a fixed point.
Step 1 We assume that Q(y(¢)) € 7, to expose that Q(7,) < 7. We assume that for P > 0, there exists ¢ € [0, b],

such that

)| > P. (35)

Since,

ol =[P 0- ¥ Qe 02, 40 [ el + ., )5 )

JL(¥O- W) Qe B0V (2]

X SE 208 (v (v + )

O<ty <t

+

S K,]L&P(b)A(P’+EO(1+P’))XI;(‘P(t)_q,(l))n—l\y,(l)lerKnLK P

L)
KK (! Ly, K, Kz
- r(néj Io(‘P(t)—‘P(z))v v (z)xar(j) [||u,, 1=, [IItoll+ P ]

~ K,Lg p (b)A(P’ +E,(1+ P'))

o <["(#(0) - ¥ (@) ¥ (@)do KLy (P |dy

0
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_ KyLop (DA(P'+ Ey(1+P))
B L(7+1)

2
_ n ' KoKz _ n
(Y(b)-¥(0)) +K,7LK(P)+{—F(U+1J (¥ (b)—¥(0))

K, Lg p(D)A (P'+E,(1+P")

x|l wy 11—, [I1g 1147, ] T +1)

(Y(b)-¥(0))’ —K,]LK(P'):|.

Dividing to both side by P and taking limit supremum as P — o, obtain

1< M (P()-¥(0)) +x,8
"\ +1 k)

then we have a contradiction to our assumption (32).
Therefore Qy € 7.

Step 2 To expose Q is continuous. Let {)"} < .7,, such that " — y € .7, as n — oo. From assumptions (/1) and (f7;),
we can write, for every t € 7,

®(t,yt” +£A)t,.|.;e(t,s,y;’ +£A)X)) —>®(t,yt +£A)t,_|.;e(t,s,yY +£A).X)) asn—>o VneNlN.

By Lebesgue dominated convergence theorem, for every ¢ € 7, we write

()0 -(@)@|

<[ (ro-20) Qe 0¥ (1)
x es(;c,y;;+le,fge(x,s,y:’+és)dt)—6(mz+@z»ﬂe(1»~‘»%+és)d’ﬂdfu

H 2 (Ste)n (v @)+ Q) - Sk, (y(rk)+é(tk>))H

O<ty <t

HI (PO Y)Y (FBF QY (b.OR@ T, (Y b) - ¥ (@) ¥ (@)

X

Qﬁ(m,y;’, +f2w,jowe(w,s,y;’ +Qs)dw)—®(m,yw +Qﬂ,jje(w,s,ys +Qs)dw)}d;(H

K,] t N
T [,(¥0-¥(0) ¥'(2)

X

[@(t,yt"+fzt,J';e(t,s,yf+f2S)dt)—@5(t,yt+f2“fote(fasvyx+f2s)dfﬂudl

+K,

1 (v )+ 90 = Skt (v + Q)|
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2
K,Kz b ~ p=ls
J{Tn)} [ (¥®)-¥(@)" (@)

X

oo o el s o

Apply n — oo, then [|()")(¢) — (Qy)(?)|| — 0. Hence Q is continuous.

Step 3 Now, we demonstrate that compactness of Q. For that, first we expose that {(Qy)(?) : y € J,} is
equicontinuous in ®.

Foranyy € .7, and 0 < ¢, <t, < b, we obtain

l€w)e) - @)@

<

[P0 (0) Q0 2% 3, +0,. (5.7, +00 )P0

-[! (‘I’(tl)—‘l’(;c))"_lQZ(tp;()xﬂ’ﬁ(z,yz +Q, [Te(zs 0 +Q, ))‘P'(;{)MH

H 2SI (v + Q)= X SL)L (v + Q)

0<ty <ty 0<t <y

[ (P@) - P()) Q. B )Y () 1

[ (P - (0) Qe z)%(z)‘l"(z)dzu

<

[y (‘P(fz)—‘P(l))”_lQ»Z(tz,Z)Xﬁ(z,yl +0,. [ e(z.5., +f)_5))d;(H
+HI§ (@) -¥() " = (Pe) - ¥() " | Qe )

P t ~
x(‘j(;{,yl +Ql,joe(;(,s,ys +QS))‘P’(;()d;(H

+

> [ Sttt = SEest) 1 (v + Q1))

0<ty <ty

X Shon (v + )

H<ty <ty
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+

L? (Yt -¥()" [Q»Z(tzaz)—QZ(lpz)]@(Z’yz +Qz’ﬁe(l’s’yf +QS))\P'(;()MH
(P ¥ @) 0 DB DY () H

+ L:l [(\P(tz) ~W()) - (Y@ - ‘P(;c))""} Al (1, NBV( )Y (1)d ZH

L (P - 0) ™ [QUe ) -0 ) | B Y ()2

8
=>1.
i=1

From Lemma (2.13), we get

| < Kaler (B)A(P'+Ey(1+ P")

I T+ (Pt,)-¥@))",

and

;o K,Lg p(D)A(P'+Ey(1+ P"))
2T T(n+1)

(@) -(Y0) ~(¥@)-¥@)) |

Therefore, I, — 0, and I, — 0 as ¢, — ¢,. Now, we consider

L< Y L|[Si.n-Sien])

0<t <y

from strong continuity of Sy/(z, z,) we get I, — 0 as ¢, — ¢,.

L= X S0 () +Q@)

n<tg<ty

< > rL(lell)s

<ty <ty

which implies, 7, — 0 as #, — t,. Let € be the arbitrary small positive, we write

L[ (v -wn) [ (fz’}()—Q\Z(tlsZ)J@(Zayl +Q, [ Te(z5.0, +@S))‘P'(l)dz

(e - () [Q’;(rz,w—gz(a,x)]@(x,yl +O [ e( 1053, +Q))\P'(z>dz
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<Ly p(DA(P'+E, (14 P)) [ (®0) - P(0) "W ()dx sup |Qhit, 1)-QU, )

€0, —€]

. 2k, Ly p (D)A(P'+ Ey(1+ P))
L'(n)

J L (#@)—¥ ()" (2.

From Lemma (2.13), we obtain /5 — 0 as t, — ¢, and € — 0. Using the similar procedure, we get I, I, and I; are
tend to zero.

Step 4 We need to prove, V¢ € [0, b], Q(2) = {(Qy)(?) : y € J,} is relatively compact in D.

Take 0 <t < b then, Ve> 0 and @ >0, let y € 7, and explain the operator Q" on .7, as

(@) =n[ [ s, @ (YO -¥) T((¥0O - ¥©) &)
xeﬁ(z,y, +0, [ (50, +§A)X))‘P'(;()dgd;(

+Z ["¢,@r (o -w@) e)del, () +Q()

[T e, @ (PO-Y0) T T((PD-PO) 8) B (n)ded
[ [ e, @(YO-¥ () T((YO-YO) s+ -'a)

x[@(t,yt +é,,j;e(f,s,ys +f2s))+9é’v(;()}‘1“(;()d6d;(

+ 2 [4,@T (O - e +"m—"m)del, () +Qtp)

O<ty <t

—nT @) [ o, () (YO -¥(0) T((YO-¥©O) &)
x[@(i,yt +Qt,jge(t,s,ys +Q ))+@v(;{)}‘1”(;{)d€d}(

@) Y [16, @ (0 -@)) s —e'w)udsl, () +0)).

O<ty <t

Then by compactness of T(€'m) for €'m > 0, we have Q“7(¢) = {(Q*"y)(¢) : y € J,} is relatively compact in D.
Furthermore, for any u € .7, we get

(@)@ -(2y) )
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<N

[ e, @ (Y0 -¥(n)" T((‘P(t) —9(0))’ g)
X[ﬁ(@y, +f2t:J‘;€(l,S,ys +QS ))+ @v(;{)}\l"(;{)dgdgu

+ nuf f: &5, (&) (YO -¥(p)" T((‘I’(t) —¥(0))" g)

x 6(t, Vot Qtﬂ e(t,s,y.y +Q, )) + @V(Z)}‘P'(z)dedzu

+

> I G @r((P0- @) & )del, (v6)+ 0 de

O<ty <t

> j:g,(g)T((\P(t)—\P(tk))" g)dglk (v + ) de

O<ty <t

<M, [ Ly p DA (P'+ Ey(1+ P))+ M, [|v [ | (¥ (1) - ¥(0))’ ( j:’ &, (g)dg)
+M,, [ Ly p(D)A(P'+ Ey(1+ P))+ M, | v[|(¥(6) - (¢ —e))’ ( jo“’ &, (g)dg)
<M, [ Ly p(DA(P'+Ey(1+P))+ M, || v][](¥(b) - ¥(0))’ ( jo""gg,? (e)dg)

MﬂLg,P (b)A(P' + Eo (l + P'))
’ Tr+1)

+My |l VII}(‘I’(t)—‘P(t—e))"

M,y Lk(P')j:Q(g)dgHM,, Y Lk(P')fjgn(g)dg,

O<ty <t O<ty <t

where J: &g, (&)de =

have

—— and j wé’ (e)de =1. According to the absolute continuity of the Lebesgue integral, we
(7 +1) 0o 7"

o -(2y) 0> 0as .o 0.

As a result, for # > 0 there is an arbitrarily compact set that is near to the set (7). Therefore, by the Arzela-Ascoli
theorem Q(?) is relatively compact in ®. Hence, the Schauder’s fixed point theorem (2.14) Q has a fixed point in .7,
which is the mild solution of the system (1). o

We now concentrate on the approximate controllability of Equation (1).

Theorem 3.2 Suppose that (H,)-(Hs) hold and & is uniformly bounded function. Furthermore, the corresponding
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linear equation (26) is approximate controllable on 7, then the system (1) is approximately controllable on 7.
Proof. Let v be a fixed point of Z in .7, by Theorem (3.1), any fixed point «” is a mild solution of the system (1),
such that

u’(¢) = S@(I,O)[uo +§(u,1 T I )]
[, (PO -¥(0)" 01 [et5.0 ) s ¥ )z

+ > ShL (W ()

O<ty <t

H(YO-Y0) Qe NBF QY (b.0R(2,T))

x[ul Sy (b,O)[uO T AT )}— > Spba) (W (@)

0<ty <b

—J;(‘}’(b)—‘{’(w))"_IQ@(b,w)GS(t,ut’, [le(ts )ds)‘}”(w)dw}d yte .
Define

PQw) =t = SL(B,0) ty +& (w1, ot )| = X S (W (1))

O<ty <b

_ Iob(\y(b) _\P(w))”*lgg(b,w)es(t,u;, jo’e(t,s,uf )ds)‘P'(w)dw. (36)
We have (1 —‘IObR()/,KOb)) =yR(a, %)), then

W (b) =Sg(b,0)[u0 + &y 1y et )]+ > Spb) (W (1))

0<t<b

[ (PO () Qb 6t [ {507 ds | ¥
+] (PO -9 ()"0, )BF QY bR T

x[ul—Sz(b,O)[uo+§(u,l,ut2,...,utn - 3 S (v @)

O<ty <b

- j:(\P(b) —\P(w))”“gg(b,w)eﬁ(t,uf,j;e(r,s,ug )ds)‘P'(w)dw}d 7
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= SpB,0) g+ £ (1, w0, ) [+ X SEG)L (W @)

0<t <b
L (vo) - () e, m(n W, [ e(ts,ul )ds)\P'(z)dz+fé’R<y55’>P<ua)

= SHB,0) |y + &t 1o on, [+ X SEGOL (W (1))

O<ty <b
+J';(‘P(b)—‘P( ) QL b, ;()ej(t,uf,j;e(t,s,ug )ds)‘l"( ndy
+ PW) = yR(r, % ) P(u”)
=, ~aR(y.5)P().

According the Dunford-Pettis Theorem, there is a subsequence {@(t,uf ,J.Ot e(t,s,u’ ))} that convergent weakly to

{Qi(t, ut’,J‘Ot e(t,s,u’ )ds)} in L'(#, ©) and also the functions 7,(u). Consider,

W =, = Sp5,0) 1y + £ (1w, )= D SEGBOL (v (1))

0<ty <b

_ J';(\P(b) —\P(w))”"gz(b,m)@(t,u; J.(:e(t,s,us )ds)‘}”(m)dw. (37)
We get
[P -w|=| X [Sie.0n (v @) -Si .01, (u(tk))]”
O<ty <b

+ j;’(tp(b)—\P(w))”"gz(b,w)@(t,u{ : j;e(t,s,us)ds)‘}”(w)dw

b
0

- j (\P(b)—\P(m))”"gz(b,w)@(t,u,, ;e(t,s,us)ds)‘l"(w)dwu

D)

0<ty <b

Sb.1) [ 1, (w 1) -1, (w) |

*“f: (Y(0)-¥(@))" Q4 (b.2) ¥ (@)

Contemporary Mathematics 192 | R. Udhayakumar, ef al.



x[@(t,u,’ : j;e(z,s,ug)ds)—es(t,u,, ;e(t,s,us)dsﬂdwu

<x, 3

O<ty <b

1 (w @) =1 (w))|

nK,
T(l+n)

+

[[(20)-¥@) " ¥'(@)

0

x[@(t,uf ,j’e(t,s,u{)ds)—es(t, u,,jte(t,s,uy)ds)}dwu.
0 ‘ 0 ‘
By the uniform boundedness of {&’(w)} that 3 some &(w) € L'(#, ©) such that,
6(a,1 (@) > 6(a@,u(@)) as y > 0.

Similarly, ||Z,(w'(2,) — I,(1(2,)))|| — 0 as y — 0. Moreover, approximate controllability of the system (26), we obtain
yR(y, To) — 0 as y — 0" in the strong continuous topology. Therefore, we can obtain that as y — 0,

R B R B e ey

< “yR( s )WH + ey -w)|—o.

Hence, the system (1) is approximately controllable on 77"

4. Example

This section looks at an initial value problem based on a Caputo fractional differential equation and shows how
fractional derivative with respect to another function may be useful:

4 o
c
Djz(t,e)= Py

z(t,€)+ Bul(t,e)
+9(t,jjw I(w-z(w,6)do, I; J‘;Z(t,e,i —t))((z(/l,e))dxlde), t#t,
1
2(5) = 2(7) = 1o (ue)), (38)
20,0)=zy()+ D1 0z(t, +€), 0<t, <1, <+ <1, <b, ec[0,7],

z(t,0)=z(t,7)=0, te ¥,
z(t,0)=Q(t,0), 0<o <7, t € (—,0],

4

where CD;D is the W-Caputo fractional derivative of order ; and set ® = L*([0, x]), be endowed with the usual || - |2,
and k=1.
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X 1
Let w(e) = €, & <0 then, f w(e)de = 7

l@l,=]" we) sup [a(e)|de. (39)

7€[-n,0]

since w(e)(€) = w(é, €), (¢, €) € (—o, 0] x [0, ]. Consider the following:
1. #(-, -, -) is a continuous function in % x .7, x L*([0, z]) and .%, also continuous, positive bounded, such tha
0
[ 7 e ndi <o,
0
2. F5(t, €, A) is a continuous function in 7 x [0, ©t] x .7, such that LC? (8, €, A)dA < o0,

3. The function &(+) is continuous and satisfy 0 < &(z(4)(¢€)) <. % ( I ‘ ¢“||z(e, +)||,2de), here Z : [0, +0) — (0, ©) is
an increasing continuous function.

4. 4 - L([0, w]) — L([0, x]) is the bounded linear operator defined with the control function u(z, €).
5. I,(u(t,)) is the impulsive functions, and ||Z,(u(#,))|| < ﬁ
Now we observe the integro function:

1

60602 = D:(]-"(r,j;g‘f(w)z(w,e)dw, [[[ Fen ;((z(/l,e))d/l)jzde}z

1 1

<IN U:( [* 7@z, e)dw)2 dejz +[ IO”( [* % (ezz(0.pd ,1)2 dejz

SN[+ T, ).
Then,

1

J, ( jo”( [ F/l‘(a))z(a),e)da))zdejz

1

< ( I:(.[Ow F(@)Q, c)da))zder

1
([ erad
< (1),
and

1

J, :{ jo”( [ F(t.e.n) ;{(z(ﬂ)(e))dﬂ)zde}z
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1

@(£)()] 2 dg)dﬂjzde}z

IA

([ #eena(] e

1
2

IN

2
j”(jo %(LQ&){@(J‘O 645 sup "w-(g)"Lz d&'jdi} de:l
0 J—= P ee[4,0]

1

([ e nraz) deT ()@l

IN

1

S[Kaf?(z,e)zdefeﬂ(l+ @ Iy )

< L'OE (|| @ |ly).
Therefore,
(B, =, < N[ L (B)+ " (B)E (+ || @ lr) ],

where.#, A are the constants. So the required functions satisfied the hypotheses (H,) and (H5).
In [38], the author created graphical representations of fractional derivatives with and without a W-functions when

Y(f) =t In(z + 1), and +¢+1 . For different types of W-function are used in this example, we represent some theoretical
differences in the proof. Take x, = 1, (32) become:

M 1

T + 0 <1
r(j 000
7

4
¥(1)=In(r), = Lln@)ﬁ . 1;

r(llj 1000
7
P(t) =i+, :L(«E—l)?

)

7

Also we can verify all hypotheses.

Hence, from Theorem 3.1 the system (38) has a mild solution and which is approximately controllable.

Y()=t, =

5. Conclusion

In this manuscript, we investigated the approximate controllability of W-Caputo fractional differential equations
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with infinite delay, impulsive and nonlocal connditions by using fixed-point approach. The primary outcomes are
developed by utilising the semigroup concepts, W-Caputo fractional derivative and fixed-point approach. An implication
is provided to illustrate the principle. In future, we will focus exact controllability of W-Caputo fractional differential
systems with impulsive conditions, and existence W-Hilfer fractional differential system with or without delay via fixed
point technique. In future, we will extend our work to higher order fractional derivatives.
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