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Abstract: In this paper, an epidemiological model is proposed to study the dynamics of coinfection diseases (TB) and
COVID-19 with the effect of vaccination. Tuberculosis (TB) and COVID-19 both are infectious diseases that pose
significant global health challenges. Evidence suggests that individuals with TB have a higher risk of acquiring the
COVID-19 infection. With the emergence of the COVID-19 pandemic, concerns have arisen regarding the potential
impact of the concomitant presence of TB and COVID-19. The epidemiological model is qualitatively analysed using
stability analysis theory. The dynamic system exhibits a stable endemic equilibrium point while R0 < 1 and unstable when
R0 > 1. The Lyapunov function is used to investigate the global stability of an endemic equilibrium point. The sensitivity
analysis is carried out to identify the effective parameters that have the greatest influence on the reproduction number.
Numerical results are carried out to assess the effect of various biological parameters in the dyanamic of both coinfection
classes of TB & COVID-19. This study aims to analyze the implications of these concurrent diseases and predict the
effect of vaccination in managing their coexistence. Our simulation results show that both the coinfection disease TB and
COVID-19 can be reduced by increasing rate of vaccination.

Keywords: TB, COVID-19, vaccination, sensitivity analysis

MSC: 92C12, 34A34, 26A33, 92D30

Nomenclature
A: Inflow rate.
α1: TB infection population mortality rate due to disease.
α2: COVID-19 infection population mortality rate due to disease.
α3: Case fatality rate (CFR) of TB and COVID-19 co-infection.
β0: TB propagation rate.
β1: COVID-19 propagation rate.
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ζ1: Recovery rate of TB infectives from TB population.
ζ2: Recovery rate of COVID-19 infectives from COVID-19 population.
ζ3: Recovery rate of coinfection of TB and COVID-19 infectives

from coinfection of TB and COVID-19 population.
µ: Rate of natural mortality.
ψ: Rate of COVID-19 Vaccination.
θ : Failure rate of COVID-19 Vaccination.
η : Rate of BCG Vaccination.

1. Introduction
The COVID-19 virus, which originated inWuhan, China in late 2019, silently proliferated across numerous countries

until March 2020, causing a global crisis. From April 5, 2020 onwards, every nation has been grappling with the impact
of this deadly virus, as it spreads from asymptomatic individuals to susceptible populations [1, 2].

The initial outbreak was identified in China’s Wuhan region [3]. In light of this, COVID-19 has spread worldwide.
To combat the pandemic, numerous countries implemented lockdown measures followed by gradual easing of restrictions,
considering political ramifications and their impact on socio-economic conditions [4–8]. Quarantine, isolation, and social
distancing were among the primary non-pharmaceutical interventions (NPIs) implemented as the initial line of defense
against the virus [9, 10]. People transmit COVID-19 by means of respiratory droplets, either through direct contact with
contaminated surfaces or by coming into contact with individuals who are infected [11]. While the majority of SARS-
CoV-2 infections tend to resolve on their own with mild symptoms, it is widely recognized that individuals who are
older and have pre-existing conditions such as hypertension, diabetes, tuberculosis (TB), and coronary heart disease are
at a significantly higher risk of experiencing severe complications and mortality from COVID-19 [12–14]. The tireless
endeavors of numerous scientists have resulted in the successful development of vaccines to safeguard against COVID-19,
bringing about a fortunate outcome [6].

Both COVID-19 and tuberculosis are transmitted through a common pathway in the human body, specifically via
the upper respiratory tract [15–17].

Tuberculosis (TB) ranks among the top 10 causes of global mortality. The illness, primarily affecting the lungs, stems
from the activity of Mycobacterium tuberculosis bacteria [18]. TB is both preventable and curable. It spreads through
airborne transmission when individuals with lung TB cough, sneeze, or spit, releasing the TB bacteria into the air [18].
Inhaling just a few of these bacteria can lead to infection [19]. An environmental aspect that contributes to the spread of
TB is the discharge of domestic wastes, open water storage tanks, and open sewage drains in residential areas. Globally,
an estimated ten million new cases of tuberculosis were reported in 2017 [20].

It’s worth noting that approximately one-third of the world’s population has latent TB, signifying that they have been
infected by TB bacteria but are not yet experiencing symptoms and are incapable of transmitting the disease [21].

Mathematical models play an essential role in epidemiology, the study of disease spread and control within
populations. Mathematical models aid epidemiologists in understanding disease transmission dynamics. These models
shed light on how illnesses spread and evolve by simulating the interactions of infected, susceptible, and recovered
individuals. Epidemiological models can forecast the future course of an epidemic or pandemic, including the predicted
number of cases, peak infection time, and the effectiveness of control efforts. This data is necessary for public health
planning and resource allocation. Models enable researchers to evaluate the effectiveness of various interventions like
as vaccination campaigns, social distancing measures, and quarantine techniques. This enables policymakers to make
informed judgments about how to control disease transmission. Models enable researchers to evaluate the effectiveness of
various interventions like as vaccination campaigns, social distancing measures, and quarantine techniques. This enables
policymakers to make informed judgments about how to control disease transmission. Keeping this in mind formulation
of a coinfection model is done to study the impact of vaccination to control the disease. The model is developed by the
authors for the first time. However, different mathematical models were used to construct this model [22–24].
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Tuberculosis and COVID-19 have distinct clinical presentations, modes of transmission, and treatment strategies.
However, their co-existence can complicate diagnostic procedures, disease management, and overall health outcomes [25].
This section provides an overview of TB and COVID-19, highlighting their individual characteristics and discussing the
potential challenges when they occur simultaneously the interactions between TB and COVID-19, including the impact of
one disease on the other. The potential implications of TB infection on COVID-19 severity and vice versa are examined.
Vaccination has played a crucial role in controlling infectious diseases throughout history [26, 27]. This section reviews
the existing TB and COVID-19 vaccines and their efficacy in preventing. Moreover, it explores the potential benefits of
vaccination in individuals with concomitant TB and COVID-19 infections. Using available data, this section employs
modeling and predictive analysis techniques to estimate the potential impact of vaccination strategies in managing TB
and COVID-19 coexistence. It considers variables such as vaccine coverage, vaccine effectiveness [28].

Based on the analysis and predictions, this section discusses the implications for public health policies and practices.
It emphasizes the importance of targeted vaccination campaigns, prioritizing high-risk populations, and optimizing
resources to effectively control the spread of both TB and COVID-19.

The goal of this research is to identify the number of TB patients infected by COVID-19 and the number of serious
illnesses during the COVID-19 pandemic [29].

This study highlights the significance of understanding the interactions between TB and COVID-19 and the potential
benefits of vaccination strategies [30]. By analyzing available data and employing predictive modeling, we can gain
valuable insights into the expected outcomes of vaccination in managing these concomitant diseases. These findings can
inform public health efforts, aid policymakers, and contribute to the development of effective strategies for combating TB
& COVID-19 coexistence (Table 1).

The order of the paper is as follows: Section 2 is dedicated to the formulation of mathematical models. Section 3
contains the basic preliminary details of the suggested model. Section 4 performs the analysis of mathematical model. In
section 5 parametric variation of R0 is explained. In section 6, sensitivity analysis has been carried out. The numerical
results are given in section 7. The conclusion is given in section 8.

Table 1. Comparative analysis of related works of TB & COVID-19 co-dynamics

Authors Key findings Mortality from coinfection Recommendations

Visca et al. [31]
COVID-19 may occur
before, during, or

after a TB diagnosis.

This is more likely to
occur in elderly patients
with comorbidities.

More research is needed
to determine the possible impact of

COVID-19 on TB patients.

Chen et al. [32]
MTB infection increases

the susceptibility to SARS-CoV-2
and the severity of COVID-19.

-
It will be important to validate the
relationship uncovered here in 36
COVID-19 cases in a large study.

Khurana and Aggarwal [33],
Tadolini et al. [34]

Due to the chronic nature of TB,
patients will have more time
to become infected with

COVID-19.

12.3% mortality in the
patients with dual infection.

In the fight against COVID-19
it is important to suspect

and manage TB.

Goudiaby et al. [35]

Because of their geographical
overlap, coinfection of these
diseases is unavoidable,
posing a potential double

blow because clinical similarities
may impede measures to
control their spread.

-

Study on exogeneous TB
re-infection and COVID-19
re-infection after recovery
(as various variations

have recently emerged).
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2. Mathematical model
In this chapter, a deterministic compartment model is proposed to study and analyse the dynamics of two concomitant

diseases TB and COVID-19. For the formulation of the model, we have divided the whole population into five
compartments based on their status that are mutually distinct epidemiological states. Let, S(t) indicates the population
which is susceptible for COVID-19 and TB, T (t) denotes the population infected by TB infectives only,C(t) indicates the
population infected by COVID-19 only, B(t) is the co-infection population of both TB and COVID-19 andV (t) indicates
the vaccination compartment. Let N(t) represents the entire population (the sum of five subpopulations) at any given time
‘t’. Therefore, we have N(t) = S(t)+T (t)+C(t)+B(t)+V (t).

Schematic representation of the proposed model is shown in Figure 1.

Figure 1. Schematic representation of compartment model

The proposed model is based on the traditional SIS model since it assumes that the individuals who have recovered
from the virus will re-enter the susceptible class. Now, let the susceptible population enter in the system at a steady rate
A(1−η). Also, the susceptible class is vaccinated with COVID-19 vaccination at vaccination rate ψS. The susceptible
population is transitioning at the propagation rate β0 to the TB infected class T (t) and infected classC(t) of COVID-19 at
the propagation rate β1. When patients with TB comes into contact with COVID-19 patients and acquire the disease, they
are categorised as the coinfected class B(t)with both diseases COVID-19 & TB. Also, when COVID-19 acquires infected
population TB, they moves to B(t). Furthermore, TB patients recover at a rate of ζ1, COVID-19 patients recover at a rate
of ζ2, and the population infected with TB and COVID-19 after recovery re-enters the susceptible population at a rate of
ζ3. Further, α1, α2, and α3 are assumed to be the case fatality rate of TB, COVID-19 and both TB & COVID-19 infected
population respectively. Let µ is the rate of natural mortality rate of population and θ is supposed to be the failure rate of
COVID-19 vaccination.

The mathematical formulation of the propsed model is described below:
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dS
dt

= A(1−η)+ζ1T +ζ2C+ζ3B−β0ST −β1SC−µS−ψS,

dT
dt

= β0ST −β1TC− (ζ1 +µ +α1)T,

dC
dt

= β1SC−β0CT − (µ +α2 +ζ2)C,

dB
dt

= β0CT +β1TC− (µ +α3 +ζ3)B,

dV
dt

= ψS−θV −µV,



, (1)

with the following initial conditions:

S (0) = S0 ≥ 0, T (0) = T0 ≥ 0, C (0) =C0 ≥ 0, B(0) = B0 ≥ 0, V (0) =V0 ≥ 0. (2)

3. Positivity and boundedness of the model
Non-negativity conditions are necessary to show that all the state variables remain positive for t ≥ 0 or the solutions

of the system remain positive for all time. Thus, we have the following theorem:
Theorem 2.1Under the initial conditions given by (2), all the solutions (S, T,C, B,V ) of model (1) fullfills S(0)> 0,

T (0)≥ 0, C(0)≥ 0, B(0)≥ 0 and V (0)≥ 0 for which the solutions of the model stay positive for all time t ≥ 0.
Proof. From (1) and (2), it can be easily seen that

dS
dt

∣∣∣∣
S=0

= A(1−η)+ζ1T +ζ2C+ζ3B > 0, (3)

dT
dt

∣∣∣∣
T=0

= 0, (4)

dC
dt

∣∣∣∣
C=0

= 0, (5)

dB
dt

∣∣∣∣
B=0

= ψS−V (θ +µ)> 0. (6)

From the above, we conclude that, all solutions (S, T,C, B,V ) of the proposed co-infection model TB and COVID-19
remain positive for all t ≥ 0.
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Now, we shown that the solutions to the system of equations (1) are bounded. The term “boundedness” refers to the
natural limits on the growth of the infected population resulting from various constraints, such as environmental factors
or preventative behaviors adopted to prevent from the disease.

Now, we demonstrate the following theorem:
Theorem 3.2 The set Λ = {(S, T, C, B, V ): 0 ≤ S+T +C+B+V ≤ N} is closed area for the system (1), where all

solutions start in the positive octant with non-negative initial conditions, where NP =
A(1−η)

µ +ψ
.

Proof. Summing equations of the system (1) and using the relation N = S+T +C+B+V , we get

dN
dt

= A(1−η)−µN −α1T −α2C−α3B−θV. (7)

dN
dt

≤ A(1−η)−µN.

By comparison principle, we can write

0 < N ≤ A(1−η)

µ +ψ
. (8)

Thus, the set A = {(S, T, C, B, V ): 0 ≤ S+T +C+B+V ≤ N} is closed region for the system (1) as well as all
solutions of the model is contained in the set A.

Thus, in the above defined set A, the coinfection model of TB & COVID-19 is well-defined biologically and
mathematically.

4. Existence of equilibrium points
Here, we search for the existence of equilibrium points of the proposed model. The existence of unique positive

equilibrium point and stability of system (1) depends on the basic reproductive number R0 at disease free equilibrium
point, which is determined with the help of the next generation matrix method [36]. Clearly, the system (1) contains the

two equilibrium points: the first one is disease free equilibrium point
(

A(1−η)

µ
, 0, 0, 0,

ψS
θ +µ

)
and the other endemic

equilibrium point (S∗, T ∗, C∗, B∗, V ∗).
The following equations must be satisfied by the endemic equilibrium point:

A(1−η)+ζ1T ∗+ζ2C∗+ζ3B∗−β0S∗T ∗−β1S∗C∗−µS∗−ψS∗ = 0, (9)

β0S∗−β1C∗− (ζ1 +µ +α1)C = 0, (10)

β1S∗−β0T ∗− (µ +α2 +ζ2)T = 0, (11)

β0C∗T ∗+β1T ∗C∗− (µ +α3 +ζ3)B = 0, (12)

ψS∗−θV ∗−µV ∗ = 0, (13)
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From equation (10), we have

C∗ =
β0S∗− (ζ1 +µ +α1)

β1
= Θ1(S∗), say (14)

From equation (11), we get

T ∗ =
β1S∗− (ζ2 +µ +α2)

β0
= Θ2(S∗), say (15)

Thus, from equation (12), we get

B∗ =
(β0 +β1)T ∗C∗

(ζ3 +µ +α3)
=

(β0 +β1)Θ1(S∗)Θ2(S∗)
ζ3 +µ +α3

. (16)

From equation (13), we get

V ∗ =
ψS∗

θ +µ
(17)

Using (10), (11), (12) and (13) in equation (9), we have

g(S) = A(1−η)+
ζ1

β0
{β1S∗− (ζ2 +µ +α2)}+

ζ2

β1
{β0S∗− (ζ1 +µ +α1)}+

ζ3(β0 +β1)

(ζ3 +µ +α3)

[{
β0S∗− (ζ1 +µ +α1)

β1

}][{
β1S∗− (ζ2 +µ +α2)

β0

}]

− β0S∗

β0
{β1S∗− (ζ2 +µ +α2)}−

β1S∗

β1
{β0S∗− (ζ1 +µ +α1)}−µS∗−ψS∗, (18)

∴ g(0) = A(1−η)+
ζ1

β0
−(ζ2 +µ +α2)+

ζ2

β1
−(ζ1 +µ +α1)+

ζ3(β0 +β1)

ζ3 +µ +α3
(ζ1 +µ +α1)

− ζ3(β0 +β1)

(ζ3 +µ +α3)

[{
(ζ1 +µ +α1)(ζ2 +µ +α2)

β1β0

}]
, (19)
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g
(

A(1−η)

µ +ψ

)
=

ζ1

β0
β1

(
A(1−η)

µ +ψ

)
− (ζ2 +µ +α2)+

ζ2

β1
β0

(
A(1−η)

µ +ψ

)
− (ζ1 +µ +α1)

+
ζ3(β0 +β1)

(ζ3 +µ +α3)




β0
A(1−η)

µ +ψ
− (ζ1 +µ +α1)

β1




β1
A(1−η)

µ +ψ
− (ζ2 +µ +α2)

β0




−β1

(
A(1−η)

µ +ψ

)2

+(ζ2 +µ +α2)

(
A(1−η)

µ +ψ

)
−β0

(
A(1−η)

µ +ψ

)2

+(ζ1 +µ +α1)

(
A(1−η)

µ +ψ

)
−
(

A(1−η)

µ +ψ

)
. (20)

Using equation (18), we have

g
′
(S) =

ζ1β1

β0
+

ζ2β0

β1
+

ζ3(β0 +β1)

(ζ3 +µ +α3)
−2β1S∗+(ζ2 +µ +α2)−2β0S∗+(ζ1 +µ +α1)−ψ −µ. (21)

It can be clearly seen that g
(

A(1−η)

µ +ψ

)
> 0. Thus, we can conclude that for a given unique value of S∗ of x exists if

g(0)< 0 and g
′
(S)> 0; ∀ 0 < S <

(
A(1−η)

µ +ψ

)
. So, the corresponding T ∗,C∗, B∗ andV ∗ can be obtained from equations

(14), (15), (16) and (17) respectively.

5. Basic reproduction number R0

The basic reproduction number measures the expected values of decreasing or increasing outbreaks of a disease.
Using the next generation matrix method R0 is evaluated as follows:

For the model (1), the disease-free equilibrium point is E0

(
A(1−η)

µ
, 0, 0, 0, 0

)
. Decomposing the RHS of the

model (1) corresponding to the infected compartments as F1 − F2. The matrices F1 and F2 represent respective new
infection and transition matrices, given by

F1 =


β0ST −β1TC
β1SC−β0zy

β0CT +β1TC
0

 and F2 =


(ζ1 +µ +α1)T
(ζ2 +µ +α2)C
(ζ3 +µ +α3)B

(A−ζ1y−ζ2z−ζ3w+β0xy+β1xz+µx)



Now, we have X =

[
dS
dt

,
dT
dt

,
dC
dt

,
dB
dt

]
.

Let us define F̃1 =

[
∂ (R1)i

∂x j

]
and F̃2 =

[
∂ (R2)i

∂x j

]
; for i, j = 1, 2, 3.

Then, we find
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F̃1 =


β0

A(1−η)

µ +ψ
0 0

0 β1
A(1−η)

µ +ψ
0

0 0 0

 and F̃2 =

(ζ1 +µ +α1) 0 0
0 (ζ2 +µ +α2) 0
0 0 (ζ3 +µ +α3)

 .

It then follows that

F1F−1
2 =


β0

A
µ

0 0

0 β1
A
µ

0

0 0 0




1
ζ1 +µ +α1

0 0

0
1

ζ2 +µ +α2
0

0 0
1

ζ3 +µ +α3

 ,

i.e.

F1F−1
2 =


β0A(1−η)

(µ +ψ)(ζ1 +µ +α1)
0 0

0
β1A(1−η)

(µ +ψ)(ζ2 +µ +α2)
0

0 0 0

 . (22)

Therefore, we have

R0 = max
[

β0
A(1−η)

(µ +ψ)(ζ1 +µ +α1)
, β1

A(1−η)

(µ +ψ)(ζ2 +µ +α2)
, 0

]
. (23)

As the propagation rate of TB is substantially lower than the propagation rate of COVID-19 infection. Therefore,
the basic reproduction number for the model is given by

R0 =
β1A(1−η)

(µ +ψ)(ζ2 +µ +α2)
. (24)

Thus, COVID-19 infection rate contributes to the basic reproduction number in the case of the coinfection diseases
TB and COVID-19.

6. Stability analysis of equilibrium points
Here, we discuss only the local stability of the two equilibrium points.
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6.1 Local stability of disease free equilibrium point

When a critical point is locally stable, the system will eventually move to the same point regardless of where it is
initially set. Now, we will discuss the local stability by using the following computed Variational matrix:

V (E) =


g11 g12 g13 0 0
g21 g22 g23 0 0
g31 g32 g33 0 0
0 g42 g43 g44 0

g51 0 0 0 g55



where g11 =−β0T −β1C−µ −ψ , g12 = ζ1 −β0S, g13 = ζ2 −β1S, g21 = β0T , g22 = β0S−β1C− (ζ1 +µ +α1), g23 =

−β1T , g31 = β1C, g32 =−β0C, g33 = β1S−β0T − (µ +α2 +ζ2), g42 = β0C+β1C, g43 = β1T +β0T , g44 =−(µ +α3 +

ζ3), g51 = ψ , g55 =−(θ +V ).
The variational matrix V (E0) at disease free equilibrium point is given by

V (E0) =


g11 g12 g13 0 0
0 a22 0 0 0
0 0 g33 0 0
0 0 0 g44 0

g51 0 0 0 g55



where g11 = −µ − ψ , g12 = ζ1 − β0
A(1−η)

µ
, g13 = ζ2 − β1

A(1−η)

µ
, g22 = β0

A(1−η)
µ − (ζ1 + µ + α1), g33 =

−β1
A(1−η)

µ
− (µ +α2 +ζ2), g44 =−(µ +α3 +ζ3), g51 = ψ , g55 =−(θ +V ).

The eigenvalues of the disease free equillibrium corresponding to variational matrix are given below:
λ1 =−(θ +V ),
λ2 =−(ζ3 +µ +α3),
λ3 =−(µ +ψ),
λ4 =−(ζ1 +µ +α1)(1−R1),
λ5 = (µ +α2 +ζ2)(1−R2).
Clearly, it can be seen that the three eigenvalues λ1, λ2 and λ3 of the above variational matrix are found to be negative

for the DFE point and the rest two eigenvalues λ4 and λ5 have negative real parts. Thus, using Routh-Hurwitz criterion,
the DFE point is locally asymptotically stable, if R1 < 1, R2 < 1 and unstable if R1 > 1, R2 > 1 [37].

6.2 Local stability of endemic equilibrium point

To determine the local stability of endemic equilibrium point P∗, the system is linearized about endemic equilibrium
point by setting S = S1 +S∗, T = T1 +T ∗, C =C1 +C∗, B = B1 +B∗ and V = V1 +V ∗. After linearization, equation (1)
can be written as follows:
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dS1

dt
= ζ T1 +ζ2C1 +ζ3B1 −β0S1T ∗−β0S∗T1 −β1S∗C1 −β1S1C∗−µS1 −ψS,

dT1

dt
= β0S∗T1 +β0S1T ∗−β1T1C∗−β1T ∗C1 − (µ +α1 +ζ1)T1,

dC1

dt
= β1S∗C1 +β1S1C∗−β0C∗T1 −β0C1T ∗− (µ +α2 +ζ2)C1,

dB1

dt
= β0C∗T1 +β0C1T ∗+β1T ∗C1 +β1T1C∗− (µ +α3 +ζ3)B1,

dV1

dt
= ψS∗+ψS∗−θV ∗−θV1 −µV ∗−µV1.

Now, let us consider the following Lyapunov function:

L1 =
1
2

S2
1 +

1
2

T 2
1 +

1
2

C2
1 +

1
2

B2
1 +

1
2

V 2
1 . (25)

Differentiating (25) w.r.t. t, we have

L̇1 = − 1
4

g11S2
1 +g12S1T1 −

1
3

g22T 2
1 ,

− 1
4

g11S2
1 +g13S1C1 −

1
3

g33C2
1 ,

− 1
4

g11S2
1 +g14S1B1 −

1
3

g44B2
1,

− 1
4

g11S2
1, −g15S2

1V1 −g55V 2
1 ,

− 1
3

g22T 2
1 +g24T1B1 −

1
3

g44B2
1,

− 1
3

g33C2
1 +g34C1B1 −

1
3

g44B2
1,

− 1
3

g22T 2
1 +g23T1C1 −

1
3

g33C2
1 .

where
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g11 = (−β0T ∗−β1C∗−µ), g22 = {β0S∗−β1C∗− (ζ1 +µ +α1)} , g33 = {β1S∗−β0T ∗− (µ +α2 +ζ2)} ,

g44 = {−(µ +α3 +ζ3)} , g55 = {−(θV )} , g12 = {ζ1 −β0S∗+β0T ∗} , g13 = {ζ2 −β1S∗+β1C∗} ,

g14 = ζ3, g15 = ψ, g23 = {−β1T ∗−β0C∗} , g24 = {β0C∗+β1C∗} , g34 = {β0T ∗+β1T ∗} ,

The Lyapunov function L̇1 is negative definite, if the following conditions hold:

(i) (ζ1 −β0S∗+β0T ∗)2 <
1
3
(−β0T ∗−β1C∗−µ){β0S∗−β1C∗− (ζ1 +µ +α1)} ,

(ii) (ζ2 −β1S∗+β1C∗)2 <
1
3
(−β0T ∗−β1C∗−µ){β1S∗−β0C∗− (ζ2 +µ +α2)} ,

(iii) ζ 2
3 <

1
3
(−β0T ∗−β1C∗−µ){−(µ +α3 +ζ3)} ,

(iv) ψ2 < (−β0T ∗−β1C∗−µ){−(θV )} ,

(v) (β1T ∗+β0C∗)2 <
4
9
{β0S∗−β1C∗(ζ1 +µ +α1)}{+β1S∗−β0T ∗− (µ +α2 +ζ2)} ,

(vi) (β0 +β1)
2C∗2 <

4
9
{β0S∗−β1C∗− (ζ1 +µ +α1)}{−(ζ3 +µ +α3)} ,

(vii) (β0 +β1)
2T ∗2 <

4
9
{β1S∗−β0T ∗− (ζ2 +µ +α2)}{−(ζ3 +µ +α3)} .

Thus, if all the conditions from (i)-(vii) are satisfied, then the endemic equilibrium point P∗ is locally asymptotically
stable.

6.3 Global stability of endemic equilibrium point

Here, we discuss the global stability of the endemic equilibrium point P∗(S∗, T ∗, C∗, B∗, V ∗), which is given in the
form of theorem as follows:

Theorem 4.6.3.1 The endemic equilibrium point P∗(S∗, T ∗, C∗, B∗, V ∗) is globally asymptotically stable, if the
Lyapunov function

L2 =
1
2
{
(S−S∗)2 +(T −T ∗)2 +(C−C∗)2 +(B−B∗)2 +(V −V ∗)2}

satisfies the conditions given in proof of this theorem:
Proof. Consider the following Lyapunov function
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L2 =
1
2
{
(S−S∗)2 +(T −T ∗)2 +(C−C∗)2 +(B−B∗)2 +(V −V ∗)2}

Let L2 ≥ 0 at the endemic equilibrium point, and S, T ,C, B, andV respectively represent the transformed susceptible
individuals, transformed TB infected individuals, transformed COVID-19 infected individuals, transformed TB plus
COVID-19 infected individuals, and transformed vaccinated individuals. Differentiating the function L2 w.r.t. t we get

L̇2 = (S−S∗)Ṡ+(T −T ∗)Ṫ +(C−C∗)Ċ+(B−B∗)Ḃ+(V −V ∗)V̇

= − 1
4

b11(S−S∗)2 +b12(S−S∗)(T −T ∗)− 1
3

b22(T −T ∗)2,

− 1
4

b11(S−S∗)2 +b13(S−S∗)(C−C∗)− 1
3

b33(C−C∗)2,

− 1
4

b11(S−S∗)2 +b14(S−S∗)(B−B∗)− 1
3

b44(B−B∗)2,

− 1
4

b11(S−S∗)2 +b15(S−S∗)(V −V ∗)−b55(V −V ∗)2,

− 1
3

b22(T −T ∗)2 +b13(T −T ∗)(C−C∗)− 1
3

b33(C−C∗)2,

− 1
3

b22(T −T ∗)2 +b24(T −T ∗)(B−B∗)− 1
3

b44(B−B∗)2,

− 1
3

b33(C−C∗)2 +b34(C−C∗)(B−B∗)− 1
3

b44(B−B∗)2.

b11 =−{−β0T ∗+β1C∗+µ +ψ} , b22 −{β0S∗+β1C∗+(ζ1 +µ +α1)} , b12 = ζ1 −β0S∗+β0T ∗,

b44 =−µ +α3 +ζ3, b55 =−θ , b33 =−{−β1S∗+β0T ∗+(µ +α2 +ζ2)} , b13 = ζ2 −β1S∗+β1C∗,

b14 = ζ3, b15 = ψ, b23 =−β1T ∗−β0C∗, b24 = β0C∗, b34 = β0T ∗+β1T ∗.

The Lyapunov function L̇2 is negative definite, if the following conditions hold:

b2
12 <

1
3

b11b22, b2
13 <

1
3

b11b33, b2
14 <

1
3

b11b44, b2
15 <

1
3

b11b55,

b2
23 <

1
3

b22b33, b2
24 <

1
3

b22b44, b2
34 <

1
3

b33b44.
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Figure 2. Matrix plots showing the changing nature in basic reproduction number (R0) of STCBV model under parametric variations: (a) R0 vs (β1, α2)
∈ [4.2489×10−6, 4.2509×10−6]× [0.02, 0.1], (b) R0 vs (β1, ζ2) ∈ [4.2489×10−6, 4.2509×10−6]× [0.02, 0.06], (c) R0 vs (β1, A) ∈ [4.2489×10−6,
4.2509×10−6]× [402, 410], (d) R0 vs (β1, µ) ∈ [4.2489×10−6, 4.2509×10−6]× [0.012, 0.019], (e) R0 vs (β1, ψ) ∈ [4.2489×10−6, 4.2509×10−6]
× [0.02, 0.05], (f) R0 vs (β1, η) ∈ [4.2489×10−6, 4.2509×10−6] × [0.01, 0.05]

Contemporary Mathematics 236 | Harshita Kaushik, et al.



Hence, if the above conditios are satisfied then the endemic equilibrium point P∗ is globally asymptotically stable.
The impact of parameter variation R0 is further investigated under β1×α2 ∈ [0.0000042489, 0.0000042509]× [0.02, 0.1],
β1 × γ2 ∈ [0.0000042489, 0.0000042509]× [0.02, 0.06], β1 ×A ∈ [0.0000042489, 0.0000042509]× [402, 410], β1 ×µ ∈
[0.0000042489, 0.0000042509]× [0.012, 0.019], β1 ×ψ ∈ [0.0000042489, 0.0000042509]× [0.02, 0.05] and β1 ×η ∈
[0.0000042489, 0.0000042509]× [0.01, 0.05] in Figure 2. It is also seen that only the increasing value of β1 can shift
R0 < 1 to R1 > 1 in Figure 2(a). Further, the simultaneously increasing value increase the value of R0 in Figure 2(b, c, d,
e, f).

7. Sensitivity analysis
In the model (1), seven biological parameters have been used which are β , A, η , µ , ζ2, α2 and ψ , which affect

the basic reproduction number R0. The partial derivative given below represents R0’s sensitivity to changes in various
biological parameters.

The sensitivity of any parameter ‘H’ w.r.t. R0 is defined as how the model behaves to a small change in H according
to the following definition:

KH =
∂R0

∂H
H
R0

where

R0 =
β1A(1−η)

(µ +ψ)(ζ2 +µ +α2)
.

The various sensitivity indices with regard to R0 for the model parameters are given below:

Kβ1 =
∂R0

∂β1

β1

R0
= 1, KΛ =

∂R0

∂Λ
Λ
R0

= 1, Kη =
∂R0

∂η
η
R0

=−0.01,

Kµ =
∂R0

∂ µ
µ
R0

=−0.77, Kζ2
=

∂R0

∂ζ2

ζ2

R0
=−0.62,

Kα2 = ∂R0∂α2
α2

R0
=−0.0018, Kµ =

∂R0

∂ µ
µ
R0

=−0.77.


In Figure 3, a grraphical representation of sensitivity indices for model parameters w.r.t. R0 is shown and on the basis

of this plot, it is revealed that β and A have high positive impact on the spread of the diseases and other model parameters
have negative impact.

Volume 6 Issue 1|2025| 237 Contemporary Mathematics



Figure 3. Sensitivity analysis of parameters

8. Numerical simulation
The TB-COVID-19 coinfection model is numerically solved. Table 2 gives the model parameter values which are

used to perform numerical simulation of the model by using mathematical softwares MATLAB andMathematica. Most of
parameter values have been taken from available literature and some of them are fitted or estimated. Now various graphs
are plotted to interpret the findings.

Table 2. Description of parameters for TB-COVID-19 model

Parameter Value Source

A 408.99 day−1 Estimated

α1 0.004 day−1 [38]

α2 0.0018 day−1 [38]

α3 0.007 day−1 Estimated

β0 2×10−6 [38]

β1 5.5×10−6 [38]

ζ1 0.00035 day−1 Estimated

ζ2 0.03 day−1 Assumed

ζ3 0.01 day−1 Estimated

µ 0.016 day−1 Estimated

ψ 0.02 day−1 Fitted

θ 0.004 day−1 Estimated

η 0.01 day−1 Fitted
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Figure 4. Fluctuation in TB prevalence with varying β

Figure 5. Fluctuation in COVID-19 incidence with time for different values of β1

Figure 6. Combined prevalence variations of TB & COVID-19 with time for different values of β1
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Figure 7. Variation of COVID-19 vaccinated patients with time for different values of ψ

Figure 8. Variation of TB & COVID-19 patients with time for different values of ψ

In Figure 4, we have shown how the population infected with TB population changes over time in the context
of COVID-19 infection. From the figure we have noticed a significant reduction in the reported cases of tuberculosis
infection. This decline in the number of TB-infected individuals could possibly be attributed to instances where TB is
misdiagnosed as COVID-19 resulting in TB patients being treated as if they were infected with COVID-19. In Figure
5, we have drawn the variation of COVID-19 infected population with time for different values of β1. From this figure,
we observe observe that the increasing value of transimission coefficient increases the number of COVID-19 infected
population which implies as the infection rate will increase the number of infected population of COVID-19 will also
increase. In Figure 6, we have drawn the variation of TB & COVID-19 population with time for different values of β1.
Observations indicate that an increase in the value of β1 corresponds to a decrease in the number of coinfected TB plus
COVID-19 population. This suggests that COVID-19 has had a severe impact on the TB population, leading to a decline
caused by inadequate healthcare, misdiagnosis, and the similarity in symptoms between COVID-19 and TB, resulting in
TB patients being treated as if they have COVID-19. In Figure 7, we have shown the variation of COVID-19 vaccinated
population with time for different values of ψ . From this figure, it is observed that as the vaccination rate ψ of COVID-19
increases, the vaccination coverage also increases which will definetly help in controlling the disease. From Figure 8, it is
observed that the disease (TB plus COVID-19) trajectory below all others is the one with the highest vaccination coverage
0.06. High vaccination rates thereby prevent the disease from spreading but do not completely eradicate it. Therefore,
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the vaccination approach for disease control needs to be improved in terms of immunizing people at very young ages to
combat the initial infectious peak.

Figure 9. Fluctuation of R0 with α2, β1 and ψ
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Figure 9, shows the fluctuation in R0 with parameters α2, β1 and ψ . From the Figures 9(a) and 9(b), R0 can be seen
increasing linearly for both, the propagation rate β1 of COVID-19 infection. However, it is observed that R0 decreases
exponentially and approaches to zero as the vaccination rate ψ of COVID-19 vaccination increases.
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Figure 10. Variaton of susceptible population with time t for different values of α2, β , ψ and β1

In Figure 10, we have shown the effects of α2, β , ψ and β1 on S. Figure 10(a) demonstrates the variation of the
susceptible population in relation to the COVID-19 infection population with the death rate α2 due to disease. Figure
10(b) demonstrates that as we increase the infection rate β of TB the number of susceptibles population decreases. Figure
10(c) indicates that the vaccination has a large effect on the susceptible population as the susceptible population grows
and the mass vaccination program (i.e. vaccination rate ψ) expands. Figure 10(d) shows that as we increase the infection
rate β of COVID-19 the number of susceptible population decreases. In Figure 2, the different matrix plots are shown.
From this figure it can be seen that µ , ζ2 and ψ are negatively correlated, and β , A, η and α2 are positively correlated to
R0.

9. Conclusion
In this paper, the disease dynamics of COVID-19 and tuberculosis co-infection is formulated and analysed. The basic

properties such as positivity and boundedness have been established. The equilibrium points are searched and disease free
& endemic equilibrium points are found to exist. In this paper, an epidemiological model is proposed to study the dynamics
of coinfection diseases (TB) and COVID-19 with the effect of vaccination. Tuberculosis (TB) and COVID-19 both are
infectious diseases that pose significant global health challenges. Evidence suggests that individuals with TB have a
higher risk of acquiring the COVID-19 infection. With the emergence of the COVID-19 pandemic, concerns have arisen
regarding the potential impact of the concomitant presence of TB and COVID-19.
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