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1. Introduction
R. Nevanlinna’s five and four value uniqueness theorems[15-16] are the starting points of the modern uniqueness theory 

of meromorphic functions. These two famous results have been generalized and extended by many authors in different 
directions. In the paper, we focus on the following improvement of the four value theorem by G. Brosch[2, 16].

Theorem A.[2,16] Let f and g be two distinct non-constant meromorphic functions sharing 0, 1, ∞ counting 
multiplicities (CM). Let a, b be two complex numbers such that a, b ∉ {0, 1, ∞}. If f - a and g - b share 0 ignoring 
multiplicities (IM), then f is a bilinear transformation of g.

Let us consider the celebrated functions of G. G. Gundersen[3]: 
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. Then f and g 

share 0, 1, ∞ IM and 1 1,
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f g+ −  share 0 CM, but f is not a bilinear transformation of g. Therefore Theorem A does not 

hold for IM shared values.
T. C. Alzahary and H. X. Yi[1] used the notion of weighted sharing of values, introduced in [6,7], to relax the 

hypothesis on value sharing in Theorem A. Before starting the result of Alzahary and Yi, let us recall the definition of 
weighted sharing of values.

Definition 1.1.[6, 7] Let k be a non-negative integer or infinity. For { }a∈ ∪ ∞ , we denote by Ek (a; f ) the set of all 
a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If Ek (a; f ) = Ek (a; g), 
we say that  f , g share the value a with weight k.

The definition implies that if f,  g share a value a with weight k, then zo is a zero of f - a with multiplicity m(≤ k) if 
and only if it is a zero of g - a with multiplicity m(≤ k) and zo is a zero of f - a with multiplicity m(> k) if and only if it is a 
zero of g - a with multiplicity n(> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f,  g share (a, k) then f , g share 
(a, p) for all integers p, 0 ≤ p < k. Also, we note that f ,  g share a value a IM or CM if and only if f , g share (a, 0) or (a, ∞) 
respectively.

We now state the result of Alzahary and Yi[1].
Theorem B. [1] Let f and g be two non-constant meromorphic functions sharing (a1, 1), (a2, ∞) and (a3, ∞), where 

{a1, a2, a3} = {0, 1, ∞}. Let a, b be two complex numbers such that a, b ∉ {0,1,∞}. If f - a and g - b share (0, 0) then f is a 
bilinear transformation of g. Moreover,  f and g satisfy one of the following relations: (i) f ≡ g, (ii)  f g ≡ 1, (iii) bf  ≡ ag, (iv)  
f + g ≡ 1, (v)  f ≡ ag, (vi)  f  ≡ (1 - a)g + a, (vii) (1 - b) f ≡ (1 - a)g + (a - b), (viii) f (a - 1 + g) ≡ ag, (ix) f{(b - a)g + (a - 1)
b} ≡ a(b - 1)g, (x) f (g - 1) ≡g.

The cases (ii) and (v) may occur if ab = 1, cases (iv), (viii) may occur if a + b = 1, cases (vi), (x) may occur if ab = a 
+ b.

In 2007 the first author and P. Sahoo[13] improved Theorem B in the following manner.
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Theorem C.[13] Let f and g be two distinct non-constant meromorphic functions sharing (a1, 1), (a2, m), (a3, k), where (m 
- 1)(mk - 1) > (1 + m)2 and {a1, a2, a3} = {0, 1, ∞}. If for two values a, b ∉ {0,1,∞} the functions f - a and g - b, share (0, 0), 
then f g share (0, ∞), (1, ∞), (∞, ∞) and f - a, g - b share (0, ∞). Also, there exists a non-constant entire function λ such that 
f  and g are one of the following forms :

(i) f = aeλ and g = be-λ, where ab = 1.
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The purpose of the paper is to improve Theorem C, which in turn is an improvement of Brosch's result. To state our 
result we need the following definition.

Definition 1.2. For a meromorphic function f and { }a∈ ∪ ∞ , we denote by ( ; )E a f  the set of distinct a-points of f. If 
k is a positive integer, then we denote by ) ( ; )kE a f  the set of those distinct a-points of f whose multiplicities do not exceed k. 

We now state the main result of the paper.
Theorem 1.1. Let f and g be two distinct non-constant meromorphic functions sharing (a1, 1), (a2, m), (a3, k), where

(m - 1)(mk - 1) > (1 + m)2 and {a1,a2 ,a3} = {0,1,∞}. If for two values a, b ∉ {0,1,∞}, 2) ( ; ) ( ; )E a f E b g⊂  and 
2) ( ; ) ( ; )E b g E a f⊂ , then the conclusion of Theorem C holds.

Following example shows that the condition 2) ( ; ) ( ; )E a f E b g⊂  and 2) ( ; ) ( ; )E b g E a f⊂  is sharp.

Example 1.1. Let f (z) = e2z + ez + 1 and g(z) = e-2z + e-z + 1. Then f and g share (0, ∞), (1, ∞) and (∞, ∞). Suppose that 

1
3=
4

a  and b1 = 3. Then 2
1

1( )
2

zf a e− = +  and g - b1 = (e-z - 1)(e-z + 2). Hence 2) 1 1( ; ) ( ; )E a f E b g⊂  and 2) 1 1( ; ) ( ; ).E b g E a f⊂

Next suppose that 2 2
3
4

a b= = . Then 2
2

1( )
2

zf a e− = +  and 2
2

1( )
2

zg b e−− = + . Hence 1) 2 2( ; ) ( ; )E a f E b g⊂  and 

1) 2 2( ; ) ( ; )E b g E a f⊂ .

Clearly, we see that f and g do not assume any one of the forms given in Theorem C.
We do not explain the standard definitions and notations of the value distribution theory as those are available in [5]. 

We, however, explain the following notations used in the paper.
Definition 1.3. Let f  be a meromorphic function and { }a∈ ∪ ∞ . For a positive integer p, we denote by N (r, a;  f | ≤ p)
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(N  (r, a; f  | ≤ p)) the counting function (reduced counting function) of those a-points of f whose multiplicities are less than 
or equal to p.

Definition 1.4. Let f , g be two meromorphic functions and { }a∈ ∪ ∞ . We denote by N (r, a; f  | g = b) (N  (r, a; f  | ≤ 
g = b)) the counting function (reduced counting function) of those a-points of f which are b points of g also.

Definition 1.5. Let f , g be two meromorphic functions and { }a∈ ∪ ∞ . For a positive integer p, we denote by N (r, a; 
f | g = b, ≥ p)(N  (r, a; f  | g = b, ≥ p)) the counting function (reduced counting function) of those a-points of which are b-points 
of g with multiplicities not less than p.

Definition 1.6. Let f , g be two meromorphic functions and { }a∈ ∪ ∞ . We denote by N1) (r, a; f | g = b) and N1) (r, a; 
f | g ≠ b) the counting functions of simple a-points of f which are the b-points of g and are not the b-points of g respectively.

In the paper, we denote by f and g two non-constant meromorphic functions defined in the open complex plane 
unless otherwise stated.

2. Lemmas
In this section, we present some lemmas which are required in the sequel.
Lemma 2.1.[3] If f , g share (0, 0), (1, 0) and (∞, 0), then T (r, f ) ≤ 3T (r, g) + S (r, f ) and T (r, g) ≤ 3T (r, f ) + S (r, g).
This shows that S (r, f ) = S (r, g) and we denote them by S (r).
Lemma 2.2.[8] Let f , g share (0, 1), (1, m), (∞, k) and f g≡/ , where (m - 1)(mk - 1) > (1 + m)2. Then for a = 0, 1, ∞, N  (r, 

a; f  |≥ 2) + N  (r, a; g |≥ 2) = S (r).
Lemma 2.3.[9, 11] Let f , g share (0, 1), (1, m), (∞, k) and f g≡/ , where (m - 1)(mk - 1) > (1 + m)2. If f  is not a bilinear 

transformation of g, then each of the following holds:

(i) T (r, f ) + T (r, g) = N (r, 0; f  | ≤ 1) + N (r, 1; f  | ≤ 1) + N (r, ∞; f  | ≤ 1) + N0 (r) + S (r),

(ii) T (r, f ) = N (r, 0; g' | ≤ 1)+ N0 (r) + S(r),

(iii) T (r, g) = N (r, 0; f ' | ≤ 1)+ N0 (r) + S (r),

(iv) N1 (r) = S (r),

(v) N0 (r, 0; g' | ≥ 2) = S (r),

(vi) N0 (r, 0; f ' | ≥ 2) = S (r),

(vii) N  (r, 0; f ' | ≥ 2) = S (r),

(viii) N  (r, 0; g' | ≥ 2) = S (r),

(ix) N (r, 0; f - g | ≥ 2) = S (r),

(x) N (r, 0; f - g | g = ∞) = S (r),

(xi) N (r, 0; f - g | f  = ∞) = S (r),

where N0 (r)(N1 (r)) denotes the counting function of those simple (multiple) zeros of f - g which are not the zeros of

f ( f - 1) and 1
f

 ; also, N0 (r, 0; g' | ≥ 2)(N0 (r, 0; f ' | ≥ 2)) is the counting function of those multiple zeros of g'( f ') which 

are not the zeros of g( g - 1) and so not of  f ( f - 1). 

Lemma 2.4. Let f , g share (0, 1), (1, m), (∞, k) and f g≡/ , where (m - 1)(mk - 1) > (1 + m)2. If f  is not a bilinear 
transformation of g then each of the following holds: 

(i) N (r, a; f  | ≥ 3) + N (r, a; g | ≥ 3) = S (r),



Contemporary Mathematics 66 | Indrajit Lahiri, et al.

(ii) T (r, f ) = N (r, a; f  | ≤ 2) + S (r),
(iii) T (r, g) = N (r, a; g | ≤ 2) + S (r).

Proof. By (v) and (vi) of Lemma 2.3, we get

N (r, a; f  | ≥ 3) + N (r, a; g | ≥ 3) ≤ 2N0 (r, 0; f ' | ≥ 2) + 2N0 (r, 0; g' | ≥ 2) = S (r)

which is (i).
By the second fundamental theorem, Lemma 2.2, (i), (iii) and (vi) of Lemma 2.3, we get

2T (r, f ) ≤ 2N (r, a; f ) + N (r, 0; f | ≤ 1) + N (r, 1; f | ≤ 1) + N (r, ∞; f | ≤ 1) - N0 (r, 0; f ' | ≤ 1) + S (r)

               = N (r, a; f ) + T (r, f ) + T (r, g) - N0 (r) - N0 (r, 0; f ' | ≤ 1) + S (r)

               = N (r, a; f ) + T (r, f ) + N (r, 0; f ' | ≤ 1) - N0 (r, 0; f ' | ≤ 1) + S (r)                       (1)

where N0 (r, 0; f ' | ≤ 1) denotes the counting function of those simple zeros of f ' which are not the zeros of
Now by Lemma 2.2, we get

N (r, 0; f ' | ≤ 1) ≤ N0 (r, 0; f ' | ≤ 1) + N  (r, 0; f | ≥ 2) + N  (r, 1; f  | ≥ 2)

                         = N0 (r, 0; f ' | ≤ 1) + S (r)

and so N (r, 0; f ' | ≤ 1) ≤ N0 (r, 0; f ' | ≤ 1) + S (r). Hence from (1) and (i) of this lemma we get

T (r, f ) = N (r, a; f  | ≤ 2) + S (r)

which is (ii). Similarly we can prove (iii). This proves the lemma.

Lemma 2.5. [10] Let f , g share (0, 1), (1, m), (∞, k) and f g≡/ , where (m - 1)(mk - 1) > (1 + m)2. If 1
1

f
g

α −
=

−
 and 

g
f

β =  then N  (r, a; α) + N  (r, a; β) = S (r) for a = 0, ∞.

Following lemma is a variant of Lemma 2.7[1] and Theorem 2.5[5].
Lemma 2.6. Let a1, a2, a3 be distinct meromorphic functions such that T (r, aj) = S (r, f, g) for j = 1, 2, 3. Then

T (r, f ) ≤ N  (r, 0; f - a1) + N  (r, 0; f - a2) + N  (r, 0; f - a3) + S (r; f , g)

where S (r; f , g) = o{T (r, f ) + T (r, g)} as r → ∞ possibly outside a set of finite linear measure.
Lemma 2.7. Let  f  be a non-constant meromorophic function satisfying the Riccati dierential equation

f ' = a + bf + cf 2                                                                                                                  (2)

where , , ( 0)a b c ≡/  are meromorphic functions such that T (r, a) + T (r, b) + T (r, c) =S (r, f ).
Further let ρ be a meromorphic function with

(i) If ρ satisfies (2) then N  (r, 0; f - ρ) = S (r, f ).

(ii) If ρ does not satisfy (2) then N  (r, 0; f - ρ) = S (r, f ).

(iii) If ρ does not satisfy (2) then N (r, 0; f - ρ | ≥ 2) = S (r, f ).
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Proof. Since (i) and (ii) are proved in Theorem 5.22[16], we prove only (iii).
Putting f = h + ρ in (2) we get
h' = μ + (b + 2cρ) h + ch2

where μ = -ρ' + a + cρ2 + bρ and T (r, μ) = S (r, f ).

Since ρ does not satisfy (2), we get 0µ ≡/ . Let z0 be a zero of h with multiplicity p (≥ 2) which is not a pole of b + 2cρ 
and c. Then from above we see that z0 is a zero of μ with multiplicity p - 1. Therefore

N (r, 0; f - ρ | ≥ 2) = N (r, 0; h | ≥ 2)

                             ≤ 2T (r, μ) + 2T (r, b + 2cρ) + 2T (r, c)

                             = S (r, f )

This proves the lemma.
Following lemma is an easy consequence of Theorem 2[14] and the Valiron-Mohonko lemma.
Lemma 2.8. Let f and g be two nonconstant meromorphic functions sharing (0, ∞), (1, ∞), (∞, ∞). If f is not a bilinear 

transformation of g and N (r, a; f | ≤ 1) = S (r, f ) for some a (≠ 0, 1, ∞), then T (r, g) = T (r, f ) + S (r).
Lemma 2.9. [12] Let f , g share (0, 1), (1, m), (∞, k) and f g≡/ , where (m - 1)(mk - 1) > (1 + m)2 . If N0 (r) + N1 (r) ≥ λT

(r, f ) + S (r) for some 1
2

λ >  then f  is a bilinear transformation of g and N0 (r) + N1 (r) = T (r, f ) + S (r) = T (r, g) + S (r).

Lemma 2.10. [10] Let f and g be distinct meromorphic functions sharing (0, 0), (1, 0) and (∞, 0). If f is a bilinear 
transformation of g, then f and g satisfy one of the following:

(i) fg ≡ 1,

(ii) ( f - 1)( g - 1) ≡ 1,

(iii) f + g ≡ 1,

(iv) f ≡ cg,

(v) ( f - 1) ≡ c ( g - 1),

(vi) {(c - 1) f + 1}{(c - 1) g - c} + c ≡ 0, where c (≠ 0, 1, ∞) is a constant.

Lemma 2.11. Let f and g be distinct meromorphic functions sharing (0, 0), (1, 0) and (∞, 0). Further suppose that f is 
a bilinear transformation of g and 1) ( ; ) ( ; )E a f E b g⊂  and 1) ( ; ) ( ; )E b g E a f⊂ , where a, b ∉ {0, 1, ∞}, then there exists a 
non-constant entire function λ such that f  and g are one of the following forms :

(i) f = aeλ and g = be-λ, where ab = 1.

(ii) f = 1 + aeλ and 11 (1 )g e
b

λ−= + − . where ab = a + b.

(iii)  and ,  where 1.
1

a ef g a b
a e b e

λ

λ λ= = + =
+ − +

(iv) 1 and ,  where 1.
1 1

e a bef g ab
e e

λ λ

λ λ

− −
= = =

− −
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(v)  and ,  where .be a be af g a b
be b ae a

λ λ

λ λ
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= = ≠

− −

(vi)  and ,  where .
1 1

a bef g ab a b
e e

λ

λ λ= = = +
− −

(vii) ( ) and ,  where .
( 1)(1 ) ( 1)(1 )

b a b a ef g a b
b e a e

λ

λ λ

− −
= = ≠

− − − −

(viii) 1 and (1 ),  where 1.bf a e g b a b
e

λ
λ

−
= + = + + =

(ix) ( 1) ( 1) ( 1) and 1 ,  where .
( )

a b b a a bf e g a b
a b a b a b e

λ
λ−

 − − −
= − = − ≠ 

− − − 

Also f , g share (0, ∞), (1, ∞), (∞, ∞) and f  - a, g - b share (0, ∞).
Proof. Clearly,  f  and g satisfy one of the relations given in Lemma 2.10.
Let fg ≡ 1. Then f and g do not assume the values 0 and ∞. Hence there exists a non-constant entire function λ such 

that f = aeλ and 1g e
a

λ−= . If f - a has no simple zero then 1( ; )
2

a fΘ ≥ , which is impossible. Hence f - a must have simple 

zeros. Similarly, g - b must have simple zeros. So by the given condition ab = 1. Therefore f = aeλ and g = beλ, where ab = 1. 
This is the possibility (i). 

Suppose that ( f - 1)( g - 1) ≡ 1. Then f and g do not assume the values 1 and ∞. Hence there exists a non-constant 

entire function λ such that f = 1 + aeλ and 11g e
a

λ−= + . Since f - a and g - b must have simple zeros, by the given condition 

we get ab = a + b. Therefore f = 1+ aeλ and 11 (1 )g e
b

λ−= + − , where ab = a + b. This is the possibility (ii).

Suppose that f + g ≡ 1. Then f and g do not assume the values 0 and 1. So there exists a non-constant entire function λ 

such that af
a eλ

=
+

 and eg
a e

λ

λ=
+

. Since f  - a and g - b must have simple zeros, we get a + b = 1. Therefore af
a eλ

=
+

 

and 
1

eg
b e

λ

λ=
− +

, where a + b = 1. This is the possibility (iii).

Suppose that f = cg. Then f does not assume the values 1 and c. Hence there exists a non-constant entire function λ 

such that 
1

e cf
e

λ

λ

−
=

−
 and e cg

ae a

λ

λ

−
=

−
.

Suppose that f - a has no simple zero. Then 
1( ; )
2

a fΘ ≥  and so c = a. Hence 
1

e af
e

λ

λ

−
=

−
 and 

e ag
ae a

λ

λ

−
=

−
. If z0 is a 

simple zero of g - b, by the given condition we get 0 0
1( ) ( ) 1b g z f z
a

= = = , which is impossible. So g - b has no simple 

zero and by the second fundamental theorem, we get bc = 1. Therefore 
1

e af
e

λ

λ

−
=

−
 and 1

1
beg
e

λ

λ

−
=

−
, where ab = 1. This is 

the possibility (iv). 

Suppose that f - a has simple zeros. Then g - b has zeros and we see that bc = a. Since c ≠ 1, where we have a ≠ b. 

Therefore from above we get  and be a be af g
be b ae a

λ λ

λ λ

− −
= =

− −
, where a ≠ b. This is the possibility (v). 

Suppose that f - 1 ≡ c(g - 1). Then f does not assume the values 0 and 1 - c. So there exists a non-constant entire 

function λ such that 1 (1 ) and 
1 (1 )

c c ef g
e c e

λ

λ λ

− −
= =

− −
.

Suppose that f - a has no simple zero. Then 1( ; )
2

a fΘ ≥  and so c = 1 - a. Hence  and 
1 (1 )(1 )

a aef g
e a e

λ

λ λ= =
− − −

. If 
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g - b has simple zeros then a - 1 ≡ c(b - 1) and so b = 0, which is impossible. Hence g - b has no simple zero and so bc = 

c - 1. Therefore  and 
1 1

a bef g
e e

λ

λ λ= =
− −

, where ab = a + b. This is the possibility (vi). 

Suppose that f - a has simple zeros. Then g - b has zeros and we get c(b - 1) = a - 1 and so a ≠ b. Therefore 
( ) and 

( 1)(1 ) ( 1)(1 )
b a b a ef g

b e a e

λ

λ λ

− −
= =

− − − −
, where a ≠ b. This is the possibility (vii).

Suppose that {(c - 1) f + 1}{(c - 1)g - c}+ c ≡ 0. Then f does not assume the values ∞ and 
1

1 c−
. So there exists a

non-constant entire function λ such that 1 1+  and 1
1 1 (1 )

cf e g
c c c e

λ
λ

 
= = + 

− − − 
.

Suppose that f - a does not have any simple zero. Then 1( ; )
2

a fΘ ≥  and so a(1 - c) = 1. Hence f = a + eλ and 

(1 )(1 )ag a
eλ

= − + . Hence g - b has no simple zero and so b(c - 1) = c. Therefore f = a + eλ and 1(1 )bg b
eλ
−

= + , where a + b 

= 1. This is the possibility (viii).
Suppose that f - a has simple zeros. Then g - b has zeros and so ca(b - 1) = b(a - 1). Since c ≠ 1, we get a ≠ b. 

Therefore

( 1) ( 1) ( 1) and 1
( )

a b b a a bf e g
a b a b a b e

λ
λ

 − − −
= − = − 

− − − 

where a ≠ b. This is the possibility (ix).
Since f  and g are one of (i)-(ix), we can easily verify that f  and g share (0, ∞), (1, ∞), (∞, ∞) and  f - a, g - b share (0, 

∞). This proves the lemma.
Lemma 2.12. Let f , g share (0, 1), (1, m), (∞, k) and f g≡/ , where (m - 1)(mk - 1) > (1 + m)2. Then 

( , ) ( , ) ( )' 'T r T r S rα β
α β

+ = , where α, β are defined as in Lemma 2.5. 

Proof. Since 1  and 
1

f g
g f

α β−
= =

−
, we get T (r, α) = O{T (r, f ) + T (r, g)} and T (r, β) = O{T (r, f  ) + T (r, g)}.

So by Lemma 2.1, we see that S (r, α) and S (r, α) are replaceable by S (r).Now by Lemma 2.5 we get 

( , ) ( , ) ( , )' ' 'T r N r m rα α α
α α α

= =

              = N  (r, 0; α) + N  (r, ∞; α) + S (r, α)

              = S (r)

Similarly ( , ) ( )'T r S rβ
β

= . This proves the lemma. 

3. Proof of theorem 1.1
Proof. We show that f  is a bilinear transformation of g and so the theorem follows from Lemma 2.11.
First, we suppose that a1 = 0, a2 = 1 and a3 = ∞. We suppose further that  f  is not a bilinear transformation of g. Then α, 

β and αβ are non-constant. We now consider the following cases.

         Case I. Let a = b. We put '( ) '( )
( 1) ( 1)

f f a g g a
f f g g

φ − −
= −

− −
. Suppose that 0φ ≡/ . Since (1 )' 'a aβ αφ

β α
= + − , by Lemma 2.12 we get

( , ) ( )T r S rφ = . By the given condition, we see that ( , ; 2) 2 ( ,0; ) ( )N r a f N r S rφ≤ ≤ = , which contradicts Lemma 2.4 (ii). 
Therefore 0φ ≡  and so
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( ) ( )
( 1) ( 1)

f  ' f a g' g a
f f g g

− −
≡

− −                                                                                                         (3)

From (3) we see that a double zero of  f  - a is a common zero of  f ' and g' and so it is a zero of 
'β
β . Therefore by 

Lemma 2.12 we get

( , ; 2) 2 ( ,0; ) ( )'N r a f N r S rβ
β

= ≤ =

where by N (r, a; f | = 2) we denote the counting function of double zeros of f - a, counted with multiplicities.
Similarly, we get N (r, a; g | = 2) = S (r). From Lemma 2.4 we see in view of the hypotheses that

N0 (r) + N1 (r) ≥ N (r, a; f  | ≤ 1) + S(r) = T (r, f ) + S (r)

which contradicts Lemma 2.9.
Case II. Let a ≠ b. We now consider the following subcases. 
Subcase (i). Let N (r, b; g | ≥ 2) ≠ S(r). We define φ  as in Case I. Since a double zero of g - b is a zero of  f - a, if 

0φ ≡/  then by (i) of Lemma 2.4 and Lemma 2.12 we get

( , ; 2) 2 ( ,0; ) ( )'N r a g N r S rβ
β

= ≤ =

which is a contradiction. Therefore 0φ ≡  and (3) holds.

From (3) we see that a double zero of f - a, is a common zero of  f ' and g' and so it is a zero of 'β
β

. Similarly from (3) 

we see that a double zero of g - a is a zero of 'β
β

. Therefore from Lemma 2.12 we get 

( , ; 2) 2 ( ,0; ) ( )'N r a f N r S rβ
β

= ≤ =
                                                                                   (4)

and 

( , ; 2) 2 ( ,0; ) ( )'N r a g N r S rβ
β

= ≤ =                                                                                     (5)

Since 2) ( ; ) ( ; )E b g E a f⊂ , it follows from (3) that g - b has no simple zero. Since 2) ( ; ) ( ; )E b g E a f⊂  and 

2) ( ; ) ( ; )E a f E b g⊂ , it follows from above and (4) in view of (ii) of Lemma 2.4

N (r, b; g | = 2) = 2N (r, a; f  | ≤ 1) + S (r)

Therefore by Lemma 2.4 we obtain 

T (r, g) = 2T (r, f ) + S (r)                                                                                                    (6)

From (3) we can verify that f and g share (0, ∞), (1, ∞), (∞, ∞). Since g - b has no simple zero, by Lemma 2.8 we see 
that T (r,g) = T (r, f ) + S (r), which contradicts (6).

Subcase (ii). Let N (r, a; f | ≥ 2) ≠ S (r). Supposing 

( ) ( )
( 1) ( 1)

f f b g g b
f f g g

υ
′ ′− −

= −/
− −

and proceeding as Subcase (i), we arrive at a contradiction.
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Subcase (iii). Let N (r, a; f  |≥ 2) + N (r, b; g |≥ 2) = S (r). We note that 1 (1 ) and 
1 1

f gα α β
αβ αβ
− −

= =
− −

.

We put F = ( f - a)(1 - αβ) = aαβ - α + 1 - a and 'Fw
F

= . Since 1
( 1)
g f

f g
αβ −

− =
−

, we get ( )
( 1)
g fF f a

f g
−

= −
−

. Since 

by Lemma 2.5 N  (r, ∞; F ) = S (r) and w has only simple poles, we get

T (r,w) = m (r, w) + N (r, w) = N  (r, 0; F ) + S (r)                                                             (7)

By Lemma 2.2 and (ix) and (xi) of Lemma 2.3 we get

 N  (r, 0; F | ≥ 2) ≤ N (r, a; f  | ≥ 2) + N (r, 0; f - g | ≥ 2) + N  (r, ∞; f  | ≥ 2) + N (r, 0; f - g | f = ∞)

                          = S (r)                                                                                                         (8)

Hence from (7) and (8) we get in view of (ix) of Lemma 2.3

T (r, w) = N (r, 0; F | ≤ 1) + S (r)

             = N (r, a; f  | ≤ 1) + N0 (r) + N2 (r) + S (r)                                                                 (9)

where N2 (r) is the counting function of those simple poles of f  which are non-zero regular points of  f − g.
From the definitions of α and β we get

( )
( ) ( 1)

' ' ' f  ' g fg
' f f

α β α β
αβ α β

   −
− + =   −                                                                                      (10)

From (10) we see that a simple pole of f which is a non-zero regular point of f − g is a regular point of  

( )
' ' 'g

'
α β α β
αβ α β

  
− +  

  
. Hence it is either a pole of 

( )
'

'
α β
αβ

 or a zero of ' 'α β
α β
+ . Therefore by Lemma 2.12 and the first 

fundamental theorem we get

2 ( ) ( , ) ( , )
( )

' ' 'N r T r T r
'

α β α β
αβ α β

≤ + +

          

1( , ) ( , ) ( , ) (1)
1 ''

' 'T r T r T r oβα
α β

α β
α β

≤ + + +
+ ⋅

          
2 ( , ) 2 ( , ) (1)' 'T r T r oα β

α β
≤ + +

          = S (r)

So from (9) we get

T (r, w) = N (r, a; f  |≤ 1) + N0 (r) + S (r)                                                                             (11)

By (ii) of Lemma 2.4 we get from (11)

T (r, w) = T (r, f ) + N0 (r) + S (r)                                                                                         (12)

Since 2) ( ; ) ( ; )E a f E b g⊂  and 2) ( ; ) ( ; )E b g E a f⊂ , we obtain from (ii) and (iii) of Lemma 2.4
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T (r, f ) = T (r, g) + S (r)                                                                                                         (13)

Let

1
1( )
1

aT b
b

γ δ−
= −

−

{ }2 2
2

1 ' ( ' )
2( 1)

aT b
b

γ γ δ δ−
= + − +

−

{ }3 3
3

1and '' 3 ' ( '' 3 ' )
6( 1)

aT b
b

γ γγ γ δ δδ δ−
= + + − + +

−
,

where ( ) and ' ' ' 'α αβ α βγ δ
α αβ α β

= = = + . Using Lemma 2.12 we can verify that T (r, γ) = S (r) and T (r, δ) = S (r).

If T1 ≡ 0, from (10) we see that

( )( )
( 1)

f  ' g fg b
f f

δ −
− =

−                                                                                                          (14)

Since 2) 2)( ; ) ( ; )E a f E b g⊂  it follows from (14) that a simple zero of f − a, which is neither a zero nor a pole of δ, is a 
zero of g − b and so a zero of f '. Hence N (r, a;  f | ≤ 1) = S (r), which contradicts (ii) of Lemma 2.4. Therefore T1 ≡/  0.

Let z0  be a simple zero of f − a and T1 (z0) ≠ 0. Then g(z0) = b and so 1
1

a
b

α −
=

−
 and 0( ) bz

a
β = . Expanding F around z0 

in Taylor’s series we get 

−F (z) = T1 (z0)(z − z0) + T2 (z0)(z − z0)
2 + T3 (z0)(z − z0)

3 + O((z − z0)
4)                               (15)

Hence in some neighbourhood of z0 we get

20
0 0 0

0

( )1( ) ( )( ) (( ) )
2

B z
w z C z z z O z z

z z
= + + − + −

−                                                          (16)

2
32 2

1 1 1

22
where  and .

TT TB C
T T T

 
= = −  

 

We put

H = w′ + w2 − Bw − A                                                                                                         (17)

2
where 3

4
BA C B'.= − −

T (r, A) + T (r, B) + T (r, C) = S (r)

Clearly, T (r, A) + T (r, B) + T (r, C) = S (r) and since 'Fw
F

=  and ( )
( 1)
g fF f a

f g
−

= −
−

, by Lemma 2.1 and (12), we get

S (r, w) = S (r).
It is now easy to verify that z0 is a zero of H. Let H ≡/  0. Then

N (r, a; f | ≤ 1) ≤ N (r, 0; H ) ≤ T (r, H ) + O(1) ≤ N (r, H ) + S (r)                                     (18)

By (ii) of Lemma 2.4 and (18) we obtain
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T (r, f ) ≤ N (r, H ) + S (r)                                                                                                    (19)

Let z1 be a pole of F. Then z1 is a simple pole of w. So if z1 is not a pole of A and B then z1 is at most a double pole of H. 
Hence by Lemma 2.5 we get

N (r, ∞; H | F = ∞) ≤ 2N  (r, ∞; F ) + S (r) = S (r)                                                               (20)

Let z2 be a multiple zero of F. Then z2 is a simple pole of w. So if z2 is not a pole of A and B then z2 is a pole of H of 
multiplicity at most two. Hence by (8) we get 

N (r, ∞; H | F = 0, ≥ 2) ≤ 2N  (r, 0; F | ≥ 2) + S (r) = S (r)                                                   (21)

Let z3 be a simple zero of F which is not a pole of A and B. Then in some neighbourhood of z3 we get f (z) = (z − z3 ) 0φ
(z), where 0φ  is analytic at z3 and 0φ (z3) ≠ 0. Hence, in some neighborhood of z3 we obtain 

0
0

0 3

2 1( ) ( ) ,H z B
z z

φ υ
φ
′

= − + /
−

where 20 0 0
0

0 0 0

( ) ( ) B Aφ φ φυ
φ φ φ
′ ′ ′
′= + − −/ . This shows that z3 is at most a simple pole of H. 

Since a simple zero of f − a is a zero of H, N (r, 0; F | f = t) ≤ N (r, 0; f − g |≥ 2) for t = 0, 1 and
( )( )

( 1)
f a g fF

f g
− −

=
−

, we get from (20) and (21) in view of (ix) of Lemma 2.3 

N (r, H ) = N (r, ∞; H | F = ∞) + N (r, ∞, H | F = 0) + S (r)

               ≤ N (r, 0; F | ≤ 1) − N (r, a, f  | ≤ 0) + S (r)

               = N0 (r) + N2 (r) + S (r)

               = N0 (r) + S (r)                                                                                                       (22)

From (19) and (22) we obtain T (r, f ) ≤ N0 (r) + S (r), which by (iv) of Lemma 2.3 contradicts Lemma 2.9.
Let H ≡ 0, so that w satisfies the Riccati differential equation

w′ = A + Bw − w2                                                                                                                  (23)

From the definitions of F and w we can easily deduce the following 

F (w − δ ) = (δ − γ )(α − 1φ )                                                                                                  (24)

F (w − γ ) = a(δ − γ )(αβ − 2φ )                                                                                              (25)

Fw = aδα (β − 3φ )                                                                                                                 (26)

1 2 3
(1 ) ( 1)where ,  and .

( )
a a

a a
δ γφ φ φ

δ γ δ γ δ
− −

= = =
− −

Since α, β and αβ are non-constant, we see that that jφ  ≡/  0, ∞ for j = 1, 2, 3. Also, since T (r, 1φ ) = S (r) = S (r, α, β ), 
we get by Lemma 2.5 and Lemma 2.6
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T (r,α ) ≤ N  (r, 0; α) + N  (r, ∞; α) + N  (r, 0; α − 1φ ) + S (r; α, β)

            = N  (r, 0; α − 1φ ) + S (r)
and so

T (r, α) = N  (r, 0; α − 1φ ) + S (r) = N (r, 0; α − 1φ ) + S (r)                                                    (27)

From (24) and (8) we get

N  (r, 0; w − δ) ≤ N  (r, 0; α − 1φ ) + N  (r, 0; δ − γ) + S (r)

                        = N  (r, 0; α − 1φ ) + S (r)

                        = N  (r, 0; F (w − δ)) + S (r)

                        ≤ N  (r, 0; w − δ) + N  (r, 0; F | ≥ 2) + S (r)

                        ≤ N  (r, 0; w − δ) + S (r)

and so from (27) we obtain

T (r, α) = N  (r, 0; w − δ) + S (r)                                                                                           (28)

By Lemma 2.5 and the second fundamental theorem, we get

T (r, α) = N  (r, 1; α) + S (r)                                                                                                 (29)

Since 1
1

f g
g

α −
− =

−
 and by (ix) of Lemma 2.3

( ,0; 1) ( ,0; 2) ( )
1

f gN r g N r f g S r
g
−

= ≤ − ≥ =
−

we get by Lemma 2.2 and (iv)and (x) of Lemma 2.3

N  (r, 1; α) = N0 (r) + N (r, 0; f  | ≤ 1) + S (r)                                                                       (30)

because N2 (r) = S (r).
Therefore, from (28)-(30) we obtain

N  (r, 0; w − δ) = N (r, 0; f  | ≤ 1) + N0 (r) + S (r)                                                                 (31)

In a similar manner using (25) and (26), we get

N  (r, 0; w − γ) = N (r, ∞; f  | ≤ 1) + N0 (r) + S (r)                                                                (32)

N  (r, 0; w) = N (r,1; f  | ≤ 1) + N0 (r) + S (r)                                                                        (33)

N  (r, 1 ; αβ) = N (r, ∞; f  | ≤ 1) + N0 (r) + S (r)                                                                   (34)

N  (r, 1; β) = N (r, 1; f  | ≤ 1) + N0 (r) + S (r)                                                                       (35)
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T (r, αβ) = N  (r, 1; αβ) + S (r)                                                                                             (36)

and 

T (r, αβ) = N  (r, 1; β) + S (r)                                                                                               (37)

If w = 0 is a solution of (23) then by (i) of Lemma 2.7, (33), (35) and (37), we get T (r, β ) = S (r). So

N (r, a; f  |≤ 1) ≤ N (r, b
a

; β) ≤ T (r, β) + O(1) = S (r)

which contradicts (ii) of Lemma 2.4.
If w = γ is a solution of (23) then by (i) of Lemma 2.7, (32), (34) and (36), we get T (r, αβ) = S (r). So 

( 1)( , ; | 1) ( , ; ) ( , ) (1) ( )
( 1)

b aN r a f N r T r O S r
a b

αβ αβ−
≤ ≤ ≤ + =

−

which contradicts (ii) of Lemma 2.4.
If w = δ is a solution of (23) then by (i) of Lemma 2.7, (29), (30) and (31), we get T (r, α) = S (r). So 

1( , ; | 1) ( , ; ) ( , ) (1) ( )
1

aN r a f N r T r O S r
b

α α−
≤ ≤ ≤ + =

−

which contradicts (ii) of Lemma 2.4.
Therefore w = 0, γ and w = δ are not solutions of (23). Now by (ii) and (iii) of
Lemma 2.7. (12), (31)-(33) we obtain

T (r, f ) = N (r, 0; f  | ≤ 1) + S (r)                                                                                          (38)

T (r, f ) = N (r, ∞; f  | ≤ 1) + S (r)                                                                                         (39)

and

T (r, f ) = N (r, 1; f  | ≤ 1) + S (r)                                                                                          (40)

Now by (i) of Lemma 2.3, (13) and (38)-(40), we get

3T (r, f ) = N (r, 0; f  | ≤ 1) + N (r, 1; f  | ≤ 1) + N (r, ∞; f  | ≤ 1) + S (r)

               = T (r, f ) + T (r, g) − N0 (r) + S (r)

              = 2T (r, f ) − N0 (r) + S (r)

and so T (r, f ) + N0 (r) = S (r), which is a contradiction.
Therefore f is a bilinear transformation of g.
Let a1 = 1, a2 = 0 and a3 = ∞. We put f1 = 1− f and g1 = 1− g. Then f1, g1 share (0, 1), (1, m), (∞, k) and  

2) 1 1(1 ; ) (1 ; )E a f E b g− ⊂ −  and 2) 1 1(1 ; ) (1 ; )E b g E a f− ⊂ − . So f1 is a bilinear transformation of g1 and so f is a bilinear 
transformation of g.

Let a1 = ∞, a2 = 1 and a3 = 0. We put 2 2
1 1 and .f g
f g

= =  Then f2, g2 share (0, 1), (1, m), (∞, k) and 

2) 2 2 2) 2 2
1 1 1 1( ; ) ( ; ) and ( ; ) ( ; )E f E g E g E f
a b b a

⊂ ⊂ . So f2 is a bilinear transformation of g2 and so f is a bilinear 

transformation of g.
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Since m and k are  interchangeable, we need not consider the other permutations of a1, a2 and a3. This proves the 
theorem.
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