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Abstract: In this article, we are proposing an updated form of Krylov subspace-based interpolatory projection 
techniques for the stabilization of incompressible Navier-Stokes flows. In the proposed techniques, we utilize the 
reduced-order modelling approach implicitly, where reduced-order matrices need not be gathered explicitly. To 
estimate the aimed optimal feedback matrix, only the factored solution of the desired continuous-time algebraic Riccati 
equation (CARE) needs to be stored through the classical eigenvalue decomposition. The sparse structure of the target 
systems will remain invariant within the matrix-vector operations for generating the bases of the projector matrices 
through Krylov subspace techniques, where a cohesive projection scheme will be incorporated to ensure the potency 
of the projector matrices. So, the proposed techniques will be feasible for memory allocation and enhance the rapid 
convergence of the simulation. Analysis of the target systems’ transient characteristics, such as eigenvalues and step-
responses, will be used to ascertain the competence and reliability of the proposed techniques. Necessary computation 
will be done numerically through MATLAB. Stabilization of the transient behaviors and minimization of the simulation 
time are the prime concerns in this work. Eventually, by comparing with the contemporary techniques the advancement 
of the proposed techniques will be confirmed.

Keywords: incompressible Navier-Stokes flow, Riccati-based optimal feedback stabilization, Krylov subspace 
techniques, sparsity-preserving projections scheme, eigenvalue decomposition
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1. Introduction
In the present era of engineering advancement and technological development studies of fluid mechanics and its 

practical implications are widening conspicuously. Analysis of incompressible Navier-Stokes equations is one of the 
fundamental and indispensable ingredients in the branches of fluid mechanics, which is remarkably contiguous with 
oceanography and investigation of fluid attributes. Exploration and employment of the incompressible Navier-Stokes 
equations include the modelling of the physical systems through the matrix-vector formations, known as incompressible 
Navier-Stokes models. These models can be formed by linearizing incompressible Navier-Stokes equations by the 

http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/
https://orcid.org/0000-0002-6526-9276


Contemporary Mathematics 914 | Mahtab Uddin, et al.

mixed finite element method in terms of space and time variables [1]. In this discretization technique, the variable layout 
within the system will be kept invariant [2]. The linearized incompressible Navier-Stokes models have a sparse input-
output structure embedding the block matrix setup as
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where the symmetric positive definite matrix M ∈ Rnv×nv is for masses of the system, whereas A1 ∈ Rnv×nv, A2 ∈ Rnv×np, 
and A3 ∈ Rnp×nv for the representation of the system components. Input and output frameworks for assessing the velocity 
pattern at the corresponding nodes are provided by the matrices B1 ∈ Rnv×nu, B2 ∈ Rnp×nu and C1 ∈ Rny×nv, C2 ∈ Rny×np, 
respectively. The amount of flow passing without any diffraction is represented by the direct transform matrix D ∈ 
Rny×nu. The discretized velocity, discretized pressure, and boundary control are demonstrated by the modal vectors v(t) 
∈ Rnv, p(t) ∈ Rnp, and u(t) ∈ Rnu, respectively, with the initial velocity v(0) = v0, whereas the output vector is y(t) ∈ Rny [3]. 
Here, det(M) ≠ 0, A2 and A3 full column ranks. Thus, A3M

−1A2 has an inverse, and hence the system (1) is a special form 
of differential-algebraic system, namely, index-2 descriptor system with dimension nv + np [4].

Reynolds number (Re) invariably characterizes the flow pattern that the Navier-Stokes equations describe, and as 
a result, the stability of the Navier-Stokes models. Practical observations show that the Navier-Stokes models become 
unstable for Re ≥ 300, and as a result, properties of physical systems exhibit noteworthy deformations [5]. A few of 
the eigenvalues of the matrix pencil (A, E) lie in the positive complex half-plane, where E is a singular matrix. As a 
consequence, the system (1) becomes unstable [6].

Stabilization of this sort of unstable Navier-Stokes model is one of the major issues in the research of the system 
and control [7]. To do this, an optimal feedback matrix K o needs to be exerted, which can be estimated as K o = BTXE 
[8]. Here, X is a symmetric positive definite matrix that can be attained from the Riccati equation linked to the system (1) 
and defined as

(2)0.T T T T TA XE E XA E XBB XE C C+ − + =

As a result, system (1) can be reformed into an optimally stabilized system by plugging the stable closed-loop 
matrix A s = A  − B K o. Then, it can be written as

( ) ( ) ( ),sEx t A x t Bu t= +

(3)( ) ( ) ( ).y t Cx t Du t= +

For the large-scale setting and the demand for the finer meshing in the discretization process, the size of the 
system (1) is increasing swiftly. As a result, the dimensions of the system matrices grow over time, and hence the 
simulations incorporating them became infeasible due to massive computational costs involving memory requirement 
and greedy time-span. So, contemporary computational tools and conventional solvers are not compatible with the 
simulation of the large dimensional Riccati equation (2). Consequently, the efficiency of the Riccati-based boundary 
feedback stabilization of the system (1) will be afflicted drastically [9-10]. As the redress of those impairments issues, a 
competent reduced-order modelling approach needs to be adopted [11]. The desired Reduced-Order Model (ROM) with 



Contemporary MathematicsVolume 5 Issue 1|2024| 915

dimension r ≪ n equivalent to the system (1) can be acquired as

ˆˆ ˆˆ ˆ ˆ( ) ( ) ( ),Ex t Ax t Bu t= +

ˆ ˆˆ ˆ ˆ( ) ( ) ( ),y t Cx t Du t= + (4)

where Ê = W TEV, Â = W TAV,  B̂ = W TB, Ĉ = CV,  D̂ = D.
The essential component for understanding a system’s input-output node structure is its transfer function. The 

ROM (4) is designed in such a way that, at some interpolating locations in the system, its transfer function Ĝ(s) = Ĉ(sÊ 
− Â)−1 B̂ +  D̂ can accurately mimic the transfer function G(s) = C(sE − A)−1B + D of the system (1).

Here, V and W are the projector matrices that can be constituted by any dexterous matrix-vector algorithm [12]. 
Accordingly, a reduced-order form of the desired Riccati equation (2) can be defined as

(5)ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0.T T T T TA XE E XA E XBB XE C C+ − + =

The reduced-order Riccati equation (5), which is tiny compared to the Riccati equation (2), can be conveniently 
solved for the symmetric positive-definite matrix  X̂ using the MATLAB library command care [13-14].

The optimal feedback matrix for the system (1) via  X̂ can be achieved in plenty of ways. When reduced-order 
matrices must be stored and used for subsequent manipulations in some of them, optimal feedback matrices can 
be approximated from the reduced-order feedback matrix using the inverse projection scheme or any other counter 
approach, such as the Singular-Value Decomposition (SVD)-based Balanced Truncation (BT) [15-18], the Krylov 
subspace-based Iterative Rational Krylov Algorithm (IRKA) [19-22], and a recently developed hybrid approach Iterative 
SVD-Krylov Algorithm [23-26]. In those methods, storing the reduced-order matrices claims redundant memory 
allocation and delays the convergence of the simulation. BT method requires highly time-demanding computation 
steps with gigantic memory allotment because of the simulation of large dimensional Lyapunov equations, whereas 
IRKA is comparatively cheaper in computation cost but the stability of the reduced-order matrices is uncertain and 
there exists no error bound. On the other hand, some more approaches are available where the reduced-order matrices 
are used implicitly without storing and any suitable matrix factorization techniques are applied to find approximated 
factored solution of the Riccati equation of the target models, such as, Low-Rank Alternative Direction Implicit (LR-
ADI) incorporated Newton-Kleniman (NK) method [27-30] and system-specific priori-based Rational Krylov Subspace 
Method (RKSM) [31-34]. Newton-Kleinman method consists of the time-consuming multi-layer nested iterative 
approach but no rigid convergence criteria of this method are well-defined and definiteness of the solution matrix is 
unrestrained, whereas RKSM is more functional for matrix-vector operations and well-suited for symmetric systems 
but the essence of adjustable shift parameter and lack of proper convergence measure makes it incompetent for the 
simulations of the Navier-Stokes models.

We aim to go beyond the incidents mentioned earlier and get the desired optimal feedback matrix for the system 
(1) with appeasement computational cost. We will derive the reduced-order model by the modified IRKA approach 
employing a cohesive projection scheme and then apply the eigenvalue-decomposition coupled reversal process to 
approximate the solution Riccati equation of the target models via  X̂. The target models are finally stabilized optimally 
while the requisite optimal feedback matrix is computed.

The stabilization of the eigenvalues and step-responses of the targeted models will be inspected to demonstrate 
the effectiveness of the proposed approach numerically. The computation time and size of the factored solution to the 
Riccati equation will be compared in a table with those of the Newton-Kleinman method’s output to assess the proposed 
technique’s accuracy.
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2. Background
The preliminaries of the present work will be discussed in this section. The LRCF-ADI technique integrated 

Newton-Kleinman method and classical form of the IRKA approach for solving the Riccati equation arising from a 
generalized system will be provided at a glance. Generalized systems equivalent to the index-2 descriptor systems 
of several cases will be provided as well with proper references. Moreover, the extensions for the index-2 descriptor 
system will be discussed in brief.

The usual input-output structure for the generalized state-space system can be written as

( ) ( ) ( ),Ex t Ax t Bu t= +

(6)( ) ( ) ( ),y t Cx t Du t= +

where E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p. For the generalized systems, E is non-singular, and in 
most cases D = 0.

Then the Riccati equation corresponding to the system (6) will have the form as (2).

2.1 Newton-Kleinman method

The well-known Newton-Kleinman method is a nested iterative approach that is used to find the optimal feedback 
matrix for a system via the solution of the Riccati equation without forming any subsequent system. Initially, a 
Lyapunov equation needs to be designed that is equivalent to the Riccati equation connected to the target system needs, 
and that Lyapunov equation is then to be solved utilizing the LRCF-ADI technique.

The initial guess of the solution of the desired Lyapunov equation needs to be chosen as X0 and it needs to be 
updated to a desired level of accuracy by the iterative approach hence corresponding feedback matrix can be estimated 
as Ki+1 = BTXi+1E [35]. The basic structure of the Newton-Kleinman method is given in Algorithm 1.

Algorithm 1: Basic Newton-Kleinman method.

Input: E, A, B, C and X0 (initial assumption), imax (number of iterations).

Output: Approximate feedback matrix K.

1 while i ≤ imax do

2          Compute Ãi = A − BBTXiE and Wi = [CT    ETXiB].

3          For Xi+1 solve the Lyapunov equation 1 1 .T T T
i i i i i iA X E E X A+ ++ = −  WW

4          Compute Ki+1 = BTXi+1E.

5          i = i + 1.

6 end while

The iterative LRCF-ADI technique needs to be applied to compute Step-3 of the Algorithm 1. Finding the Cholesky 
factor Zi of Xi is the prime task of this scheme [36-38]. Successive steps of the LRCF-ADI technique are provided in 
Algorithm 2.

To apply Algorithm 2 to the first-order index-2 descriptor system, as per the structure of the system (1) some of the 
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steps in it essentially need to be modified. The sparsity-preserving Newton-Kleinman method for the first-order index-2 
descriptor system is derived in [39].

Algorithm 2: LRCF-ADI for generalized systems.

Input: E, A, C, τ (tolerance), imax (number of iterations) and shift parameters {µj}j=1
imax ∈ C−.

Output: Low-rank Cholesky-factor Z such that X ≈ ZZT.

1 Consider W0 = CT, Z0 = [ ] and i = 1.

2 while ||Wi−1W
T
i−1|| ≥ τ or i ≤ imax do

3          Solve Vi = (Ã 
T + µiE

T)−1Wi−1.

4          if Im(µi) = 0 then

5              Update 1 2 ,i i i iZ Z µ− = − V

6              Compute Wi = Wi−1 − 2µiE
TVi.

7          else

8              Assume Re( )2Re( ), ,
Im( )

i
i i i

i

µγ µ δ
µ

= − =

9              Update 2
1 1 (Re( ) Im( )) 1 I m( ) ,i i i i i i i i iZ Z γ δ γ δ+ −

 = + +  
V V V

10            Compute [ ]2
1 1 2 Re( ) Im( ) .T

i i i i i iEγ δ+ −= + +W W V V

11            i = i + 1

12        end if

13        i = i + 1

14 end while

2.2 Iterative Rational Krylov Algorithm

A reduced-order model that is analogous to the original model must be obtained to use IRKA to determine the 
optimal feedback matrix. This can be done by projecting from the left and right sides of the model and then using a 
typical matrix solver to solve a reduced-order Riccati problem. Using an inverse projection method and the solution to 
the reduced-order Riccati equation, the intended optimal feedback matrix for the original system can be acquired.

The initial projector matrices are to be put up under an arbitrary set of interpolation points and tangential directions. 
These interpolation points and the tangential directions must be gradually updated to attain an appropriate level of 
approximation accuracy [40]. For the reduced-order modelling, the Petrov-Galerkin condition must be satisfied, and the 
interpolation points and tangential directions must satisfy the Hermite bi-tangential interpolation criteria [41]. Algorithm 
3 provides a summary of the IRKA approach’s sequential steps.

Due to the requirement of the adjustment with the system structure of the system (1), the construction of the 
projection matrices in Algorithm 3 needs to be modified. Keeping the sparse form of the system (1) and accordingly 
modifying the subsequent steps of Algorithm 3 is provided in detail in [42].
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Algorithm 3: IRKA for generalized systems.

Input: E, A, B, C, D.

Output: Optimal feedback matrix Ko.

1 Choose the interpolation points {αi}
r
i=1 and tangential directions {bi}

r
i=1 and {ci}

r
i=1 at the outset.

2 Construct the projection matrices 1 1
1 1( ) , , ( )  andr rV E A Bb E A Bbα α− − = − −  1 1( ) , , ( ) .T T T T

r rW E A C c E A C cα α− − = − − 

3 while (not converged) do

4          Compute the reduced-order matrices ˆ ˆˆ ˆ ˆ, , , , .T T TE W EV A W AV B W B C CV D D= = = = =

5          Compute * * * *ˆ ˆˆ ˆ ˆ and  for , i i i i i i i i i iAz Ez y A y E b y Bλ λ α λ= = ← − ← − * *ˆand , for 1, , .i ic Cz i r← = 

6          Repeat step 2.

7          Repeat step 4.

8          For   X̂ solve the reduced-order Riccati equation ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0.T T T TA XE E XA EXBB XE C C+ − + =

9          Compute ˆ ˆ ˆ ˆ ˆ and hence .T o TK B XE K KV E= =

10 end while

2.3 Derivation of an equivalent generalized system and its associated sparsity-preserving ROM 
from the index-2 descriptor system

Because of the distinct structure of the system matrices in the index-2 descriptor system (1) with the singularity of 
the matrix E, usual matrix computations cannot be possible. To prevail over this adversity, the system (1) needs to be 
converted to a coequal generalized system or any other commensurate matrix form that should be computable.

Derivation of an equivalent generalized system and its associated sparsity-preserving ROM from the index-2 
descriptor system (1) are thoroughly described in [43]. The equivalent generalized system can be configured as

( ) ( ) ( ),x t x t u t= +  

(7)1 1
2 3 2 2( ) ( ) ( ) ( ) ( ),y t x t u t C A M A B u t− −= + −  

with the transfigured matrices as

1 1,  ,  ,l r l rx x M A= = Π Π = Π Π 

1 1 1
1 1 2 3 2 2( ( ) ),l B A M A A M A B− − −= Π −

1 1 1
1 2 3 2 3 1( ( ) ) ,rC C A M A A M A− − −= − Π
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(8)1 1 1
2 3 2 3 1( ) .D C A M A A M B− − −= −

Here, Πl and Πr are the left and right projectors, respectively, that can be determined as

( ) 11 1
2 3 2 3,l I M A A M A A

−− −Π = −

(9)( ) 11 1
2 3 2 3 .r I A A M A A M

−− −Π = −

The converted generalized system (7) employs projectors Πl and Πr in dense form, which hinders the computation 
convergence. Due to the importance of system structural invariance, the dense form of projectors is significantly 
detrimental. To resolve this issue, avoid explicitly building the projectors Πl and Πr is unavoidable. So, implementing 
the projectors Πl and Πr will be bypassed, and computationally efficient sparsity-preserving techniques the projector 
matrices V and W are explored and utilized to find the desired ROM [44].

Then the computationally competent ROM that can reasonably approximate the system (1) can be written as

ˆˆ ˆ( ) ( ) ( ),x t x t u t= +  

(10)ˆ ˆ( ) ( ) ( ),y t x t u t= + 

Here, the reduced-order matrices for the ROM defined in (9) can be built in sparsity-preserving form as

1
ˆˆ ,  ,T TW MV W A V= = 

1 1 1
1 1 2 3 2 2

ˆ ( ) ( ) ,T TW B W A M A A M A B− − −= −

1 1 1
1 2 3 2 3 1

ˆ ( ) ( ),C V C A M A A M A V− − −= −

(11)1 1 1
2 3 2 3 1

ˆ ( ) .D C A M A A M B− − −= −

As a special case, assuming B2 = 0 and C2 = 0, a simplified form of (7) that is analogical to the system (1) can be 
written as

( ) ( ) ( ),x t x t u t= +  

(12)( ) ( ) ( ),y t x t u t= + 

where the associated matrices will have a more convenient form as

1 1,  ,  ,l r l rx x M A= = Π Π = Π Π 
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(13)1 1,  ,  .l rB C D= Π = Π =  

Then the desired ROM will have the same structure of (9) but the corresponding reduced-order matrices can be 
formed as

1
ˆˆ ,  ,T TW MV W A V= = 

(14)1 1
ˆ ˆ ˆ,  ,  .TW B C V D= = =  

Thus, the reduced-order Riccati equation arising from (9) can be reformed as

(15)ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0.T T T T TX X X X+ − + =        

2.4 Stabilization of index-2 descriptor system

The unstable incompressible Navier-Stokes flow (1) can be optimally stabilized by implementing the optimal 
feedback matrix K o as follows
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3. Memory-efficient IRKA for first-order index-2 descriptor system
This section of the article contains its principal objective. Here, techniques for constructing the cohesive projector 

matrices that preserve the sparsity pattern of the target system will be deduced. The proposed techniques can immensely 
reduce the requirement of massive memory allocation and computation time.

This topic focuses on techniques to attain the factored solution of the Riccati equation in a way that produces the 
desired optimal feedback matrix without storing reduced-order matrices, therefore conserving memory. It also permits 
the factored solution to be stored for future applications.

3.1 Sparsity-preserving techniques for the construction of cohesive projector matrices

This section is devoted to constructing the projector matrices V and W deploying the sparsity-preserving techniques. 
As the eigenvalue decomposition will be utilized for determining the factored solution of the Riccati equation (2), an 
affinity between the projector matrices V and W needs to be established.

At the outset of this step, at each iteration two pre-projector matrices Ṽi and   W̃i need to be estimated implementing 
the matrix-vector operations as

1( ) , andi i iE A Bb Vα −− = 
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(17)( ) ,T T
i i iE A C c Wα −− = 

or,

1 2 1

3 2
, and

0
i i

i
v

M A A BV
b

A B
α − −     

=    − Λ     



(18)1 3 1

2 2
.

0

T T T T
i i

iT Tw

M A A CW
c

A C

α   − −  
   = Λ   −     



Here, Λv and Λw contained the insignificant components of the system (1), and hence truncated.
After that, with the association of Ṽi and   W̃i sparsity-preserving bases of the Krylov subspace for the cohesive 

projector matrices V and W can be found as

,i iV V= 

(19)1[ ( )][ ( )] .T T T T T
i i i iW M M W V M M W− − −=   

where Vi and Wi are the generators of V and W, respectively. Here, V and W are non-square projector matrices that are 
attained from the subspaces having orthogonal columns as their bases. So, V and W have one-sided inverses with the 
property that V T = V −1 and W T = W −1. Moreover, For an identity matrix I with the proper dimension, V and W confirm 
the affinity as W TV = I.

3.2 Estimation of the factored solution of the Riccati equation

The solution  X̂ of the reduced-order Riccati equation (5) or equivalent (14) can be applied to approximate the 
solution X of the Riccati equation (2). Applying the inverse projection and plugging the eigenvalue decomposition, the 
desired factored solution Z can be attained to approximate X as X = ZZT. Successive steps of this approximation are 
given below.

(20).TZZ=

1ˆ ˆT TX W XV WXW− −= =

[ ] 1 1
1 2

2 2

0
( )

0

T
T T T

T

U
W U U W W U U W

U

 Σ 
 = Σ =  Σ     

1 1
2 2

1 1 1 1 11 1( )( )T T TWU U W WU WU= Σ = Σ Σ

Here, the eigenvalues of  X̂ are contained in the diagonal matrix Σ, whereas corresponding linearly independent 
eigenvectors are contained in U. In the arrangement of the descending order of the magnitude, Σ1 contains the dominant 



Contemporary Mathematics 922 | Mahtab Uddin, et al.

eigenvalues and Σ2 contains the negligible eigenvalues. Likewise, U1 and U2 maintain the identical preeminence of their 
corresponding eigenvalues.

Embedding the factored solution Z = WU1

1
2
1Σ  intended optimal feedback matrix for the system (1) can be estimated 

as

1 1( ) ( )( ).o T T T TK B ZZ M B Z Z M= = (21)

The memory-efficient IRKA for finding the optimal feedback matrix of the system (1) is expounded in Algorithm 4.

Algorithm 4: Memory-efficient IRKA for index-2 descriptor systems.

Input : M, A1, A2, A3, B1, B2, C1, C2, D.

Output: Optimal feedback matrix Ko.

1 Choose the interpolation points {αi}
r
i=1 and tangential directions {bi}

r
i=1 and {ci}

r
i=1 at the outset.

2 Based on the sparse linear systems in (17) and implementing (18), generate the cohesive projection matrices V and W.

3 while (not converged) do

4          Compute the reduced-order matrices as (10).

5          Compute * * * *ˆ ˆˆ ˆ ˆ and  for , i i i i i i i i i iz z y y b yλ λ α λ= = ← − ← −     * *ˆand , for 1, , .i ic z i r← = 

6          Repeat step 2.

7          Repeat step 4.

8          For   X̂ solve the reduced-order Riccati equation (14).

9          Using   X̂ and executing (19) compute the factored solution Z  of X  of the Riccati equation (2).

10        Compute the optimal feedback matrix Ko as (20).

11 end while

4. Numerical results
This section discusses the empirical evidence for the versatility and efficacy of the proposed techniques. MATLAB 

is used as the simulation tool and investigation involves both figurative and tabular procedures. Computational 
amelioration through the present techniques will be inspected by comparing it with contem-porary techniques. The 
cardinal objective is to inquire into the computational time and stabilization of the transient behaviors. We are aiming 
to stabilize the eigenvalues and step-responses of the target models with minimal computational time. Unstable Navier-
Stokes models are to be used as practical applications for validating the proposed techniques.

The MATLAB 8.5.0 (R2015a) program was used to accomplish all the results on a Windows computer with an 
Intel Xeon Silver 4114 CPU with a clock speed of 2.20 GHz, two cores each, and 64 GB of total RAM.

4.1 Model description

In this work, we have taken into account a few unstable Navier-Stokes models with dimensions ranging from 1 to 
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5, and for all of them, Reynolds numbers are 300, 400, and 500, respectively. Each model has a non-symmetric structure 
having connections among its 2 inputs and corresponding 7 outputs. For the target models in the first-order index-2 
descriptor scheme, B2 and C2 are sparse zero matrices. In Table 1, the arrangement of states for the target models is 
listed.

Table 1. Arrangement of states for the target models

Dimension 1 2 3 4 5

nv 3,142 8,568 19,770 44,744 98,054

np 453 1,123 2,615 5,783 12,566

4.2 Visual affirmation of stabilization of the target models

The vivid evidence of the stabilization of the transient of the unstable Navier-Stokes models will be exhibited here. 
The visual affirmation of stabilizing the eigenvalues and step-responses will be comprised. There are 15 target models 
having identical input-output structures and system attributes. Thus, analysis of one of the models is ample for the 
validation of the claim of this work. Here, we are aiming only for the 3-dimensional model with Reynolds number 400 
for the forthcoming exploration.

4.2.1 Analysis for eigenvalues

Figure 1 depicts the stabilization of the aimed model. Sub-figure 1a displays the unstable eigenvalues of the target 
model, whereas Sub-figure 1b displays the stabilized eigenvalues of that model. This picturesque ratification essentially 
accomplished the efficiency of the proposed techniques for stabilizing the eigenvalues of the target models.

4.2.2 Analysis for step-responses

Figure 2 and Figure 3 expose the stabilization of the step-responses of the aimed model for 1st to 1st and 2nd to 7th 
input-output relations, respectively. Sub-figure 2a and Sub-figure 2b exhibit the unstable and stabilized step-responses 
of 1st-input to 1st-output the target model, whereas Sub-figure 3a and Sub-figure 3b exhibit the unstable and stabilized 
step-responses of 2nd-input to 7th-output of that model. This exposition reveals the competency of the proposed 
techniques for stabilizing the step-responses of the target models.

4.3 Comparative analysis with the existing methods

There are some existing methods for finding the optimal feedback matrix of unstable systems through reduced-
order modelling. However, all of them are not comparable to the proposed techniques, such as the BT method is not 
under consideration due to the requirement of storing the ROM, and RKSM is not applicable because of the non-
symmetric setting of the Navier-Stokes models. LRCF-ADI integrated the Newton-Kleinman method and the proposed 
techniques have an indistinguishable goal, for instance, attaining the optimal feedback matrix without storing the 
ROM and achieving the factored solution of the associated Riccati equation. So, the progression of the proposed 
techniques will be legitimatized by comparing them with the LRCF-ADI integrated Kleinman-Newton method. Since 
the stabilization of the transient behaviors by both of the approaches is very commensurate, the intended comparative 
analysis incorporated the computational time and size of the factored solution Z. We aimed to analyze the numerical data 
of the simulations for the unstable Navier-Stokes models’ dimensions 1 to 5 with Re = 400. The explanatory analysis of 
the comparison of the computational time and size of the factored solution Z is manifested in Table 2.

Computational time can be substantially reduced to almost one-tenth of the proposed memory-efficient techniques, 
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which fulfills the prime motive of the work. In the case of the size of Z, it is outstandingly discernible that the proposed 
technique enhances the approximation of the solution of the Riccati equation with a lower-dimensional factor, and the 
competency boosts with the dimensions of the target models, which is another essence of this work. As a consequence, 
it can be claimed that the aim of the work can be attainable by the proposed memory-efficient interpolatory projection 
techniques.
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Figure 1. Stabilization of the eigenvalues
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Figure 2. Stabilization of the step-response for 1st input to 1st output

Table 2. Comparison of the memory-efficient IRKA and LRCF-ADI integrated Newton-Kleinman approaches

Dimension Reynolds 
number

Computation time (seconds) Size of Z

m-IRKA NK-LRCF-ADI m-IRKA NK-LRCF-ADI

1

400

3.11 × 102 5.98 × 103 3,142 × 50 3,142 × 784

2 1.39 × 103 9.41 × 104 8,568 × 60 8,568 × 919

3 4.31 × 103 3.79 × 105 19,770 × 70 19,770 × 1,108

4 1.48 × 104 1.28 × 106 44,744 × 80 44,744 × 1,324

5 3.82 × 104 5.71 × 106 98,054 × 90 98,054 × 1,441
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Figure 3. Stabilization of the step-response for 2nd input to 7th output

5. Conclusions
This article proposes an updated Krylov subspace-based interpolatory projection techniques to attain the optimal 

feedback matrix for the unstable Navier-Stokes models without storing the reduced-order matrices. Enhancing the quick 
convergence and efficient approximation of the solution of the Riccati equation via factored solution with minimum 
size were the prime objectives of this work. An effective cohesive projection scheme was incorporated to ensure 
the potency of the projector matrices and very time-worthy eigenvalue decomposition was implemented within the 
inverse-projection technique to get the desired factored solution. Reliance on the proposed techniques is investigated 
numerically through MATLAB simulations and achieved results are demonstrated graphically. Stabilization of the 
eigenvalues and step-responses are exhibited for a selected model among the target models. Figurative analysis conveys 
the affirmation of the effectiveness of the proposed techniques. To ascertain the furtherance of the proposed techniques, 
a comparative analysis with the existing methods, such as the LRCF-ADI integrated Newton-Kleiman method is 
provided. It is clear from the tabular and descriptive analysis that the proposed strategies outperformed the previous 
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techniques in terms of computational time as well as the size of the factored solution Z. Thus, the main takeaway from 
this article is that the proposed memory-efficient interpolatory projection techniques can be employed to stabilize 
unstable Navier-Stokes models with better simulation feasibility assimilating minimal computational time and memory 
allocation.
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