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Abstract: In this article, we studied the approximate controllability of Ψ-Caputo fractional differential systems. 
We prove the sufficient conditions for an abstract Cauchy problem invloving infinite delay, impulsive and nonlocal 
conditions. The result is shown by means of the infinitesimal operator, semigroup theory, fractional calculus, and 
Schauder’s fixed point theorem. First, we prove the existence of the mild solution and demonstrate that the Ψ-Caputo 
fractional system is approximately controllable. Finally, an example is given to analyse the obtained results.
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1. Introduction
In recent times, fractional calculus have been studied by many researchers because the fractional differential 

systems describe many real-world processes related to memory and hereditary properties of various materials more 
accurately compared to classical differential equations. For more details on fractional calculus and their applications, 
see [1-6]. The fractional differential system is now receiving a lot of interest because of its amazing implications 
in displaying the splendours of science and technology. Fractional systems may be used to solve broad spectrum of 
issues in a number of fields, like elasticity, power systems, electrolysis, fluid circulation, and others. The enlargement 
of differential equations and inequalities known as differential inclusions, which is sometimes referred to as optimal 
control theory, has several users and applications. When one is adept at employing differential inclusions, dynamical 
systems with velocities that aren’t solely determined by the system’s state are easier to analyse. Numerous studies have 
been undertaken on boundary value problems. There have been several investigations conducted to find out if there 
are solutions for fractional differential systems as well as fractional differential inclusions. The following research 
publications can be referenced to support the concept and the implications discussed in relation to fractional calculus: 
[7-16].

The concept of controllability, which is important in both pure and applied mathematics, is a central one in 
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the field of mathematical control theory. At present, controllability plays a significant role in fractional calculus. 
Researchers are now working on a novel concept and notion connected to control theory, specifically how to apply 
control theory to fractional differential systems. The understanding of the exact and approximate controllability of 
various types of dynamical systems, such as delay or not, has advanced significantly over the past few years thanks 
to the efforts of numerous researchers. Exact controllability enables to steer the system to arbitrary final state while 
approximate controllability means that system can be steered to arbitrary small neighbourhood of final state. Moreover, 
approximate controllable systems are more prevalent and very often approximate controllability is completely adequate 
in applications. In [17, 18] authors studied the approximate controllability of Caputo fractional differential systems. 
In [19, 20] studied the approximate coontrollability of stochastic differential systems. Recently, in [21-23] discussed 
the approximate controllability of fractional stochastic differential systems of order 1 < r < 2. It is possible to support 
discussions of theory and applications related to controllability by citing the research papers [24-29].

Impulsive differential systems have an important role in mathematical science and real world. Impulsive effects 
have a huge impact on how a system behaves. They may create abrupt shifts, breaks, or leaps in the system’s variables, 
causing deviations from the behaviour that was anticipated or forecasted. This modification may have an impact on 
system dynamics generally, convergence, and stability. The impulsive effect can be purposefully used to affect or control 
a system. It is possible to influence a system’s behaviour, stabilise unstable dynamics, or move it towards desirable 
states by carefully placing impulses into it. Engineering, physics, and biology are just a few of the disciplines that use 
impulsive control techniques. The system state can abruptly change in many phenomena and processes, including those 
in the fields of electronics, telecommunications, economics, mechanics, biology, and medicine, where the impulsive 
effects can occur, we refer [30-37].

In particular, ones like the fractional derivative with respect to another function are examples of the generic 
fractional derivative that have recently been established. In order to increase the precision of the objective modelling, 
Almeida [38] and colleagues presented a novel version of fractional derivative in 2017 by accounting for the Caputo 
fractional derivative with respect to a second function Ψ, or the Ψ-Caputo fractional derivative. Then, in [39] presented 
the so-called Ψ-Hilfer derivative, a fractional derivative with respect to an another function. The Ψ-Caputo and Ψ-Hilfer 
models, which are here stated, have the advantage of allowing the choice of the classical differential operator and the 
Ψ function, i.e., from the decision of the Ψ function, the conventional differentiation operator may act on the fractional 
integral operator, or else the fractional integral operator may act on the conventional differentiation operator. These two 
papers served as inspiration for further study into Ψ-Caputo and Ψ-Hilfer, which led to the creation of novel works. 
For Caputo fractional differential systems with an infinitesimal generator A , writers [40] investigated the existence, 
uniqueness, and stability of several sorts of mild solutions. The fixed-point approach was used by the authors [41] to 
analyse the existence and uniqueness of Ψ-Hilfer neutral equations with indefinite delays. A recent study of the Ψ-Caputo 
derivative’s approximate controllability was published in article [42].

We investigate the approximate controllability of Ψ-Caputo fractional differential equations with impulsive 
conditions, nonlocal conditions, and indefinite delay since, to our knowledge, no paper has been published on this topic. 
Inspire by the aforementioned studies, we also investigate the approximate controllability of the impulsive systems 
provided by:
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where A is an infinitesimal generator of the analytic semigroup {T(t), t ≥ 0} on D. CD0+
η;Ψ represents the Ψ-Caputo 

fractional derivative of order η, 0 < η < 1. Let v(t) be the control function in L2(W , U ), where U  is the Banach space, 
and u(t) be the state in a Banach space D with || · ||. The bounded linear operator from U  into D is represented here by 
B. Let W  = [0, b], G : W  × Tw × D → D be the relevant function, e : W × W × Tw → D and 0 < t1 < t2 < ··· < tn ≤ b, ξ : 
Tw

n → Tw are the relevant functions, where Tw is a phase space. The memories of ut : (−∞, 0] → D, such that ut(s) = u(t 
+ s) correspond to the phase space Tw , and Ik : D → D are the impulsive functions with the jump of t at points of tk.
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The organisation of the work is divided as follows: The Ψ-Caputo fractional, semigroup, and principles of 
fractional calculus are covered in Section 2. Before expanding to the approximate controllability of systems, we 
first prove the existence of the mild solution in Section 3. In Section 4, we gave an illustration to highlight our key 
principles. In the end, a few observations are offered.

2. Preliminaries
The key concepts, theorems, and lemma that are utilised throughout the whole work are discussed here.
Let us assume Ψ is an non-decreasing function with Ψ′(t) ≠ 0, for every t ∈ W .
Definition 2.1 [43] The Laplace transform of the functions G : [0, ∞] → R with respect to Ψ is presented by

( ( ) ( ))( )}( ) ( ) ( ) ( ) ( )  for a ll .t a
a

t t e t t dtχχ χ χ
∞ − Ψ −Ψ

Ψ ′= = Ψ ∈∫{G G G G 

Definition 2.2 [39] Let η > 0, G be an integrable function defined on [a, b] and Ψ ∈ C1([a, b]) be an increasing 
function with Ψ′(t) ≠ 0 for all t ∈ [a, b]. The Ψ-Riemann-Liouville fractional integral of order η of the function G is 
presented by
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where η ∈ (m − 1, m).
Definition 2.3 [39] Let m − 1 < η < m, G be an integrable function defined on [a, b] and Ψ ∈ C1([a, b]) be an 

increasing function with Ψ′(t) ≠ 0 for all t ∈ [a, b]. The Ψ-Riemann-Liouville fractional derivative of order η of the 
function G is presented by
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Definition 2.4 [38] Let m − 1 < η < m, G ∈ C n([a, b]) and Ψ ∈ C m([a, b]) be an increasing function with Ψ′(t) ≠ 0 
for all t ∈ [a, b]. The Ψ-Caputo fractional derivative of order η is defined by
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Theorem 2.5 [38] Let G ∈ Cn(a, b) and η > 0.Then we have
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By referring [31], we define the abstract phase space Tw . Let w : (−∞, 0] → (0, +∞) be continuous along Υ = 
0

w
−∞∫  

w(t)dt < +∞. Now, for every n > 0, we have
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Lemma 2.7 [12] Let the linear operator A  be the infinitesimal generator of a C0 semigroup if and only if
(ci) A  is closed and ( )D =DA .
(cii) ρ(A ) be the resolvent set of A  contains R+ and, ∀λ > 0, we write

1( , )     ,R λ
λ

≤A

where 1
0

( , ) ( ) ( ) .tR I z e T t zdt
αη λλ λ

∞− −= − = ∫A A

Definition 2.8 Let 0 < η < 1, the Wright type function Wη(t) is defined as
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Proposition 2.9 The Wright type function Wη is an entire function with satisfy the succeeding conditions:
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Lemma 2.10 [9] The Ψ-Caputo fractional differential systems (1) is equivalent to the integral equation
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where t ∈ [0, b].
Proof. Let 0 < t ≤ b, 0 < η < 1, applying the operator I0+

η;Ψ to left-hand side (LHS) of Equation (1), by using Theorem 
2.5 we get
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Now, we can deduce the above equations,
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where t ∈ [0, b].
Lemma 2.11 [40] If integral equation (13) holds, then we have
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Lemma 2.14 (Schauder Fixed Point Theorem) [5] If D is a closed, bounded, and convex subset of a Banach space 

X and G : D → D is completely continuous, then G has a fixed point in D.
We give the preceding description of an appropriate system, its controllers, and its essential assumptions:
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The approximate controllability for the linear fractional system (26) is a natural generalization of approximate 
controllability of linear first order control system. It is convenient at this point to introduce the following controllability 
and resolvent operators associated with (26)
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(27)
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( ) ( ) 1
0 0, ,  0,b bR Iγ γ γ

−
= + >T T

here B * and Ψ
η* are the adjoint of B  and η respectively, also T0

b be the linear bounded operator. 
Lemma 2.15 The linear fractional control system (26) is approximately controllable on  if and only if γR(γ, T0

b) 
→ 0 as γ → 0+ in the strong operator topology.

Proof. The proof of the Lemma is similar to proof of Theorem 2 in [44].
Next, for every γ > 0, and u1 ∈ D, take

( )* *
0( ) ( , ) , ( ( )),bv t b t Pη γΨ= ⋅uTB R

where
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ωϖ η ϖ ω ω ϖ ϖ− ′− Ψ −Ψ Ψ∫ ∫G u u

We introducing the succeeding hypotheses:
(H1) {T(t)}t ≥0 is the C0-semigroup, such that 0

[0, )
sup ( )  where 1 and ( , ) 1 0.b

t
T t M Mη η γ γ

∈ ∞
= ≥ ≤ ∀ >TR

(H2) For t ∈ W , , ( , , ) : , ( , , ) :w wt t e t s∈ ⋅ ⋅ × → ⋅ →D DG DW T T  are continuous functions and for every u ∈ X , G(·, ut, 
e∫ ) : W  → D and e(·, ·, ut) : W  × W  → D are strongly measurable.

(H3) There exists an increasing function Λ : R+ → (0, ∞) and LG, P(·) ∈ L1(W ′, R), such that ||G(t, γ1, γ2)|| ≤ LG,P(t)
Λ(||γ1||Υ + ||γ2||) for every (t, γ1, γ2) ∈ W  × T w × D, and there exist a constant M > 0, then

( ), 1 2( )
sup .lim P

P

L t

P

γ γ
ϒ

→∞

Λ +
=

G M

(H4) There exists a constant E0 > 0, such that ||e(t, s, γ) || ≤ E0(1 + || γ ||Υ) ∀(t, s, γ) ∈ W  × W  × T w . 
(H5) The functions Ik : D → D are continuous and there exists continuous nondecreasing functions LK : [0, +∞) → [0, 

+∞], such that ||Ik(u)|| ≤ LK(||u||), and

.l
( )

sup ,  1,im  2, k
k

P

P
k m

P
β

→+∞
= < ∞ = 
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(H6) The continuous function ξ : Tw
n → Tw  and Ξn(ξ) > 0 such that

1 2 3 1 2 3
0

( , , , , ) ( , , , , ) ( ) ,
n

n n k
k

a a a a b b b b a bξ ξ ξ
ϒ

=

… − … ≤ Ξ −∑

for all an, bn ∈ Tw and assume Pξ = sup{||ξ(a1, a2, a3, ..., an) || : aj ∈ Tw }.

(28)

(29)

(30)

(31)

□
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3. Approximate controllability
Theorem 3.1 If (H1)-(H6) satisfies, then the Equation (1) has atleast mild solution on W  with:
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( 1) kb ηη
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κ
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η
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 − 
 

Ψ Ψ + <
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M

Proof. Let us consider the operator Ξ : Tw′ → Tw′, classified
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For Ξ1 ∈ Tw, we define Ω̂  by
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then Ω̂  ∈ Tw′. Let ut = [ yt + Ω̂ t], ∞ < t ≤ b. It is simple to expose that u meets from (2.12) if and only if v fulfils y0. and
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Let Tw ′′ = {y ∈ Tw ′ : y0 ∈ Tw }. For any y ∈ Tw ′,

0|| ||    || sup{|| ( ) || : 0 }||y y y bω ωϒ ϒ= + ≤ ≤

sup{|| ( ) || : 0 }.y bω ω= ≤ ≤

Thus, (Tw ′′, || · ||) is a Banach space.

(32)

(33)
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For P > 0, choose TP = {y ∈ Tw′′ : || y ||Υ ≤ P}, then TP ⊂ Tw′′ is uniformly bounded, and ∀y ∈ TP, from Lemma 2.6,

ˆ ˆ  ||   |||| ||t t t ty y ϒ ϒϒ
+Ω ≤ + Ω

( ) 1 20 1 ) ||   ||   ( , , , 
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≤ ϒ + + + Ω + … u u u uP

 .P′=

Consider the operator Ω : Tw′′ → Tw′′, defined by
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Now we expose Ω has a fixed point.
Step 1 We assume that Ω(y(t)) ∈ TP , to expose that Ω(TP) ⊂ TP. We assume that for P > 0, there exists t ∈ [0, b], 

such that
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Dividing to both side by P and taking limit supremum as P → ∞, obtain
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Ψ +
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then we have a contradiction to our assumption (32).
Therefore Ωy ∈ TP.
Step 2 To expose Ω is continuous. Let {yn} ⊂ Tp, such that yn → y ∈ Tp as n → ∞. From assumptions (H2) and (H3), 

we can write, for every t ∈ W ,
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By Lebesgue dominated convergence theorem, for every t ∈ W , we write
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Apply n → ∞, then ||(Ωyn)(t) − (Ωy)(t)|| → 0. Hence Ω is continuous.
Step 3 Now, we demonstrate that compactness of Ω. For that, first we expose that {(Ωy)(t) : y ∈ T p} is 

equicontinuous in D.
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Therefore, I1 → 0, and I2 → 0 as t2 → t1. Now, we consider
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which implies, I4 → 0 as t2 → t1. Let ϵ be the arbitrary small positive, we write
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From Lemma (2.13), we obtain I5 → 0 as t2 → t1 and ϵ → 0. Using the similar procedure, we get I6, I7 and I8 are 
tend to zero.

Step 4 We need to prove, ∀t ∈ [0, b], Ω(t) = {(Ωy)(t) : y ∈ Tp} is relatively compact in D.
Take 0 ≤ t ≤ b then, ∀ϵ > 0 and ϖ > 0, let y ∈ Tp and explain the operator Ωϵ,ϖ on Tp as
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Then by compactness of T(ϵηϖ) for ϵηϖ > 0, we have Ωϵ,ϖ(t) = {(Ωϵ,ϖy)(t) : y ∈ Tp} is relatively compact in D. 
Furthermore, for any u ∈ Tp we get
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Γ +∫ ∫ . According to the absolute continuity of the Lebesgue integral, we 

have

( ),( )( ) ( ) 0 as , 0.y t y tϖ ϖΩ − Ω → → 

As a result, for t > 0 there is an arbitrarily compact set that is near to the set Ω(t). Therefore, by the Arzela-Ascoli 
theorem Ω(t) is relatively compact in D. Hence, the Schauder’s fixed point theorem (2.14) Ω has a fixed point in Tp , 
which is the mild solution of the system (1).

We now concentrate on the approximate controllability of Equation (1).
Theorem 3.2 Suppose that (H1)-(H5) hold and G is uniformly bounded function. Furthermore, the corresponding 

□
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linear equation (26) is approximate controllable on W , then the system (1) is approximately controllable on W .
Proof. Let uγ be a fixed point of Ξ in Tp, by Theorem (3.1), any fixed point uγ is a mild solution of the system (1), 

such that
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By the uniform boundedness of {Gγ(ϖ)} that ∃ some G(ϖ) ∈ L1(W , D) such that,
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Similarly, ||Ik(u
γ(tk) − Ik(u(tk)))|| → 0 as γ → 0. Moreover, approximate controllability of the system (26), we obtain 

γR(γ, T0
b) → 0 as γ → 0+ in the strong continuous topology. Therefore, we can obtain that as γ → 0+,
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Hence, the system (1) is approximately controllable on W .

4. Example
This section looks at an initial value problem based on a Caputo fractional differential equation and shows how 

fractional derivative with respect to another function may be useful:
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where C
4
7D DΨ  is the Ψ-Caputo fractional derivative of order 4

7
 and set D = L2([0, π]), be endowed with the usual || · ||L2, 

and k = 1.

□

(38)
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Let w(ε) = e4ε, ε < 0 then, 
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since ϖ(ε)(ϵ) = ϖ(ε, ϵ), (ε, ϵ) ∈ (−∞, 0] × [0, π]. Consider the following:
1. F (·, ·, ·) is a continuous function in W  × T w × L2([0, π]) and F 1 also continuous, positive bounded, such tha 
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an increasing continuous function.

4. B  : L2([0, π]) → L2([0, π]) is the bounded linear operator defined with the control function µ(t, ϵ).
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− )) is the impulsive functions, and ||I1(u(t1
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where M , Λ are the constants. So the required functions satisfied the hypotheses (H2) and (H3).
In [38], the author created graphical representations of fractional derivatives with and without a Ψ-functions when 

Ψ(t) = t, ln(t + 1), and 1t + . For different types of Ψ-function are used in this example, we represent some theoretical 
differences in the proof. Take κη = 1, (32) become:
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M

Also we can verify all hypotheses.
Hence, from Theorem 3.1 the system (38) has a mild solution and which is approximately controllable.

5. Conclusion
In this manuscript, we investigated the approximate controllability of Ψ-Caputo fractional differential equations 
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with infinite delay, impulsive and nonlocal connditions by using fixed-point approach. The primary outcomes are 
developed by utilising the semigroup concepts, Ψ-Caputo fractional derivative and fixed-point approach. An implication 
is provided to illustrate the principle. In future, we will focus exact controllability of Ψ-Caputo fractional differential 
systems with impulsive conditions, and existence Ψ-Hilfer fractional differential system with or without delay via fixed 
point technique. In future, we will extend our work to higher order fractional derivatives.
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