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Abstract: This paper presents a comprehensive analysis of the concatenation model with power-law nonlinearity. The 
research encompasses multiple key aspects, providing a detailed exploration of the model’s behavior and implications 
within the context of nonlinear dynamics and optics. The study commences with an in-depth bifurcation analysis, 
aiming to unravel the intricate dynamics and transitions within the system. This analysis not only uncovers the system’s 
behavior under varying conditions but also sheds light on its stability and the emergence of bifurcation phenomena. 
Our research delves into the retrieval of soliton solutions within the model. The exploration of solitons is of paramount 
significance, offering insights into localized, self-sustaining waveforms that often play a crucial role in nonlinear 
systems. These soliton solutions are identified, characterized, and their relevance to the model is established. The paper 
addresses the complex dynamics of the system in the presence of perturbation terms. By incorporating perturbations 
into the analysis, we elucidate how external influences impact the system’s behavior and lead to chaotic phenomena. 
This analysis helps uncover the system’s sensitivity to external factors and provides a deeper understanding of chaotic 
behavior.
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1. Introduction
The concatenation model has appeared in the field of nonlinear optics for about a decade [1, 2]. After its inception, 

a deluge of results is visible from a wide variety of journals across the board. The coverage is wide and varied. Many 
results that are mathematically intense as well as results that are applicable to fiber-optic communication systems have 
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emerged. A few of the topics that have been touched base upon for the model are conservation laws, Painleve analysis, 
magneto-optic solitons, quiescent solitons for nonlinear chromatic dispersion, numerical analysis, bifurcation analysis, 
birefringent fibers, just to enlist a few [3-8]. While the previous round of bifurcation analysis of the model is with Kerr 
law of self-phase modulation (SPM), the current paper is a generalized version of the previous counterpart [6]. The 
bifurcation analysis of the concatenation model with power-law of SPM is the focus of this paper [4, 5]. In addition 
to this analysis, the chaotic dynamics of the model will also be addressed. Subsequently, the soliton solutions to the 
model will be derived using this analysis. The details are exhibited in the rest of the paper after a quick and succinct 
introduction to the model.

Our study is significant in the field of nonlinear optics as it builds on a decade of research on the concatenation 
model. This model has generated a wealth of results in various journals, spanning topics like conservation laws, solitons, 
and fiber-optic systems. While previous work primarily focused on the Kerr law of SPM, our study presents a more 
generalized analysis, specifically examining the concatenation model with the power-law of SPM. Additionally, we 
explore the model’s chaotic dynamics and derive soliton solutions. This research contributes to the field by offering new 
insights and potential applications in nonlinear optics.

Our study enhances understanding of the concatenation model with power-law SPM but has limitations. It focuses 
on a specific model aspect, involves simplifications and theoretical emphasis. We assume practical relevance to fiber-
optic systems. Researchers should consider these limitations when applying our findings to real-world situations.

1.1 Governing model

In the current paper, we will devote ourselves to considering following model [3-8]:

( )2 22 2 2 22
1 1 2 3 4 5 6

n n n
t xx xxxx x x xx xxiq aq b q q q q q q q q q q q q qα δ δ δ δ δ δ +∗ ∗ + + + + + + + + 

2 2
2 7 8 9 0.n

xxx x xi q q q q qα δ δ δ ∗ + + + = 

The concatenation model given by (1) is true to its name. The model is a concatenation of version of the familiar 
nonlinear Schrödinger’s equation (NLSE) [3-8], Sasa-Satsuma equation (SSE) [3-8] and the Lakshmanan-Porsezian-
Daniel (LPD) model [3-8]. Thus in (1), the first three terms stem from the NLSE with power-law nonlinearity with 
n being the power-law nonlinearity parameter and the coefficients of α1 and α2 being from LPD model and SSE 
respectively. For α1 = 0, (1) reduces to the familiar SSE, while for α2 = 0, equation (1) reduces to LPD model. But for α1 
= α2 = 0, (1) collapses to the familiar NLSE with power-law nonlinearity.

The physical motivation for considering the model presented in Eq. (1) is to create a versatile and adaptable 
framework that unifies elements from different equations, offering a valuable tool for studying various aspects of 
nonlinear optics and the influence of different parameters on system behavior.

2. Phase portraits and optical solitons
In order to obtain bifurcation phase portraits, optical soliton solutions and chaotic behaviors for the model (1), we 

firstly postulate assumption

( , ) ( , )
0 0( , ) ( , ) ( ) ,  ,  ( , ) ,i x t i x tq x t x t e e x V t x t x tξ ξ µ λ κΨ Ψ= Φ = Φ = − Ψ = − + +

where Φ(x, t) stands for the amplitude component of the wave form, while the coefficient λ denotes the wave number. 
Also, the coefficients µ and κ0 represent the frequency and phase constant, respectively. V0 stands for the velocity, while 
x denotes the normalized propagation and t represents the time. Substituting (2) into (1) and separating it into real and 
imaginary parts, one has

(1)

(2)
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Real part

4 3 2 2 3
1 1 2 7 1 2 3 5 2 9( ) [ ( ) ]aα δ µ α δ µ µ λ α δ δ δ µ α δ µ− − − Φ − − + + Φ

2 2 1 2 3 2
2 8 1 4 1 6 1 1 2 7( ) ( 6 3 )n nb aα δ µ α δ µ α δ α δ µ α δ µ+ + ′′+ + − Φ + Φ + − + Φ

(4) 2 2 2
1 1 1 4 1 5 1 2 3( ) ( ) 0.nα δ α δ α δ α δ δ′′ ′′ ′+ Φ + Φ Φ + Φ Φ + + Φ Φ =

Imaginary part

2 3 2 2
2 7 1 1 0 2 8 1 4 2 9 1 2 5( 2 3 4 ) ( 2 ) [ 2 ( )]na Vµ α δ µ α δ µ α δ α δ µ α δ α µ δ δ′ ′ ′− − + − Φ + − Φ Φ + − − Φ Φ

2 7 1 1( 4 ) 0.α δ µα δ ′′′+ − Φ =

Certain restrictions are provided by Equation (3) when the coefficients of its linearly independent functions are set 
to zero, as shown below

1 1 0,α δ =

1 4 0,α δ =

1 5 0,α δ =

( )1 2 3 0,α δ δ+ =

2
1 1 2 76 3 0,aα δ µ α δ µ− + + =

1 6 0,α δ =

2
1 4 2 8 0,bα δ µ α δ µ− + + =

2 2 2
1 2 1 3 1 5 2 9 0,α δ µ α δ µ α δ µ α δ µ− + + =

and

4 3 2
1 1 2 7 0.aδ α µ α δ µ µ λ− − − =

The parameter constraints are yielded by equations (5) through (13) as follows:

2 73 ,a α δ µ= −

2 8 ,b α δ µ= −

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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3
2 72 ,λ α δ µ=

1 0,δ =

2 9
2

1

,
2
α δ

δ
µα

= −

2 9
3

1

,
2
α δ

δ
µα

=

4 0.δ =

5 0,δ =

and

6 0.δ =

The use of equations (14)-(22) results in equation (3) vanishing, and the soliton profile is provided by the 
integration of equation (4). From the imaginary part (4), we know the soliton speed

2
0 1 12 ( 4 ),V aµ α δ µ= − +

whenever

2 8 1 42 ,α δ α δ µ=

2 9 1 2 52 ( ),α δ α µ δ δ= −

and

2 7 1 14 .α δ µα δ=

In reference [6], our research focused on the implications of Kerr law nonlinearity, while in the present study, we 
have shifted our attention to power law nonlinearity. Thus, set n = 2, one has

2 3 4 2
2 7 1 1 0 2 8 1 4 2 9 1 2 5( 2 3 4 ) ( 2 ) [ 2 ( )]a Vµ α δ µ α δ µ α δ α δ µ α δ α µ δ δ′ ′ ′− − + + Φ + − Φ Φ + − − Φ Φ

2 7 1 1( 4 ) 0.α δ µα δ ′′′+ − Φ =

Integrating (27) once, we get

2 3 5 32 8 1 4 2 9 1 2 5
2 7 1 1 0

2 2 ( )
( 2 3 4 )

5 3
a V

α δ α δ µ α δ α µ δ δ
µ α δ µ α δ µ

− − −
− − + + Φ + Φ + Φ

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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2 7 1 1( 4 ) 0.α δ µα δ ′′+ − Φ =

Therefore, the equation (28) can be rewritten

4 2
1 2 3( ) 0,′′Φ −Ξ Φ Φ +Ξ Φ +Ξ =

where 
2 3

2 7 1 1 0 2 9 1 2 5 2 8 1 4
1 2 1

2 8 1 4 2 8 1 4 2 7 1 1

10 15 20 5 5 10 ( ) 2
,  ,  .

2 3 6 5 20
a Vµ α δ µ α δ µ α δ α µ δ δ α δ α δ µ

α δ α δ µ α δ α δ µ α δ µα δ
− − + + − − −

Ξ = Ξ = Ξ = −
− − −

In order to obtain the bifurcation phase portraits and chaotic behaviors of the Eq. (1) in detail, we firstly suppose 
that Φ′ = p, therefore we can obtain the plane dynamical system

4 2
1 2 3

,

( ),

d p
d
dp
d

ξ

ξ

Φ =

 = Ξ Φ Φ +Ξ Φ +Ξ


with the Hamiltonian system

2 6 4 21 31 1 21( , ) .
2 6 4 2

H p p h
Ξ ΞΞ Ξ Ξ

Φ = − Φ − Φ − Φ =

To analysis the dynamical behaviors of system (30) in detail, we firstly assume that G(Φ) = Ξ1Φ(Φ4 + Ξ2Φ
2 + 

Ξ3) and ∆ = Ξ2
2 − 4Ξ3. Thus, it is easy to notice that all equilibrium points of system (30) are located on the Φ-axis. 

Moreover, Φe (e = 1, 2, 3 ...) stands for the real root of the function G(Φ). Suppose that Me (Φe, 0) denotes the 
equilibrium point for system (30).

Next, we set

0 1
( , ) ( ).

( ) 0e e
e

J p G
G

′Φ = = − Φ
′ Φ

As a consequence, according to the theory of planar-dynamical systems [9-14], we can derive the following 
conclusions.

(1) If ∆ < 0 and Ξ1 > 0 or ∆ > 0, Ξ3 > 0, Ξ2 > 0 and Ξ1 > 0, it is easy to find that system (30) owns only one 
equilibrium point at M0(0, 0). Therefore, we deduce that J(0, 0) < 0. As is shown in Figure 1a and Figure 1b, we obtain 
that E0(0, 0) represents the saddle point.

(2) If ∆ = 0, Ξ1 > 0, Ξ2 < 0 and Ξ3 > 0, we observe that system (30) owns only one equilibrium point at M0(0, 0). 
We derive that J(0, 0) > 0. As is shown in Figure 1c, we get that E0(0, 0) represents the center point.

(3) If ∆ > 0, Ξ1 < 0, Ξ2 > 0 and Ξ3 > 0, it is easy to notice that system (30) owns three equilibrium points, which 

include M0(0, 0), M1±
2 ,0

2
 Ξ
± −  
 

. Next, when J(0, 0) > 0, M0(0, 0) stands for the center point. When J 2 ,0
2

 Ξ
± −  
 

 

= 0 and Poincaré index is equal to zero, as is vivid shown in Figure 2a, we obtain that M1±
2 ,0

2
 Ξ
± −  
 

 denote cusp 

points.
(4) If ∆ = 0, Ξ1 < 0, Ξ2 < 0 and Ξ3 > 0, we notice that system (30) owns three equilibrium points, which include 

(28)

(29)

(30)

(31)

(32)
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M0(0, 0), M2±
2 ,0

2
 Ξ
± −  
 

. Next, when J(0, 0) > 0, M0(0, 0) represents the center point. When J 2 ,0
2

 Ξ
± −  
 

 = 0 and 

Poincaré index is equal to zero, as is shown in Figure 2b, we obtain that M2±
2 ,0

2
 Ξ
± −  
 

 denote cusp points.

Figure 1. The bifurcation phase portraits of system (30)

(5) If Ξ1 < 0 and Ξ3 < 0, we notice that system (30) owns three equilibrium points, which include M0(0, 0), 
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(30) owns three equilibrium points, which include M0(0, 0), M4±

2
2 2 34

,0
2

 −Ξ + Ξ − Ξ ±  
 

. Next, when J(0, 0) > 0, M0(0, 

0) represents the center point. When J
2

2 2 34
,0

2

 −Ξ + Ξ − Ξ ±  
 

 < 0, M4±

2
2 2 34

,0
2

 −Ξ + Ξ − Ξ ±  
 

 stand for the saddle 

points (see Figure 3a).

Figure 2. The bifurcation phase portraits of system (30)

(6) If ∆ > 0, Ξ1 < 0, Ξ2 < 0 and Ξ3 > 0, we notice that system (30) owns five equilibrium points, which include M0(0, 

0), M5±

2
2 2 34
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2
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 

 and M6±

2
2 2 34

,0
2

 −Ξ Ξ − Ξ ±
 

−


. Next, when J(0, 0) > 0, M0(0, 0) represents the 

center point (see Figure 3b). When J
2

2 2 34
,0

2
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points. When J
2

2 2 34
,0

2
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 < 0, M6±

2
2 2 34

,0
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 −Ξ Ξ − Ξ ±
 

−

 stand for the center points (see Figure 3c).

(7) If ∆ > 0, Ξ1 > 0, Ξ2 < 0 and Ξ3 > 0, we notice that system (30) owns five equilibrium points, which include 

M0(0, 0), M7±

2
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,0
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−
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 stand for the center points.

Figure 3. The bifurcation phase portraits of system (30)
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3. Chaotic behavior with perturbation terms
In this section, we study the two-dimensional planar dynamical system (30) with perturbation term

4 2
1 2 3 0

,

( ) cos( ),

d p
d
dp
d

ξ

ωξ
ξ

Φ =

 = Ξ Φ Φ +Ξ Φ +Ξ +Ξ


where Ξ0 represents the amplitude of the system (33), and ω stands for the frequency of (33). In Figure 4, 2D and 3D 
phase portraits are illustrated for ∆ > 0, Ξ1 < 0, Ξ2 > 0 and Ξ3 > 0, Ξ0 = 0.6 ω = 1. In Figure 5, 2D and 3D phase portraits 
are displayed for Ξ1 < 0, Ξ3 < 0, Ξ0 = 0.6 ω = 1. In addition, in Figure 6, 2D and 3D phase portraits are visualized for ∆ 
> 0, Ξ1 < 0, Ξ2 < 0 and Ξ3 > 0, Ξ0 = 0.6 ω = 1.

Figure 4. The portraits of system (33) for ∆ > 0, Ξ1 < 0, Ξ2 > 0 and Ξ3 > 0

4. Conclusions
This paper is a comprehensive study of the bifurcation analysis of the concatenation model that is with power-law 

of nonlinearity. The results are based on a continued effort from the previous model [6]. The power-law nonlinearity 
parameter played a crucial role in the analysis of this paper. The phase portraits of the model and the soliton solutions 
are recovered. With the perturbation terms turned on, the chaotic behavior is studied and analyzed. The numerical 
schemes have exhibited the technical details of the analysis. Figure 1, 2, and 3 show how the system’s behavior changes 
with varying parameters, helping us understand critical points, stability, and transitions in system dynamics, while 
Figure 4, 5, and 6 illustrate the effects of perturbation on the system, offering insights into phase space, attractors, and 
sensitivity to external factors. These figures are significant in our study as they visually represent the dynamic behavior 
of the systems under consideration. They help researchers understand the effects of bifurcation and perturbation, 
providing insights that can be valuable for both theoretical exploration and practical applications in nonlinear dynamics 
and optics.
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Figure 5. The portraits of system (33) for Ξ1 < 0 and Ξ3 < 0

Figure 6. The portraits of system (33) for ∆ > 0, Ξ1 < 0, Ξ2 < 0 and Ξ3 > 0

Our study’s significance lies in its contribution to the evolving field of nonlinear optics by offering a comprehensive 
examination of the concatenation model with a novel perspective on power-law SPM, exploration of chaotic dynamics, 
and the derivation of soliton solutions. These findings extend the current knowledge and have the potential to impact 
various applications within the research landscape of nonlinear optics [15-27].

The results of this work provides a strong footing to further future analysis of the project. Later this bifurcation 
analysis will be studied for the concatenation model with differential group display and the extension of this study to 
dispersive concatenation model is also on the horizon. The results of such research activities will be disseminated with 
time after aligning them with the results of the preexisting works [28-38].
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