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Abstract: This paper recovers optical solitons to the dispersive concatenation model that is studied with Kerr law of 
self-phase modulation. The method of undetermined coefficients is the adopted integration algorithm, enabling this 
retrieval possible. A full spectrum of optical solitons is recovered. The parameter constraints for the existence of the 
solitons, that naturally emerge during the course of their derivation, are also presented. The practical applications of this 
research include advancements in optical communication, nonlinear optics, and optical signal processing, as well as the 
potential for optimizing optical soliton-based technologies. In our current work, we have achieved the following novel 
findings: optical soliton recovery, integration algorithm innovation, and parameter constraints.
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1. Introduction
The concatenation model that was first proposed by Ankiewicz et al. during 2014 is a conjunction of the familiar 

nonlinear Schrödinger’s equation (NLSE), the Lakshmanan-Porsezian-Daniel (LPD) model and the Sasa-Satsuma 
equation (SSE) [1, 2]. This was extensively studied from several spheres of the photonics field. A few of the features 
that have been addressed are the retrieval of soliton solutions, locating conservation laws, Painleve analysis, quiescent 
optical solitons for the nonlinear chromatic dispersion (CD), bifurcation analysis, magneto-optics, numerical simulation 
using the Laplace-Adomian decomposition scheme and others. Subsequently this model was studied in the context of 
birefringent fibers and its soliton solutions were recovered there as well.

Incidentally, later during 2014 and during the subsequent year, another version of the concatenation model was 
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made visible [3-5]. This is by conjoining the Schrödinger-Hirota equation (SHE), LPD model and the fifth-order NLSE 
which means that the model includes fifth-order dispersion. Hence this model was conveniently being referred to as the 
dispersive concatenation model [6-8]. The current paper addresses it and the task is to locate its soliton solution. The 
integration algorithm adopted in this paper is the method of undetermined coefficients. A full spectrum of optical soliton 
solutions is revealed together with their existence criteria that is yielded from the solvability criteria as detailed in this 
paper.

Stepping back in time, it must be noted that additional integration methodologies were implemented earlier to 
recover the soliton solutions to this dispersive concatenation model. Those schemes involved enhanced Kudryashov’s 
method as well as the Weierstrass’ type Riccati equation expansion scheme, projective Riccati equation approach, the 
generalized sine-Gordon equation method and several others [6-8]. The simplicity of the method of undetermined 
coefficients makes this algorithm stand above the rest. The details of the current scheme are exhibited in the rest of the 
paper after a quick ride through and revisiting to the model.

This paper relies on the method of undetermined coefficients for its integration procedure. This method of 
integration is a simpler approach than the Kudryashov’s approach or the classic methods such as Inverse Scattering 
Transform or the Hirota’s bilinear approach that requires a thorough knowledge and to be well-versed with Hirota 
Calculus. The other advantage of this approach is that the method of undetermined coefficients would prove that dark 
solitons can exist for power-law provided the power law condenses to Kerr law nonlinearity. This has been successfully 
demonstrated for the regular concatenation model [9]. Inverse Scattering Transform, Kudryashov’s approach as well as 
Hirota’s bilinear approach fail to prove this important conclusive fact that has also been experimentally proven.

The following novel findings have been achieved in our current work. The research successfully recovers a full 
spectrum of optical solitons within the dispersive concatenation model, which is studied in conjunction with the Kerr 
law of self-phase modulation. This achievement is a significant contribution to the field [10-18]. The utilization of the 
method of undetermined coefficients as the integration algorithm is a novel approach that enabled the retrieval of optical 
solitons. This methodology represents a new and effective way to address the problem. The study uncovers parameter 
constraints for the existence of solitons. These constraints naturally emerged during the soliton derivation process, and 
their identification is a novel aspect of the research. These novel findings advance our understanding of optical solitons 
in the context of the dispersive concatenation model, offering potential applications in optical communication, nonlinear 
optics, optical signal processing, and the optimization of soliton-based technologies [19-25].

1.1 Governing model

The dimensionless of the system to be studied herein is [6-8]:

2 2
1 1 2t xx xxx xiq aq b q q i q q qδ σ σ + + − + 

22 4 2 2
2 3 4 5 6 7 8xxxx xx x x xxq q q q q q q q q q qδ σ σ σ σ σ σ∗ ∗ + + + + + + 

2 4 2
3 9 10 11 12 13 14 15 0.xxxxx xxx x x xx x xx x xx x xi q q q q q qq q q q q qq q q qδ σ σ σ σ σ σ σ∗ ∗ ∗ ∗ − + + + + + + = 

Equation (1) is the dispersive concatenation model that is with Kerr law of self-phase modulation (SPM). The 
dependent variable is q(x, t) that represents the soliton profile. The independent variables x and t are from the spatial 
and temporal coordinates respectively. In equation (1), i = 1−  while a and b are the coefficients of CD and SPM 
respectively. The coefficient of δ1 contains the remaining terms of the SHE that is recoverable from the standard NLSE 
via Lie transform. Next, the coefficients of δ2 and δ3 are from LPD and SHE respectively.

This expression given by (1) was first proposed as the concatenation model during 2014 by Ankeiciwz et al. [1, 
2]. Later during 2015, this model was extended with a dispersive component added to it and is being referred to as 
the dispersive concatenation model [3-5]. The physical application of the proposed model is to study the dynamics of 
solitons that propagate through single-mode fibers across trans-oceanic and trans-continental distances [26-34].

(1)
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In order to integrate the dispersive concatenation model (1), the following hypothesis is applied:

( )( , ) ( , ) .i x tq x t P x t e κ ω− + +Θ=

On the proposed hypothesis the term P(x, t) represents the wave form, which is unique for each type of soliton, 
κ denotes the soliton frequency, ω represents the wave number, and Θ portrays a phase constant. Substituting these 
hypotheses into the system (1) leads to the real part identity,

( ) ( ){ }
2

2 6 7 3 12 13 14 15(2 2 PP
x

δ σ σ κδ σ σ σ σ ∂  + + − + −    ∂ 

( ) ( )
2 4

2 3
1 1 2 3 3 9 3 2 9 32 43 6 10 5P Pa

x x
κδ σ κ δ σ κ δ σ σ δ κσ δ∂ ∂

+ − − + + −
∂ ∂

( ) ( ) ( )
2

2 5
2 4 8 3 10 12 13 14 5 2 11 323 PP P

x
δ σ σ κδ σ σ σ σ σ δ κσ δ∂
 + + − + + − + −  ∂

( ) ( )2 3 3
2 1 2 4 6 7 8 3 10 12 13 14 15b Pκσ δ δ σ σ σ σ κ δ σ σ σ σ σ κ + − − − + + + + + − − 

( )3 4 5 2
1 1 3 2 9 3 0,a Pσ δ κ σ δ κ σ δ κ ω κ+ + − − − =

while the resulting imaginary counterpart is given by,

( ) ( )
3 5

2 3
1 1 3 2 9 3 1 1 3 2 9 3 9 33 52 3 4 5 2 2 5P P P Pa

t x x x
κ σ δ κ σ δ κσ δ κ σ δ κ σ δ κσ δ σ δ∂ ∂ ∂ ∂   + − + + − − + − −  ∂ ∂ ∂ ∂

( ) ( )2 2
2 1 2 4 7 8 3 10 12 13 14 152 3 3 PP

x
σ δ κδ σ σ σ κ δ σ σ σ σ σ ∂ − + + − + − + − + +  ∂

( )
33 2

2 4
10 3 11 3 15 3 3 12 13 143 2 0.P P P P PP P P

x x xx x
σ δ σ δ σ δ δ σ σ σ

 ∂ ∂ ∂ ∂ ∂   − − − − + + =    ∂ ∂ ∂∂ ∂    

In fact, one can compute the soliton speed from (4), which in this case gives,

1 12 ( )v aκ κσ δ= −

as long as the conditions

9 10 11 15 0,σ σ σ σ= = = =

1 1 3 24 0,σ δ κσ δ+ =

12 13 14 0,σ σ σ+ + =

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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2
2 1 2 4 7 8 13 32 ( ) 4σ δ κδ σ σ σ σ κ δ+ + − =

are secured. In view of the above conditions, the real part equation (3) reduces to

( ) ( )
24 2

3 2 1 1 3 2 2 6 7 12 34 23 2 4P P Pa P
xx x

σ δ κ σ δ κσ δ δ σ σ κσ δ∂ ∂ ∂    + − + + + +      ∂∂ ∂  

( ) ( )
2

2 3 4 2
2 4 8 14 3 1 1 3 222 PP a P

x
δ σ σ κσ δ σ δ κ σ δ κ ω κ∂
 + + + + + − −  ∂

( ) 2 3 3 5
2 1 2 4 6 7 8 14 3 5 22 0.b P Pσ κδ δ σ σ σ σ κ σ δ κ σ δ + − − − + + − + = 

The last equation will be essential to recover four different types of optical soliton solutions from the dispersive 
concatenation model (1).

2. Soliton solutions
We now proceed to construct optical soliton solutions for the dispersive concatenation model. Four different 

solitons are explored throughout the next four subsections by studying the integrability of the real part equation (10) 
according to the corresponding waveform P(x, t).

2.1 Bright solitons

The first type of waveform to be studied is the bright soliton, whose waveform has typically a structure of the form,

( , ) ,  ( ),sech pP x t A B x vtτ τ= = −

where A is the soliton amplitude with their width being B. The unknown exponent p will fall out by the aid of balancing 
principle. Substituting (11) into the real part (10) transforms the last into

( )3 4 2 4 4 2 2
1 1 3 2 2 3 1 sech pa p B p Z Bσ δ κ σ δ κ κ ω δ σ τ + − − + + 

( )2 2 2 3 4 5
2 3 4 2 5sech sechp pp Z Z B Z A Aτ δ σ τ + + + + 

( ){ } 2 2 2
1 2 3( 1) 2 e2 2 s ch pp p Z p p B Bδ σ τ+ − + + + + 

4 4
2 3( 1)( 2)( 3 cse h) pp p p p Bδ σ τ++ + + +

( ) 2 2 3 2
2 3 s .ech1 0pp pZ p Z A B τ+− + + =  

On the above we have labeled the coefficients of the real part equation (10) as

( )1 1 1 2 33 2 ,Z a κ δ σ κδ σ= − +

(9)

(10)

(11)

(12)

(13)
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( )2 2 6 7 3 124 ,Z δ σ σ κδ σ= + +

( )3 2 4 8 3 142 ,Z δ σ σ κδ σ= + +

( )2 3
4 1 2 2 4 6 7 8 3 142Z b κδ σ κ δ σ σ σ σ κ δ σ= − − − + + −

for the sake of simplicity. The balancing principle allows to compare the exponents 3p and p + 2. It follows that p = 1. 
Upon substituting the resulting value of the parameter p on the identity (12), and setting to zero the coefficients of the 
functions sech jτ for j = 1, 3, 5 lead to the wave number

( )3 4 4 2 2
1 1 2 3 1 ,B Z B aω κ δ σ κ δ σ κ= + + + −

and the soliton amplitude as

( )
( )

2 2
1 2 3

2
4 2 3

2 10Z B B
A

Z Z Z B

δ σ+
=

+ +

subject to

( ) ( ){ }2 2
1 2 3 4 2 310 0.Z B Z Z Z Bδ σ+ + + >

Both ω and A are expressed in terms of the soliton width B, which for bright soliton solution resulted to be

( )( ) ( )
( )( )

2
2 3 2 3 2 3 5 1 2 3 2 3 4

2
3 3 2 3 2 3 2 3 5

2 40 2 7 2

4 4 100

Z Z Z Z Z Z Z Z
B

Z Z Z Z

δ σ σ δ σ

δ σ δ σ σ

 + + − − + = 
 − + +  

( ) ( )
( )( )

1
22 2 2

1 2 3 2 3 4 2 3 2 3 5

2
3 3 2 3 2 3 2 3 5

10 2 96
,

4 4 100

Z Z Z Z Z Z

Z Z Z Z

δ σ δ σ σ

δ σ δ σ σ

  + − + −   ± 
 − + +  



along with corresponding constraint. Therefore, the bright 1-soliton solution for the dispersive concatenation system (1) 
is given by

( )( , ) [ ( )] ,sech i x tq x t A B x vt e κ ω− + +Θ= −

where the amplitude obtained in (18) and the wave number (17) are expressed in terms of the the soliton width depicted 
on (20) along with corresponding solvability conditions. The speed of the soliton was obtained earlier on (5). It is 
imperative to point out that the bright soliton solution is valid if in addition the constraints (6)-(9) are satisfied.

Figures 1 and 2 provide a visual representation of numerical simulations for bright and dark optical soliton 
solutions. In the context of these plots, the parameter values utilized are as follows: a = 1, b = 1, κ = 1, δ1 = 1, δ2 = 1, δ3 = 1, 
σ1 = 1, σ2 = 1, σ3 = 1, σ4 = 1, σ5 = 1, σ6 = 1, σ7 = 1, σ8 = 1, σ12 = 1, and σ14 = 1.

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Figure 1. Graphical depiction of a bright soliton solution (21)

2.2 Dark solitons

The second case to be considered is the dark soliton, whose assumption for the wave form P(x, t) is

( , ) tanh ,  ( ).pP x t A B x vtτ τ= = −

Here, v represents the soliton speed, while A and B are free parameters. The parameter p will be calculated 
according to the balancing principle. Upon substituting (22) into (10), it would lead to the simplified expression

( ) ( ){ }3 4 2 2 2 2 2
1 1 3 2 1 2 32 5 3 tanh pa p Z p B Bσ δ κ σ δ κ κ ω δ σ τ + − − − − + 

( )2 2 2 3 4 5
4 2 3 2 52 tanh tanhp pZ p Z Z B A Aτ δ σ τ + − + + 

( ){ } 2 2 2
1 2 3( 1) 4 2 2 tanh pp p Z p p B Bδ σ τ+ + + − + + 

4 4
2 3( 1)( 2)( 3) tanh pp p p p Bδ σ τ++ + + +

( ){ } 2 2 3 2
2 31 tanh pp pZ p Z A B τ++ + +

( ){ } 2 2 2
1 2 3(1 ) 4 2 2 tanh pp p Z p p B Bδ σ τ− − − − − − 

4 4
2 3(1 )(2 )(3 ) tanh pp p p p Bδ σ τ−− − − −

( ) 2 2 3 2
2 31 tanh 0.pp pZ p Z A B τ−+ − − =  

Notice we have adopted the same notation (13)-(16) as we did for bright soliton. In this case the balance between 
nonlinearity and dispersion leads also to p = 1. Next, by substituting the resulting value of p into (23), and setting to 

t
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zero the coefficients of the functions tanh jτ for j = 1, 3, 5 we obtain, in terms of the free parameter B, the wave number

( ) ( ) ( )
( )

3 2 2 4 4 2 2 4
1 1 1 2 3 4 2 3 2 1 2 3

2
4 2 3

2 16 2 2 20
,

2

a Z B B Z Z Z B Z Z B B

Z Z Z B

κ δ σ κ κ δ σ δ σ
ω

 − − + + − + − − =
− +

and the free parameter

( )
( )

2 2
1 2 3

2
4 2 3

2 20

2

Z B B
A

Z Z Z B

δ σ−
= −

− +

restricted to

( ) ( ){ }2 2
1 2 3 4 2 320 2 0.Z B Z Z Z Bδ σ− − + <

Here, the resulting parameter B is given by

( ) ( )( )
( )( )

2
2 3 2 3 4 2 3 2 3 2 3 5 1

2
2 3 2 3 2 3 2 3 5

2 7 2 2 40

8 4 100

Z Z Z Z Z Z Z Z
B

Z Z Z Z

δ σ δ σ σ

δ σ δ σ σ

  + − + + −  = 
 − + +  

( ) ( )
( )( )

1
22 2 2

1 2 3 2 3 4 2 3 2 3 5

2
2 3 2 3 2 3 2 3 5

10 2 96
,

8 4 100

Z Z Z Z Z Z

Z Z Z Z

δ σ δ σ σ

δ σ δ σ σ

  + − + −   ± 
 − + +  



where corresponding constraints are assumed to be valid. Thus, the single dark soliton solution for the concatenation 
model (1) is

( )( , ) tanh[ ( )] ,i x tq x t A B x vt e κ ω− + +Θ= −

where the free parameters A and B are given in (25) and (27) respectively, while the wave number, as with the free 
parameter A, is expressed in terms of B on (24). The speed was retrieved on (5). For dark soliton solution, as for bright 
soliton, the solvability conditions (6)-(9) along with (26) and resulting constraints from (27) must be satisfied in order 
for the soliton to evolve on time.

2.3 Singular solitons (type-I)

For the first type of singular soliton solution, the waveform assumption to be considered is

( , ) ,  ( ),csch pP x t A B x vtτ τ= = −

where A and B are set as free parameters. This assumption, when inserted into (10) would give:

( )3 4 2 4 4 2 2
1 1 3 2 2 3 1 csch pa p B p Z Bσ δ κ σ δ κ κ ω δ σ τ + − − + + 

(24)

(25)

(26)

(27)

(28)

(29)
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( )2 2 2 3 4 5
2 3 4 2 5csch csch[ ]p pp Z Z B Z A Aτ δ σ τ + + + + 

( ){ } 2 2 2
1 2 3( 1) 2 s2 2 c ch pp p Z p p B Bδ σ τ+ + + + + + 

4 4
2 3( 1)( 2)( 3 ccs h) pp p p p Bδ σ τ++ + + +

( ) 2 2 3 2
2 3 c ,sch1 0pp pZ p Z A B τ++ + + =  

where the notation (6)-(9) has been adopted for simplicity. Notice the balancing principle leads again to p = 1. Thus, 
upon substituting such value into (30), and setting to zero the coefficients of the resulting linearly independent functions 
csch jτ for j = 1, 3, 5 the wave number (17) is retrieved. However, the resulting the parameter A is 

( )
( )

2 2
1 2 3

2
4 2 3

2 10
,

Z B B
A

Z Z Z B

δ σ+
= −

+ +

which is valid as long as

( ) ( ){ }2 2
1 2 3 4 2 310 0.Z B Z Z Z Bδ σ+ + + <

Here, the resulting parameter B is the same as the case for bright soliton (20) along with corresponding constraints. 
Therefore, the type-I singular soliton solution for the considered concatenation system resulted to be

( )( , ) [ ( )] ,csch i x tq x t A B x vt e κ ω− + +Θ= −

where the parameter A is given in (31), while the wave number and the parameter B are the same as in bright 1-soliton 
given on (17) and (20) respectively, along with their corresponding solvability constraints.

Figure 2. A depiction of a dark soliton solution (28)
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2.4 Singular solitons (type-II)

In this case, the assumption for the waveform portion, P(x, t) is

( , ) coth ,  ( ).pP x t A B x vtτ τ= = −

Here too, A and B are free parameters. Upon substituting into (10), it would lead to the relation

( ) ( ){ }3 4 2 2 2 2 2
1 1 3 2 1 2 32 5 3 coth pa p Z p B Bσ δ κ σ δ κ κ ω δ σ τ + − − − − + 

( )2 2 2 3 4 5
4 2 3 2 52 coth cothp pZ p Z Z B A Aτ δ σ τ + − + + 

( ){ } 2 2 2
1 2 3( 1) 4 2 2 coth pp p Z p p B Bδ σ τ+ + + − + + 

4 4
2 3( 1)( 2)( 3) coth pp p p p Bδ σ τ++ + + +

( ){ } 2 2 3 2
2 31 coth pp pZ p Z A B τ++ + +

( ){ } 2 2 2
1 2 3(1 ) 4 2 2 coth pp p Z p p B Bδ σ τ− − − − − − 

4 4
2 3(1 )(2 )(3 ) coth pp p p p Bδ σ τ−− − − −

( ) 2 2 3 2
2 31 coth 0.pp pZ p Z A B τ−+ − − =  

The delicate balance between nonlinearity and dispersion, as well as the coefficients of the stand alone elements 
cothp−4τ and cothp −2τ results into to the same value of p as in the previous three cases p = 1. As usual, substituting the 
resulting value of p into the equation (10) leads to exactly the same results as in the above case for dark soliton (24)-(27) 
with corresponding solvability conditions. Finally, the type-II of the soliton solutions for the system (1) is

( )( , ) coth[ ( )] ,i x tq x t A B x vt e κ ω− + +Θ= −

where the parameters along with the corresponding solvability constraints resulted to be the same as for dark solitons.

3. Conclusions
The current paper is a revistation of the dispersive concatenation model that retrieves a full spectrum of optical 

solitons using the undetermined coefficients approach. The parameter constraints naturally emerge from the integration 
scheme that are essential restrictions and must hold for the soliton solutions to exist. These preliminary results that are 
recovered serves us with a lot of promise. The same scheme will be implemented later to obtain the soliton solutions 
when the model will be studied in birefringent fibers and eventually with Dense Wavelength Division Multiplexing 
(DWDM) topology. The quasimonochromatic dynamics of the solitons will also be recovered by the aid of soliton 
perturbation theory. The stochastic aspect of the solitons with the inclusion of white noise will be later studied. These 
topics and much more are in the pipeline and the results of such research activities will be available after connecting 

(34)

(35)

(36)
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them with the pre-existing ones [11, 12].
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