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Abstract: In this paper, the approximate boundary controllability of Hilfer fractional neutral stochastic differential
inclusions with fractional Brownian motion (fBm) and Clarke’s subdifferential in Hilbert space is discussed. The
existence of a mild solution of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian
motion and Clarke’s subdifferential is proved by using fractional calculus, compact semigroups, the fixed point theorem,
stochastic analysis, and multivalued maps. The required conditions for the approximate boundary controllability of this
system are defined according to a corresponding linear system that is approximately controllable. To demonstrate how
our primary findings may be used, a final example is provided.
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1. Introduction

Recent research has shown that fractional differential equations or inclusions with fractional order are effective
modeling tools for a wide range of phenomena in physics, economics, engineering, and so on. In recent years, there has
been a significant development in ordinary and partial differential equations involving fractional derivatives. We consult
the monographs for further information [1-5]. The Riemann-Liouville fractional derivative and the Caputo fractional
derivative are both parts of the Hilfer fractional derivative, which is a general fractional derivative that Hilfer introduced
[6]. The subject of fractional differential equations and inclusions has been extensively covered in publications;
for example, Gu and Trujillo [7] established the existence of a mild solution for the evolution equation with Hilfer
fractional derivative. The approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions
was explored by Yang and Wang [8]. Varun Bose and Udhayakumar [9] discussed the existence of Hilfer fractional
differential inclusions with almost sectorial operators.

One of the fundamental concepts in the study of mathematical control theory is controllability. It is a characteristic
of dynamical systems and has special significance in control theory. Controllability, stability, and stabilizability
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of deterministic and stochastic control systems have a number of significant connections. Any control system is
considered to be controllable because it is probable to use the set of admissible controls to steer the system from an
arbitrarily chosen starting point to an equally chosen ending point, where the starting point and the ending point may
differ over the whole space. Ravikumar et al. [10] discussed the null controllability of nonlocal Sobolev-type Hilfer
fractional stochastic differential system driven by fractional Brownian motion and Poisson jumps. Sivasankar et al.
[11] investigated the nonlocal controllability of Hilfer fractional stochastic differential equations via almost sectorial
operators. For further information on this topic, we refer to [12-15] and references therein.

Since they appear in a broad variety of issues in applied mathematics and biological models, including electronics,
fluid dynamics, and chemical kinetics, neutral functional differential systems have attracted a lot of attention lately.
Over the last decade, a significant number of academics have produced neutral fractional differential systems with or
without delays, utilizing a variety of fixed-point procedures, mild solutions, noncompactness measures, and nonlocal
conditions. For more details, we may refer to [16-20]. Many researchers have extensively studied the existence of
mild solutions for neutral stochastic differential systems in [21-24]. The attention of several authors has been drawn to
stochastic differential equations and inclusions driven by fractional Brownian motion (fBm). There have been significant
developments about the existence, uniqueness, and controllability of the solution; for example, the existence of neutral
stochastic functional differential equations driven by a fBm was examined by Boufoussi and Hajji [25]. Introducing
impulsive stochastic functional differential inclusions driven by a fBm with infinite delay was done by Boudaoui et
al. [26]. The best way to combine fractional Brownian motion and non-instantaneous impulsive fractional stochastic
differential inclusion was explored by Balasubramaniam et al. in their study [27]. Ahmed et al. [28] investigated the
approximate controllability of nonlocal Sobolev-type neutral fractional stochastic differential equations with fractional
Brownian motion and Clarke subdifferential. Mourad et al. [29] investigated stochastic fractional perturbed control
systems with fractional Brownian motion and Sobolev stochastic nonlocal conditions. Mourad [30] established the
approximate controllability of fractional neutral stochastic evolution equations in Hilbert spaces with fractional
Brownian motion.

Clarke’s subdifferential arises from applied fields such as filtration in porous media and thermo-viscoelasticity and
has fascinating applications in non-smooth analysis and optimization [31]. Recent years have seen a rise in research
activity in the study of control issues with Clarke’s subdifferential; for example, Ahmed et al. [32] investigated fractional
stochastic evolution inclusions with control on the boundary. Kavitha et al. [33] discussed the results on the approximate
controllability of Sobolev-type fractional neutral differential inclusions of the Clarke subdifferential type. Sivasankar
et al. [34] studied the optimal control problems for Hilfer fractional neutral stochastic evolution hemivariational
inequalities.

Only a few authors have investigated the approximate boundary controllability; for example, Wang [35]
investigated the approximate boundary controllability for semilinear delay differential equations. Olive [36] introduced
the approximate boundary controllability of some linear parabolic systems. Ahmed et al. [37] established the
approximate boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fBm and Poisson
jumps. Ahmed [38] studied the approximate controllability of neutral fractional stochastic differential systems with
control on the boundary. However, to the best of our knowledge, so far, no work has been reported in the literature about
the approximate boundary controllability of Hilfer fractional neutral stochastic differential inclusions with fBm and
Clarke’s subdifferential.

Inspired by the above-mentioned works, this paper aims to fill this gap. The purpose of this paper is to show the
existence of solutions and the approximate boundary controllability of Hilfer fractional neutral stochastic differential
inclusions with fBm and Clarke’s subdifferential of the form

Dy [m()+ f(t.m(t))] € F[m(@)+ f (t.m()) |+ o (t,m(t)) + p(t, m(£)) — = dw(’)

+glt, (t))dBH(t)-i-@%(t m()), t e =(0.£], 1)

om(t)=9V (@), te%,
1850000 = my,
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where D;" is the Hilfer fractional derivative (HFD) of order £ € [0, 1] and type v € (%, lj , ' be bounded linear operator

and 0 : A — © be a linear operator, where ® be separable Hilbert space. ¢, : ¥ — A denotes a bounded linear operator,
where Y and A are Hilbert spaces. The state m(-) takes the value in A. Let 4 : A — A be a linear operator defined by
Dom(4) = {m € Dom(F) : om =0}, Am = Fm, for m € Dom(4).

Let {w(t)},-, be a Wiener process that has a finite trace nuclear covariance operator ® > 0 specified on a (€, S,

{S,} =0, P) with values in Hilbert space ©. {B"(¢)},., is a fBm with Hurst parameter H e (%, lj defined on a (Q, S,

{S,},=0, P) with values in Hilbert space A. Also, || - || for L(D, A), where L(D, A) is the space of all bounded linear
operators. OB(t, m(t)) denotes the Clarke’s subdifferential of B(z, m(t)). V(-) is the control function in L*(T, Y), the
Hilbert space of admissible control functions on Y. ¢ : ¥ x A — 2" is a nonempty, bounded, closed, and convex (BCC)
multivalued map. Let Ly(D, A) be the space of all @-Hilbert Schmidt operators from D to A. The nonlinear operators f':
TXA—-A, 0 :TXA—Lo(D,A)and g : T x A — L) (Y, A) are given.

1.1 Novelties of the work

The contributions of this paper exist in the following aspects:

* Hilfer fractional neutral stochastic differential inclusions with fBm and Clarke’s subdifferential are introduced.

* The primary outcomes for the systems (1) are derived by applying fractional calculus, compact semigroups, the
fixed point theorem, stochastic analysis and multivalued maps.

» Approximate boundary controllability for Hilfer fractional neutral stochastic differential inclusions with fBm
and Clarke’s subdifferential is an unexplored topic in the literature, and this is an additional motivation for writing this
manuscript.

* The main findings are demonstrated using an example.

1.2 Structure of the paper

The following describes how the paper is organized: We present some definitions, lemmas, and theorems in
Section 2 that are helpful in proving the major results. The sufficient condition to demonstrate approximate boundary
controllability for the system (1) is examined in Section 3. In Section 4, we present an example to verify the results of
the theoretical work.

2. Preliminaries

The lemmas, theorems, and definitions required to support the primary results are presented in this part of the

paper.
Definition 2.1 [2, 6] The HFD of order 0 < ¢ <1 and 0 < <1 is characterized as

DG =1 £ 160,

where

RO

I"G(r) = T (s

s, t>0, n>0.

Assuming that (€, S, {S,},.,, P) indicates a complete probability space equipped with a normal filtering {S,}, ¢ € (0,
&), because S, corresponds to the g-algebra produced by {w(s), B’(s), s € (0, £]} and all P-null sets. Let ® € (Y, Y) be
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an operator denoting ®e¢, = 4,¢, along with finite trace 7r(®) = z::l Ay <0, 4, >0(k=1,2,---)and {e;} (k=1,2, )
is a complete orthonormal basis in Y.
The fBm on Y in infinite dimensions with covariance © is defined as

B (1) =By (1) =Y e Bl O,
k=1

where () are real, independent of fBm. In order to define the Wiener integrals with respect to the ®-fBm, we
introduce the space of all ®-Hilbert Schmidt operators ¢ : ¥ — A as L) := L)(Y, A). We remember that ¢ € L(Y, A) is
known as ®-Hilbert Schmidt operators, if

ol = SN Fupa | <=

and that the space L equipped with the inner product (9, qo)LO = Z:_1<19€k, @e, ) is a separable Hilbert space.
9 -
Let ¢(s); s € (0, ¢] be a function with values in L;(Y, A), the Wiener integral of ¢ with respect to B” is defined by

[Lo)dB" ()= 3 [ NAp)ed Bl =3 [ NAK (9, ) B, 5) @
k=1 k=1

where S, denotes the standard Brownian motion.
Lemma 2.2 [25] If ¢ : [0, &] — L3(Y, A) satisfies J‘j"go(s)"ig < o0, then the above sum in (2) is well defined as a

A-valued random variable, and we have

2 ot
<28 ()] ds.

£|[1ots1a8" )

Definition 2.3 [31] Let B : O — %R, where O is a Banach space and O is the dual space of ©. The Clarke’s
generalized directional derivative of B at 1 € O in that direction { € B is characterized by

B(1;¢) = lim Supw

71—0" 0> /]

and
OB(1) = {z* e B (1;0)2("; ), forall £ e o},

where 08(2) is the Clarke’s generalized gradient of °B at: € O.
Here, &: Lé (T,A)> 2LZS(5’A) is defined as:

S(m) = {.7-' e I2(T,A): F(t) € 0B(1, m(t)) a.e. t € T forme [3(T, A)}.

The Banach space of all continuous functions m from ¥ into L2(Q, S, P, A) is denoted by 4 = #(%, L2(Q, S, P, \))
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1
with ||m||/1 = (Suptes E“t(l_[')(l_”)m(t)“2 )[2] Within this paper, let A, = {m € A :||m|[; <t}, where t > 0.

We require the following hypotheses to be verified in the findings:

(A1) Dom(F) < Dom(d) and the restriction of 6 to Dom(F) are continuous with regard to the graph norm of
Dom(F).

(A2) There exists a linear operator ¢ : ¥ — A such that for all V' € Y we have gV € Dom(F), é(¢V) = ¢,V and
E|loV|} < C\|l,V||, where C, is a constant.

(A3) 4 is the infinitesimal generator of the bounded operator {X(#), > 0} in A, and there exists a constant IT > 0
such that sup,_< || N(¢)|| <L

(A4) Forallt € (0,¢]and V € Y, X(t)oV € Dom(4). Additionally, there exists a constant I, > 0 such that || AR(?)||
<II,.

(A5) If f: T x A — A is a continuous function, then there exist constants C;, C, > 0 such that

E|ftm)—ft,my)|} < CE|m —m,|*

B

fort € ¥, m;, m, € A, and the inequality
E|fem| <c, (1+E||m||2 )

forall (f, m) € T x A.
(A6) If 6 : T x A — 2" is locally Lipschitz continuous (LLC), for all # € ¥, m, m,, m, € A, then there exists a
constant C; > 0 such that

Elott,m)~ott.m) < CElm ~m P Elote.mff <, 1+ Enf)

(A7) If o : T x A — Lo(D, A) is LLC, for all € T, m, m,, m, € A, then there exists a constant C, > 0 such that
Eljotm) - ptt,m)f < Clpm ~msfF . Elotc,mff <41+ Ef)

(A8)Ifg: T x A— LYY, A)is LLC, forall £ € T, m, m,, m, € A, then there exists a constant C; > 0 such that
Elste.m) - m)f <l -msff . Elee.mlf <1+ Elmf).

(A9) The following conditions are fulfilled by the function 6 : T x A — R:
(i) B(-, m) : T — R be measurable for all m € A,

(@) B, ) : A—RbeLLCforae.t € T,

(iii) there exists € L'(T, ") and a constant C, > 0 that satisfies

Elose, m =sup{ E|FOF : F(1) € 0B, m)} < 8+ CE | |

forallm e Aae.t € Tandm € A.
Let m() be the solution of (1). Then, we define y(¢) = m(t) — oV(¢). From our hypotheses, it is obvious that r(7) €
Dom(4). As a result, (1) may be represented in terms of 4 and ¢ as follows:
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Dy [ x@)+ £ (t,m(0)) ] € A[ (@) + £ (t,m(0)) |+ FoV (6)= oDV (1) + o (£, m(1) ) + o (1, m(t))dw(t)

(t)

+g(tm) 4

18 [(0) + 0V (0)] = 15 ")m(O) =my.

+0B(t,m(t)), teT=(0,&],

Hence, the integral inclusion of (1) is provided by

m(o)+ 1 (m(o) e P 2T &{ (UO’_”;;?)N - r’>+F( )j (t=5)"" A[m(s)+ f (5,m(s))]ds
r( 1 j (t—s)""[F - AloV (s)ds + (10) j;(t—s)"*la(s, m(s))ds—l—l_(l ;s j (t =)0 (s, m(s)) dw(s)
oyl J' (t-s5)""g(s, m(s))dBH(s)+— j (t—5)""0B (s, m(s))ds. 3)

Lemma 2.4 [32] An S-adapted stochastic process m(-) € Lg(T, A) is said to be a mild solution of the control
system (1), and provided that 7{"“"™m(0) = m,, then there exists F € L2 (T, A) such that F(t) € &B(t, m(t)) ae.t € T
and

m(6) =R, (O my + £(0,m(0)) |- £ (£, m(2)) + jo’[Pn(t—s)F—Ae)(t—s)]gV(s)ds

+j;Pn(t—s)a(s, m(s))ds-i—j(i%(t—s)f(s)ds

+[ B (=)0 (s, m(s))dwis) + [ Byt =5)g (5, m(5))dB" (s), 1 € %, @)
where
Ny (0= VR (1), B0 =T, (0), T,(1) = [ ¥, (N ),
with

= z(k DIT(I—ky)’

, 0<py<1, ve(0,0),

the Wright-type function that meets the following inequality

[“vowmyav = Ld+p) o
0 Fd+yp)
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Lemma 2.5 [7] The operators X, and P, possess the following characteristics:
(i) {P,(¢) : t> 0} is continuous in the uniform operator topology.
(i) X, ,(¢) and P,(¢) are linear bounded operators,

! (D0
(@ii) {P,(1), R, (¢)},-, are strongly continuous. -
Lemma 2.6 [37] If the assumption (A4) is satisfied, then ”APU (t)m" < Rl ||m|| .

I'(n)

Lemma 2.7 [39] If (A9) is satisfied, then the set &(m) has nonempty, convex, and weakly compact values for every
m € LT, A).

Lemma 2.8 [39] The operator & verifies: if m, — m in L (T, A), f, — f weakly in L3(Z, A), and §, € S(m,), then
S € &(m) given that (A9) is fulfilled.

Theorem 2.9 [40] Let D be a locally convex Banach space and 3, : D — 2 be a compact convex valued (CCV),
upper semicontinuous multivalued maps such that there exists a closed neighborhood £ of 0 for which B, (£) is
relatively compact set. If W = {m € D : {m € P (m), {> 1} is bounded, then B, has a fixed point.

3. Main results

To investigate the approximate boundary controllability for (1), we consider the linear stochastic system with HFD
and control on the boundary

aw(t)

dr
om(t)=oV (@), te%, (5)
189 m(0) = m,.

Dym(t) € Fm(t) + o (t) + (1) tef,

We introduce the operators associated with (5) as

T8 = [ (-9 [T(E~)F ~ ATy (E~5) oo’ [T (E~9)F ~ AT, (E~5) ] s,
and

N, T5)=(I+T5) ™", ¢ >0,

where ¢" and [T,(& — s)F — AT,({ — 5)]” stands for the adjoint of ¢ and [T,(& — s)F — AT, (& — 5)], respectively.

Assume that m(&; m,, V') represents the state value of (1) at the terminal state &, which corresponds to the control
V and the initial value m,. Indicate by N(¢, m,) = {m(&; my, V) : V € L (T, Y)} is the reachable set of the system (1) at
terminal state £ and its closure in A is marked by N(&, my).

Definition 3.1 [41] The control system (1) is approximately controllable on ¥ if N(&,m,) = L(Q, A).

Lemma 3.2 [41] The fractional linear control system (5) is approximately controllable on ¥ if and only if {({7 +
' —0as—0"

Lemma 3.3 For any i, € I*(Q, A) there exists 7 € LI*(Q; (T, Lg)) and ¢ € I*(€; I*(T, L)) such that
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_ _ . ¢ .
m; = Em; +J.0 ;((S)dw(s)—i-IO @(s)dB" (s).
Now, for any m, € Lz(Q, ), as described above, the control function provides

V() =o' [Ty~ )F ~ AT, (E~5)] (CI+T5) ™ {Eime =N, (&) mq+ £ (0.m(0))]
+f (& m(@)- [ B =)o (s.m(s))ds~ [ P&~ )F (s)ds
~[7 B & =) (5.m())dw(s) [ B (&= 5)g (s.m(s))dB" (5)

7 H)dwis)+ [ f(z(s)dBH(s)}, e
0 0
Theorem 3.4 Assume that (A1)-(A9) are satisfied, then the control system (1) provides a mild solution on ¥.

491122

3, =449C, +——>——
? { 2 @p-1ri(y)

[(03 +TH@)C, +2HEM )+ cég}}

ol e i e |
&2 (2y-1r*(v)

Proof. Consider the map 3, : 1 — 2’ as follows

P, (m) = {91 e 2: A1) =R, (O] my + £(0,m(0)) |- £ (£, m(1))

+I; [Pn (t—s)F—AP_(t- s)] oV (s)ds + L:Pn(t —S)U(S, m(s))ds
T I;Pn(t—s)}'(s)ds+ _[;R)(t—s)go(s,m(s))dw(s)

+L§R,(t —s)g(s, m(S))dBH (s)}.
Fort € %, and from (A1)-(A9), we have
Epof

% 2
< 49EHQ* [T, -$)F — AT, (e ~5)] (T+TE)" [E@f + jf F(s)dw(s)+ jf #(s)dB" (s)}
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% 2
H9E | [1,& = 5)F AT, =5)| (€115, @ £ (0.m(0)

2

H9E|g" [T,(6~)F ~ AT, (E~5)| (CI+T3) " f(£.m(&)

* 2
HOE " [1,(6~9)F - ATy(&~9)| (CT+T5) [Z B (E=9)o (s m(s))ds

* 2
9B 0" [Ty(E—9)F — ATy (=)] (CT+T5)"' [T R(E-9)F(5)ds

* 2
+49E| 0" [ T, (£~ 5)F - ATy (£ -5)] ({T+T5)" jjf;(g — ) (s, m(s)) dw(s)

2

HOE|g" [1,(6~9)F - ATy(&~9)| (CT+T5) [7 B (&~ 9)g (s, m(s))dB" (s)

19|" 2[||F||2 2 +H12J
<

¢’ (n)

{Em L+ Tr(@)jf E|| 7|} ds+ 20217 | f E|g[7y ds

H2§2(/,—])(1—n)

2
T 26| +2¢, |+ G0+ v)

2 £2p-1
+(2UH_‘1§T(U)[(C3 FTH(@)Cy +2HE I C) (14 0)+ | Fl e e, + Cégt]}.

In order to verify that 13, has a fixed point, the proof is divided into six steps.

Step 1: For all m € 4, 3,(m) be nonempty, convex, and weakly compact values.

We use Lemma 2.7 to show that 3,(m) is nonempty and has weakly compact values. Moreover, as &(m) has
convex values, if k,, k, € &(m), then Ik, + (1 — )k, € &(m) for every [ € (0, 1), which implies clearly that *3,(m) is
convex.

Step 2: ‘B, is bounded on a subset of 4.

Clearly, 2, is a BCC set of 1. We can prove that E||2(¢)||’ <z, 7> 0, for all 2 € B,(m), m € A,. If ® € L,(m), then
there exists a F € S(m) in a way that

D) =N, , ()] mg + £ (0,m(0)) |- f (£, m())
+j(; [B,(t=5)F — AP, (t-5) | oV (s)ds

+I;R](t —s)O'(s,m(s))ds + I;R;(t —5)F(s)ds
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+L: F(t- s)go(s, m(s))dw(s) + L; FR(t-s)g (s, m(s))dBH (s), te%. (6)

Then,
|o@)| =49 suipﬂ“*‘)“*‘” {E"Nwj [ my+1(0, m(O))]"2 +E| £ (1, m(t))||2

+E I;[RJ (t=5)F = AB,(t—s) | oV (s)ds ’

2

+E J.;Pn(t—s)o(s,m(s))ds i +E

U;Pn(t —$)F(s)ds

+E I;R](t—s)ga(s,m(s))dw(s) i +E

‘I;Rj(t—s)g(s,m(s))dBH (s)

}

][2 2 2(1-0)(1—
<49 —[215 my||” +2C J+49 =000 (14
{F2(€(1—0)+\j) [l 2 d 2(1+0)

[T2£1-240-n)
LK

+49—>
(2y—-DI'"(n)

(G +TH(@)C, +2HEC) 140 4 | F g e + C@J}

o &I vt em |
P2y ()

49]loff
1+

Q*

201]of
+

12
“ 2 e e s ]| B[ s rr@)f] B2l ds 208 [} ol s |

C*(2y-Dr*(y)

=7
As aresult, P.(2,) is bounded in 4.
Step 3: {3.(m) : m € 2.} is equicontinuous.

For any m € 2, ® € B (m), there exists a F € &S(m) like that (6) holds for all z € T. For 0 <17, <t, <, we can
obtain

E|@(t,) - o)

SA9E (N, (1) =N, (1)) [ + f(o,m(O))]“j +49E||f (t,m(1,)) - f (ty.m(@)|
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f 2

+49F j;z [ By(t, =$)F = AB,(t, = 5) | oV (s)ds - jo [ Bt —$)F = AB,(t; = 5) | oV (s)ds

A

1 2

+49E J.(;z R (1, - s)O'(s, m(s))ds - Io AU s)a(s, m(s))ds

A

+49E jo’z By(t, —5)F (s)ds — j;‘ Byt —$)F (s)ds

2
A

153 f 2
+49F jo B (t, =) (5,m(s)) dw(s) - jo P,(t, — ) (s, m(s)) dw(s) )

H9E|[2 B (1, —)g (5,m(5))dB" ()= [!' Byt = 5)g (5,m(s)) dB" (5)

2
A

= 49E (N, (1) =N, (1)) g + f(O,m(O))]“i +49E | (t,m(1,)) - f (ty.m(@)|

+49E

j: [B (1, ~5)F — AR, (t, ~5) |V (s)ds

tl 2
+ jo [ B(t, =$)F = AB,(t, = 5)= B, (t, =5)F + AP, (t, —5) | o (5)dis

A

2
+49E L:z R (t, - s)O'(s, m(s))ds + _[(:' [Pn (t=s)—F(t - s)] O'(s, m(s)) ds

A

+49E f: By(t, —$)F(s)ds + j;l [ B (6, =)= B (4, =) | F(s)ds i

A

t) Gl ?
+49E Ll Bt —s)go(s,m(s))dw(s)+j0 [ Bty =)= B (t; = 5) | o (5.m(s)) d(s)

A

tp g ’
+49E Ll B, (t, —5)g (s,m(s))dB" (s)+ jo [ Bt =)= B (t; =5) | g (s.,m(s)) dB" (s) i

From the compactness of X(7) (¢ > 0),
2
E|d(6) - @), >0 as 1, > 1.

Hence, B,(m)(f) is continuous in . Also, for ¢, = 0 and t, € T, we can show that E||®(t,) — ®(¢,)||; — 0 as t, — 0.
As aresult, {3.(m) : m € 2.} is equicontinuous.
Step 4: ‘B, is completely continuous.
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We show that (1) = {®(¢) : © € P(A,)} is relatively compact in A for all # € T, v > 0. Undoubtedly, x(0) is
relatively compact in .. Let 0 <7 < ¢ be fixed, 0 <7 <¢, for m € 2, we define

(O = (‘1’_ U))j(;f” [ (=) NG [y — £ (0,m(0)) ] dvds — £ (£,m())

(
w7 Tve-sy (v)[x ((=5)"v) F - a8((t -5 v)] oV (s)dvds
ol ve=s " 0N =9 Vo (s m(s) ) dvds

] v - 9 N (- 9)'v) F(s)dvds

[l [ =97 W N (= 9)79) o (5,m(s) ) dvd(s)

o o)W 00N (= 5)v) g (s,m(s) ) dvdB (s)

N(@#" 1= poo o)l e
=%L} ”jl Wt — ) 07T g I\Pn(v)x(s"v—n“z)[mo— £(0,m(0))]dvds ~ f (1,m(z))

+1 N(f]”z)j;i” Lw v(t—s)""! Y, (v) [N ((t —s5)v— 77"1) F— AN ((t —5)v— 77“1)} oV (s)dvds
+ N(?]“z)"‘;i” Lw v(t—s)""! ¥, (N ((t —-5)v— 77“1) o (s,m(s))dvds
+ N(nnz)j;'” jl“’ vt —s)""! ‘I’n(v)N((t =) v=n"1) F(s)dvds
t-n o 1
+gx(n”z)j0 j v(t =) IN((t = )"y ="t 9 (5,m(s)) dvdw(s)

N[ [T = )W 0N (=9 v=11"1) g (5,m(s) ) dvdB (s).

Since N(5"1), #1 > 0 is a compact operator. Hence, y"'(t) = {®"'(¢) : "' € P.(A,)} is relatively compact in A.
Additionally, we have

E|ow-om @] =supr 0 Elo@ -om o
te¥

49y? e
3 suptz(l £)(1-y)

< — -z
I?(0(1-1)) rex
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2
xE

Ué [ (=507 ING™) [y = £ (0,m(0)) Jdvds

49y? o
Y sup 2(1=00-n)

+—
2 (0(1-1)) rex

2
xFE

Lt_ 77 .[,OO v(t =) Y NG [y — £ (0,m(0)) |dvds

+49y? sup 207017
te¥

2
xE

‘I;I;V(t _S)nflan(")[x((’—s)n")F B A&((’ _S)nv)}QV(S)dvds

+49l)2 sup tz(l_k)(l_n)
te¥T

2
xFE

' wv(l—s)”_l‘{’ W N[t =8)"V)F—AR((t—5)"v) | oV (s)dvds
t-ndi 9

2

1499 sup 2D B[ p(z — )8, (IR((2 = 5)"v) o (5,m(s)) dvds
n

te¥ 040

2
+49y% sup 21" E Jt J' v(t =)', (VN ((t —5)" v) o (s,m(s))dvds
te¥ =

2
+49y? sup 2 | Itj v(t—s)"" W, (VN ((t —s)? v) F(s)dvds
te¥ 070

2

+49y% sup 2" E Jt J.OO v(t—s)"" v, (v)N((t -5)" v) F(s)dvds
te¥ A

2

+49n? sup 2" g j' [ ’v(t—s)“*‘\PU(v)N((t—s)”v)go(s,m(s))dvdw(s)
te¥ 070

2

+49y? sup 20 g f [va-s"w, (V)N((t - s)"v)go(s,m(s))dvdw(s)
te¥ —nei

2
14992 sup 20 EN [ [ v — )" (R((2=5)"v) g (5, m(s)) dvdB" (s)
te¥ 070 ?
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+49y? sup 2007
te¥®

2
xE - O’

J‘;” J-lw v(t—s)"" ¥, (v)&((t —s)" v)g (s, m(s)) dvdB" (s)

asn—0,1—0".

As a result, the set y(7) is relatively compact in A. We may infer that 3, is completely continuous from the Arzela-
Ascoli theorem and Step 3.

Step 5: The closed graph of 3,.

Let m, — m. in 4, ®, € B, (m,) and O, — . in 1. We infer that O. € L, (m.). Clearly, @, € LB, (m,), there exists a F,
€ G(m,) obtained that

)= O+ 1 (0.m (0))]= 1 (1. (1)
HL[R-9)F = AP, (1 -5)| oV (5)ds
+L§P.,(t—s)a(s,mk (s))ds + L;Pn(t_s)fk (s)ds

+ L:R](t —$)p(s,m (5))dw(s) +J;R)(t—s)g(s,mk (s))dB" (s). )

From (Al)'(A9)7 we may infer that {f(7 mk)a 6(': mk)a ﬁm 80(3 mk)a g(a mk)}kzl < A XA X L.Sz‘(‘z7 A) x LG) x Lg iS
bounded. Thus, we obtain

(f("mk )> G("mk )> f}c > 80(: my )’ g(> mk)) - (f(> m*)’ O-(" m*)> -7:*: 80(7 m*): g(’ m*)): (8)

weakly in A x A x L3(T, A) x Ly X L3.
From the compactness of X(7), (7) and (8), and we get

(1) =R, (O] my + £ (0,m(0)) |- £ (£,m (1))
+[ [ Bt=5)F ~ AR, (t~5) | oV (s)ds
+L§ B(t-s)o (s, M (s)) ds+ I; Fy(t—s)Fu(s)ds

+ jéﬁ)(t—s)go(s,m*(s))dw(s)+ j;PU(t—s)g(s,m*(s))dBH(s)_ ©9)

Note that ®, — ®. in 4 and F, € &(m,). From (9) and Lemma (2.8), we obtain F. € &(m.). Therefore, . €
P, (m.), which implies that 3, has a closed graph and that 3, is a completely continuous multi-valued map with compact
value. Thus, from [32], 13, is upper semicontinuous.

Step 6: A priori estimate.
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From Steps 1-5, we found that 3, is CCV. In addition, the upper semicontinuous set 3,(2,) is relatively compact.
By Theorem (2.9), it remains to demonstrate that ¥ = {m € 1 : {m € B,, {> 1} is bounded. For all m € P, there exists a
F € &(m) such that

m(t) = &R, (O my + £ (0,m(0)) | =7 f (1.m(1))
+§—1J‘;[Pn(t ~$)F — AP, (t —s)] oV (s)ds
+ (B =90 (s)ds+ ¢ [ B -9 F()ds

47 [ B =90 (s.m(s))dwis) + 7 [ B =5)g (s.m(s))dB" (5) (10

Using the hypotheses (A1)-(A9), we get
E|m()|* <49 {E"NM O[mo+ f(o,m(o))]"2 +E|f@e,m@)|

2

+E L;[RJ (t=5)F = AP, (t-5) | oV (s)ds ik

‘ j;Pn(t —5)o (s, (s))ds

2

2
t
+E jopn(t—s)f(s)ds +E

15530 (s.mts)) vt
|

[2Emo|f +2, [+49C (14 E|mo)f

+E|[ B (-9 (s,m(s))dB" (5)

2 g2(L-1)(1-y)
Jpmgcnn
I (L(1-n)+y)

2 £29-1
| 4o

m[(q +Tr(®)C, +2HEM ' C; )(1 +E|m(@)|’ ) +[F s )

o & (I vt em |
SF(2y-Dri(n)

49]off
+CEE o) [f{1+

24010 [|”
+

2
e e T [ @ el 2 el ]

SF@2y-Dr(y)
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<F +BHE|mo)| (11)

where
49H2§2(€—1)(l—n) |: )
S csl T 2C} 49C
1 {Fz(m-n)m) Il 265 496
+M|:(C +TrHOC, +2H 2H—1C +lF
@y-Dr2mt' O, g 5) I ||L1(‘I,SR+):|
2 2 _ 2 2
49]o]" " éz“l[IIFII H2+H$]
1+ 5 .
¢ (29-DI(n)
2401 o'[| & [ 1 +nf]2 [E||m§||2 1) E|7f, ds 20127 [} B ds}
+ b
£*(2n-Dr ()
and

2 £2p-1
3 = {4902 + %[q +THO)C, + 2HEM 1 C + cég]}

R [ )
+ .

SF@p-Dr(m)

Since §, < 1, from (11), we get

|}, = sthpE“NfDﬂ*ﬂ)m(t)Hz < +% ;-

Then, "m”i < 1 &5 , consequently, ¥ is bounded. By Theorem (2.9), ‘B, has a fixed point. As a result, the inclusion
—%

system (1) is approximately controllable on ¥. o
Theorem 3.5 Assuming that (A1)-(A9) are fulfilled. Additionally, if the functions f, o, ¢, g and F are all uniformly
bounded, then (1) is approximately controllable on ¥.
Proof. Using the stochastic Fubini theorem and m° as a fixed point on 3,, it is evident that

m (&)=~ ST+ T B =N, (&) o + 1 (0. (0)) ]

1 (&mE @)= [ BE-9)0(s.mE (5))ds ~ [ B (&~ 5)F (5)ds
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~[7 R E-9)p(s,

+[7 Zs)dw(s)+ [ pls)dB" (s)}.

né () d(s)= [ B(E=9)g(s.m (9)dB" (5

(12)

From the hypotheses on f, o, ¢, g and F and the proof of the Step 6 in Theorem (3.4), we get

T O e O R B My e e

Consequently, the sequence {f(-, m*(*)),

o(-, m*(*)), (-, m‘(")), g(-, m(-)), F()} be bounded in A x 2" x Lo(D,

A) x Lo(Y, A) x L{(Z, A). Thus, there is a subsequent event, indicated by { f(-, m°(")), a(:, m*(")), (-, m*(")), g(:, m*()),
F(-)} that converges weakly to {£(*), a(*), 9(*), g(*), F} in A x 2 x Lo(D, A) x Le(Y, A) x Lg (T, A). From (12), we

have

E“mf (&) - @Hz <49E
+49E

+49E
+49E
+49E
+49F
+49E

+49E

2

STy B =, @) mf + £ (0.m° @) )

lccreriy s (em @)

2

(@I [P R E -9 os.mf (5))-o(s) |ds

2

CET+TE [ R E-ot)ds

2

(1T [P B &) FE ()~ F(s) ds

2

LI+ [ B(E-9)F(5)ds

2

(@I [T R E-9)] o (s:m7 (5))- 9(5) | adwts)

2

+49F

LI+ [ B(E-9)p(s)dw(s)

2

CEI+T5) [ R E-9)] g (s.m () - 2(5) |aB" (5)

2

+49E
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+49EH§(§I +T5)"! jj F(s)dw(s) P 49EH§(§1 +T5)" jf @(s)dB" (s) B

However, in accordance with the Lemma (3.2), for all 0 <s <& {({ + T5)"' — 0 strongly as { — 0" and || {(¢T +
I'5) '] < 1 in addition to the Lebesgue dominated convergence theorem and the compactness of P,(¢), therefore, E||m"(&)
-m g:Hz — 0 as { — 0. This demonstrates that (1) is approximately controllable. o

4. Example

The Hilfer fractional neutral stochastic partial differential inclusions with fBm and Clarke’s subdifferential are
taken into consideration.

35

D()Zj [m(t,w) + f(t,m(t,w))] € @

2
(’juz [m(t,w)+f(t,m(t,m))]-i—G(t,m(t,w))—i-go(t,m(t,w))

+g(t,m(t w))MH?%(t m(t,)), teT=(0,1], €0
b 2 dt b 2 2 b 2 2 (13)
m(t,w)=V(t,@), te¥, @eco,

1

I(Em(O, @) =my(w), @ e,

35
22 3 . o, .
where Dg.7 is the HFD of order / = 2 n= ; ,0<t,<t,<--<t,<1,0Uis bounded and open subset of R, it is smooth

enough at the boundary of O. w(t) is Wiener process and B” is a fBm with Hurst parameter H (%, lj and V € L,(0).

The functions
f(t,m(t))(m) = f(t,m(t,w)), O'(t,m(t))(w) = O'(Z,m(t,w)), go(t,m(t))(w) = go(t,m(t,w)),

g(t,m())(@) = g(t,m(t,w)), and OB (t,m(1))(@) = 6B (1, m(t,w)).

62
Let A=9 = L)), Y = L}(D), ¢, = I, the identity operator, and F : Dom(F) = A — A provided by F = P with
@
o . a*m
Dom(F) = {m € A, m, — are absolutely continuous, — € L(0)}.
ow ow

Then A can be written as

Am = i(—kz)(m,mk)mk, m e D(A),
k=1

where m, (s) = 2 sinks, k=1, 2, --- is the orthogonal base set of eigenvectors of A. Furthermore, A is the infinitesimal
V3

generator of the bounded linear operator, {X(?#)},., in A and provided by

_k?

g
N()m = Ze”"z (m,my ymy,
k=1
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IR(D)||<e'<1.
7

14

Py (tym =§j

0
7

Clearly,

[SS)

<

=l
)

o0

Additionally, the operators X 5 (¢) and P (f) may be determined by

7

-1 2 5
vit—s)14¢e7 WE(V)N(ﬂv)mdvds,
7

-2 5
vs 7 )/Vé (VNR@ETv)mdv.
7

~

<

X0
7

Nss()

4’7

r 1
1

r

7

7\

(9]
-h‘w =L
~—

Describe the fBm on Y using
B (t)= Z\/ﬂkﬂH (Dey,
k=1

1 . . . .
where H e (5, lj, {8,y is a sequence of one-dimensional fBm that are independent of one another.

It is obvious that A makes the compact semigroup {X(7)},., on A.

Next, we verify that the hypothesis (A1)-(A9) for the above system (13) one by one.

Verification of Al

Dom(F) € Dom(¢) and the restriction of ¢ to Dom(F’) are continuous with regard to the graph norm of Dom(F).
Therefore, A1 is verified.

Verification of A2

There exists a linear operator ¢ : ¥ — A such that for all ¥ € Y we have oV € Dom(F), 5(oV) = o,V and E||oV || <
C\lle\V ||, where C, is a constant. Hence, A2 is verified.

Verification of A3

A is the infinitesimal generator of bounded operator {¥(#), > 0} in A and there exists a constant [T > 0 such that
sup,.<||N(#)|| < II. Therefore, A3 is verified.

Verification of A4

Forall ¢t € (0,&] and V € Y, X(¢)oV € Dom(4). Additionally, there exists a constant I'; > 0 such that ||4AX(¢)|| <IT,.
Hence, A4 is verified.

Verification of AS

Assume that f(z, m(t)) = f(¢, m(t, @)).

If f: T x A — A is continuous function, then there exists a constants C,, C, > 0 such that

E|ft,m)— ft,my)|} < CE|m, —my ],

fort € T, m;, m, € A, w € U and the inequality
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E|fem)| <C, (1 + E|m|f )

for all (¢, m) € T x A.

Therefore the function g(z, m(z, w)) satisfies the condition AS.

Verification of A6-A8

Assume that o(t, m(t)) = o(t, m(t, @)), p(t, m(t)) = p(t, m(t, w)), and g(t, m(t)) = g(t, m(t, @)). The functions (¢,
m(t, @), f(t, m(t, w)), g(t, m(t, @)) are similar to that of the system (1) and there is no more to prove.

Verification of A9

Assume that 0B(¢, m(¢)) = 0B(¢, m(t, @)).

The following conditions are fulfilled by the function B : T x A — R:

(i) B(-, m) : T — R be measurable for all m € A,

(i) B, ) : A—>RbeLLC forae.t € T,

(iii) there exists $ € L'(Z, ") and a constant C, > 0, that satisfies

E|oB(t.m(t, @) = sup{E"]-'(t)"z F(h) e aas(t,m(t,m))} < 9(t)+ CoE||m[] .

forallm e Aae.t € Tandw € U.

From the above discussion, we observe that 0B(¢, m(z, w)) satisfies every condition in A9.

It is now possible to write (13) in the form of (1). Clearly, all the assumptions of the Theorem 3.4 and 3.5 are
satisfied.

491! 21-1 }
49C, +———|(C, +Tr(®)C, + 2H¢ C |+C¢&
{ ’ (20—1)r2(n)[( P )Gt

o[ & iep e e |

49|/
1+ 3 2
¢ (2y-DI"(n)

Thus, (13) is approximately controllable on (0, 1].

5. Remark

In this paper, we discuss the approximate boundary controllability of Hilfer fractional neutral stochastic differential
inclusions with fBm and Clarke’s subdifferential. The primary results were obtained by using fractional calculus,
stochastic analysis theory, and the fixed point theorem. Then, the proposed systems can be extended with impulsive
effects and nonlocal conditions.

6. Conclusion

In this paper, we investigated the approximate boundary controllability of Hilfer fractional neutral stochastic
differential inclusions with fBm and Clarke’s subdifferential. Initially, we worked with stochastic analysis, nonsmooth
analysis, semigroup theory, and the fixed point theorem of multivalued mappings to show that there is a mild solution
to (1). Then, we offered a sufficient condition for the approximate boundary controllability of Hilfer fractional neutral
stochastic differential inclusions with fBm and Clarke’s subdifferential. The primary findings were finally shown using
an example. In the future, we will use a fixed point technique to examine the approximate boundary controllability of
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Hilfer fractional neutral stochastic integrodifferential equations with fractional Brownian motion and impulses.
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