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Abstract: Let (π, H) be a unitary representation of a locally compact group G. Recent works on some topological
centers induced by π have studied. This paper continues the investigation in this regard. The new topological center
induced by the module action related to π , which lies between L1(G) and the second dual L1(G)∗∗, is studied. As well,
some unitary representations are presented whose topological centers in our sense are L1(G), L1(G)∗∗, or neither.
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1. Introduction
Let G always denote a locally compact group with a fixed left Haar measure dx. The group algebra L1(G) is defined

as in [1] equipped with the convolution product ∗ and ‖ · ‖1-norm. Also, L∞(G) denotes the Lebesgue space equipped
with the locally essential supremum norm ‖.‖∞. Then L∞(G) is the dual of L1(G) for the pairing

〈 f , ϕ〉=
∫

G
f (x)ϕ(x)dx ( f ∈ L∞(G), ϕ ∈ L1(G)).

Moreover, L1(G)∗∗, the second dual of L1(G), is a Banach algebra endowed with the first Arens product which is
given by making in turn the definitions

〈 f ·ϕ , ψ〉= 〈 f , ϕ ∗ψ〉 〈n · f , ϕ〉= 〈n, f ·ϕ〉 〈mn, f 〉= 〈m, n · f 〉,

where f ∈ L∞(G), ϕ , ψ ∈ L1(G) and m, n ∈ L1(G)∗∗.
For each complex function f on G and x ∈ G, we use lx f to denote the left translation of f by x; i.e., lx f (y) = f (xy)

for all y ∈ G. Let LUC(G) mean the space of bounded left uniformly continuous complex-valued functions on G; that is,
all f ∈ L∞(G) such that the map x 7→ lx f from G into L∞(G) is bounded and continuous; see for example [1].
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A continuous unitary representation of G on a Hilbert space H is a group homomorphism π from G into the group of
unitary operators on H such that π is continuous with respect to the strong operator topology. In this case, we write (π, H)

is a unitary representation of G. Let B(H) be the von-Neumann algebra consisting of all linear and bounded operators on
H. Then B(H) is a right G-module by the following action

T ·π x = π(x−1)T π(x) (T ∈ B(H), x ∈ G). (1)

Note that the above action is not necessarily Banach in the sense of [2]; i.e., the map x 7→ T ·π x from G into B(H)

is not continuous in general. An element T ∈ B(H) is saied to be a G-continuous operator if the mapping x 7→ T ·π x is
continuous with respect to the norm topology of B(H). The set of all such operators denote by UCB(π) that is a right
Banach G-module.

The above action was originally noted by Bekka in [3] when he created the notion of amenable representations. Then
it was attended by some authors in terms of amenable group theory; for example [4–6]. Among others, Pak-Keung Chan
[7] focused on the bilinear map

(M, T ) 7→ MT : UCB(π)∗×UCB(π)→ LUC(G),

where MT (x) = 〈M, T ·π x〉 for all x ∈ G, and then also defined the bilinear map

(m, M) 7→ mM: LUC(G)∗×UCB(π)∗ →UCB(π)∗,

where mM(T ) = 〈m, MT 〉 for all T ∈ UCB(π). The latter builds UCB(π)∗ as a left Banach LUC(G)∗-module. Z(π)
denote the induced topological center of the module action; that is, the following set

{m ∈ LUC(G)∗| M 7→ mM is weak∗-weak∗ continuous onUCB(π)∗}.

In fact, by [7, Proposition 3.1],

Z(π) = {m ∈ LUC(G)∗|T m ∈UCB(π) for allT ∈UCB(π)},

where T m is the linear functional on UCB(π)∗ that given by

〈T m, M〉= 〈mM, T 〉 (M ∈UCB(π)∗).

According to [7], Z(π) is a Banach subalgebra of LUC(G)∗ contaning M(G). Also, Z(π) is saied to be minimal if
Z(π) = M(G), and Z(π) is called maximal if Z(π) = LUC(G)∗. The following identification [7, Theorem 4.6] is a crucial
result, which is heavily used in [7]. Z(π) is minimal if and only if the linear span of the set

{MT |M ∈UCB(π)∗, T ∈UCB(π)}
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is dense in LUC(G). By [7, Example 4.10], Z(λ ) is minimal, where λ : G −→ B(L2(G)) is the left regular representation
as defined by x 7→ lx for all x ∈ G.

According to [2, pages 24-26] and the fact lxMT = (M)(T · x) for all x ∈ G, UCB(π) is as follows

UCB(π) = {T ∈ B(H) | the mapx 7→ T ·π x is Haar-measurable}

= {T ∈ B(H) | the mapx 7→ T ·π x is weakly continuous}

= {T ∈ B(H) |MT ∈ LUC(G) for all M ∈ B(H)∗}.

As mentioned in [3], the spaceUCB(π) is corresponded to LUC(G) and B(H) also corresponds to L∞(G). We would
like to point it out again MT ∈ LUC(G) for all M ∈ B(H)∗ and T ∈UCB(π). But from this point of view, often it is not
obvious that MT is measurable for all M ∈ B(H)∗ and T ∈ B(H). It is a strong motivating force for the present research.
Noting [7, Remark 2.5], to realize this aim, wemust consider a functional approach that coincides with the above argument
in the discreteness case. This view extends the notions of Chan’s paper [7]; specially, the new topological center can be
defined that is a closed subalgebra of L1(G)∗∗ containing L1(G). We will study this center, and state some examples of
unitary representations whose topological centers are maximal, minimal or neither. Note that our results are more than
the literature of the topological center that exists in the general texts.

2. The results
Considering any unitary representation (π, H) of G, the space B(H) forms a right Banach L1(G)-module with the

action given by

〈(T ·π ϕ)u, v〉=
∫

G
ϕ(x)〈(T ·π x)u, v〉dx (u, v ∈ H).

As stated in [3, Lemma 3.2],

UCB(π) =UCB(π) ·π L1(G) = B(H) ·π L1(G).

Note that an operator T ∈ UCB(π) if and only if T ·π ϕi −→ T in the weak topology, where (ϕi) is a bounded
approximate identity of L1(G).

We comence with the adjoint of the mapping (T, ϕ) 7→ T ·π ϕ for all T ∈ B(H) and ϕ ∈ L1(G) as a preamble material
needed in this note; that is, the map (M, T ) 7→ M ·T : B(H)∗×B(H)→ L∞(G), where

〈M ·T, ϕ〉= 〈M, T ·π ϕ〉 (ϕ ∈ L1(G)). (2)

For the latter, we have the map L1(G)∗∗×B(H)∗ −→ B(H)∗ by (m, M) 7→ m ·M, where

〈m ·M, T 〉= 〈m, M ·T 〉 (T ∈ B(H)).
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So, B(H)∗ becomes a left Banach L1(G)∗∗-module, and ‖m ·M‖ ≤ ‖m‖‖M‖. Now, let Z(π, L1(G)∗∗) denotes the
topological center of the L1(G)∗∗-module action induced by π; that is, the collection of all m ∈ L1(G)∗∗ such that the
mapping M 7→ m ·M on B(H)∗ is weak∗-weak∗-continuous. Then the reader can check that Z(π, L1(G)∗∗) is a closed
subalgebra of L1(G)∗∗ containing L1(G). We say that the center is minimal if Z(π, L1(G)∗∗) = L1(G), and the center is
maximal if Z(π, L1(G)∗∗) = L1(G)∗∗. Clearly, when G is discrete, Z(π, L1(G)∗∗) is nothing but Z(π). Furthermore, one
can easily observe that

Z(π, L1(G)∗∗) = {m ∈ L1(G)∗∗|T ·m ∈ B(H) for allT ∈ B(H)},

where T ·m is the bounded linear functional on B(H)∗ defiend by

〈T ·m, M〉= 〈m ·M, T 〉 (M ∈ B(H)∗).

Also, Z(π, L1(G)∗∗) is maximal if and only if the map γT is weakly compact for all T ∈ B(H), where γT : L1(G)−→
UCB(π) is given by

ϕ 7→ T ·π ϕ (ϕ ∈ L1(G)).

Using [8, Proposition 3.4 and Theorem 3.5], the maximality of Z(π) follows from the maximality of Z(π, L1(G)∗∗).
One can check that the converse is valid if also B(H) =UCB(π).

Now, we demonstrate a characterization of theminimality of the center. Before stating, let us recall the left introverted
subspace L∞

0 (G) of L∞(G) as follows.

L∞
0 (G) = { f ∈ L∞(G) : ‖ f χG\K‖∞ −→ 0, as compactK ↑ G}.

As mentioned in [9], the dual of L∞
0 (G) can be regarded as a closed subalgebra of L1(G)∗∗. Also, L1(G) is a closed

ideal in L∞
0 (G)∗. Furtheremore, L1(G) = L∞

0 (G)∗ if and only if G is discrete. We refer the readers to [9] for more details.
Theorem 1 Let G be a non-compact, and let (π, H) be a unitary representation of G. Then the following statements

hold.
(a) Z(π, L1(G)∗∗) is minimal if and only if the the linear span of the set

{M ·T |M ∈ B(H)∗, T ∈ B(H)} (3)

is dense in L∞(G).
(b) Z(π) is minimal if Z(π, L1(G)∗∗) is minimal.
Proof. (a) Let Z(π, L1(G)∗∗) be minimal, and let there exist a non-zero element m ∈ L1(G)∗∗ such that vanishing

on the linear span of set (3). Then m ·M = 0 for all M ∈ B(H)∗, and so m ∈ Z(π, L1(G)∗∗) = L1(G). On the other hand,
L1(G)∗∗ can be written as a Banach space direct sum L∞

0 (G)∗⊕L∞
0 (G)⊥, where

L∞
0 (G)⊥ = {m ∈ L1(G)∗∗ | 〈m, f 〉= 0 for all f ∈ L∞

0 (G)}.
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Note that L∞
0 (G)⊥ is a weak∗-closed ideal in L1(G)∗∗; see [9] for details. Now, using [10, Theorem 4], pick any

non-zero element n ∈ L∞
0 (G)⊥ that is right cancellable in L1(G)∗∗. So,

(mn) ·M = m · (n ·M) = 0 (M ∈ B(H)∗).

It follows that

mn ∈ Z(π, L1(G)∗∗)∩L∞
0 (G)⊥ = L1(G)∩L∞

0 (G)⊥ = {0}.

Therefore, the right cancellability of n follows that m = 0, which is impossible. So, the linear span of set 3 is dense
in L∞(G) if Z(π, L1(G)∗∗) is minimal.

Before proving the converse, notice first that if m ∈ L1(G)∗∗, then for each f ∈ L∞(G), we define a linear functional
fm on L1(G)∗∗ by

〈 fm, n〉= 〈mn, f 〉 (n ∈ L1(G)∗∗).

Since L1(G) coincides with the topological center of L1(G)∗∗ by [11, Corollary 5.5], fm ∈ L∞(G) for all f ∈ L∞(G)

if and only if m ∈ L1(G). Let now the linear span of set 3 be dense in L∞(G), and let m ∈ Z(π, L1(G)∗∗) and f ∈ L∞(G).
Then we can regard that f = M ·T , where M ∈ B(H)∗ and T ∈ B(H). Therefore, for each n ∈ L1(G)∗∗ and some S ∈ B(H),
we have

〈 fm, n〉= 〈m, (n ·M)T 〉= 〈T ·m, n ·M〉

= 〈S, n ·M〉= 〈M ·S, n〉.

It follows that fm = M ·S ∈ L∞(G), and so m ∈ L1(G).
(b) Suppose that f ∈ LUC(G). Then f = (M ·T ) ·ϕ for some M ∈ B(H)∗, T ∈ B(H) and ϕ ∈ L1(G), by Therorem 1.

So, f = M · (T ·π ϕ) = (M)(T ·π ϕ). It means that Z(π) is minimal by [7, Theorem 4.6]. □
We have the following consequence as might be expected.
Corollary 1 Let (λ , L2(G)) be the left regular representation of G. Then Z(λ , L1(G)∗∗) is minimal.
Proof. LetE be a weak∗-closure point of the canonical image of the approximate identity of L1(G), bounded by 1, and

let f ∈ L∞(G). Then f = ME ·Tf , where ME is any Hahn-Banach extension of E to B(L2(G)) and Tf is the multiplication
operator on L2(G). It yields that

L∞(G) = {M ·T |M ∈ B(L2(G))∗, T ∈ B(L2(G))}.

The claim now follows from Theorem 1. □
As known, G is discrete if and only if L∞(G) = LUC(G). Also, for some unitary representations (π, H) of non-

discrete groups, we haveB(H) =UCB(π); see for instance [6, Example 5.4.1]. As an immediate consequence of Corollary
1 together with [7, Corollary 4.10], we have the following result:

Corollary 2 Let G be a locally compact group. Then the following statements are equivalent.
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(a) G is discrete,
(b) B(H) =UCB(π) for all unitary representations (π, H) of G,
(c) B(L2(G)) =UCB(λ ) for the left regular representation (λ , L2(G)).
Proposition 1 Let G be a locally compact non-discrete group, and let (π, H) be a unitary representation of G. If

Z(π, L1(G)∗∗) is minimal, then B(H) 6=UCB(π).
Proof. Suppose contraryly that B(H) = UCB(π). We show that L∞

0 (G)∗ is contained in Z(π, L1(G)∗∗). Let E is a
weak∗-closure point of a bounded approximate identity of L1(G) with norm 1. As known the restricted map

θ : EL1(G)∗∗ −→ LUC(G)∗

is an isometric isomorphism. Let now m ∈ L∞
0 (G)∗. Then θ(Em) ∈ M(G) by [9, Theorem 2.11]. Since M(G)⊆ Z(π), [7,

Proposition 3.1] follows that T θ(Em) lies in B(H) for all T ∈ B(H). On the other hand, one can easily check that

T θ(Em) = T ·m (T ∈ B(H)).

So, T ·m ∈ B(H) for all T ∈ B(H). This fact follows

L∞
0 (G)∗ ⊆ Z(π, L1(G)∗∗) = L1(G)

which is impossible since G is non-discrete. □
Now, we state some examples on the subject. As seen, the topological center of the L1(G)∗∗-module action induced

by the left regular representation of G is minimal. Also, one can easily see that the center is always maximal for all
finite-dimensional unitary representations of G. In addition, as mentioned earlier, Example 5.4.1 of [6] gives a unitary
representation (π, L2(G)) of the non-discrete locally compact group G = (R, +) such that B(L2(G)) = UCB(π).
Moreover, B(L2(G)) = WAP(π) by [6, Remark 5.4.2], where WAP(π) is the collection of weakly almost G-periodic
operatots; see [8] and [6] for more details. Thus, [8, Lemma 3.3] ensuras that γT is weakly compact for all T ∈ B(L2(G)),
and so Z(π, L1(G)∗∗) is maximal. Furthermore, [7, Example 6.1] gives a unitary representation (π, l2(Z)) of G = Z×Z
such that Z(π) is neither of minimal nor maximal. As earlier indicated, when G is a discrete group, our notions and [7]
coincide. At the end of the work, we present a unitary representation of a non-discrete group whose topological center is
neither minimal nor maximal.

Example 1 Let G be the “ax + b” group. We recall that G = {(a, b) |a, b ∈ R, a > 0} with multiplication
(a1, b1)(a2, b2) = (a1a2, b1 +a1b2). Let also, π: G −→ B

(
L2(R)

)
is defined by

(
π(a, b)g

)
(t) = exp(ibexp t)g(t + loga)

for all (a, b) ∈ G, g ∈ L2(R) and t ∈ R. Then π is an irreducible infinite dimensional unitary representation of G. For
more details, we refer the reader to [4, Example 4.14]. One can directly check that

T ·π (a, 0) = T (T ∈ B(H), a ∈ R+)
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So, [7, Proposition 4.9] yelids that Z(π) is not minimal. It follows that Z(π, L1(G)∗∗) is not minimal by part (b) of
Theorem 1.

We claim now that Z(π, L1(G)∗∗) is not maximal. Noting [4, Example 4.14], f ∈ LUC(R) if and only if Tf ∈UCB(π),
and also f ∈WAP(R) if and only if Tf ∈WAP(π). Therefore, UCB(π) 6=WAP(π) since LUC(R) 6=WAP(R). Now, [8,
Theorem 3.5] ensures that Z(π) is not maximal, and so Z(π, L1(G)∗∗) is not maximal.

Note also that UCB(π) 6= B(H) since LUC(R) 6= L∞(R). So, the converse of Proposition 1 is not valid, in general.
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