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1. Introduction
The concatenation model is one of the most innovative and very well-thought models that has been ever reported 

in the field of optical solitons. This is a combination of three widely recognized equations, namely the nonlinear 
Schrödinger’s equation (NLSE), the Lakshmanan-Porsezian-Daniel (LPD) model, and the Sasa-Satsuma equation (SSE). 
The NLSE portion is considered with power-law of nonlinearity. Such a model with power-law has been well studied 
and several forms of preliminary results have been reported [1]. These include retrieval of optical solitons by the method 
of undetermined coefficients, enhanced Kudryashov’s approach and the improved extended tanh-function algorithm and 
finally locating the conservation laws. Now, it is time to examine this model from a numerical standpoint. The current 
paper explores the model with the usage of the Laplace-Adomian decomposition scheme. Several values of the power-
law parameter yielded the surface and contour plots of the bright solitons and they are presented in the rest of the paper 
after conducting the Laplace-Adomian decomposition scheme. The subsequent sections of this paper provide an in-
depth examination of the methodology, following a brief introduction to the concatenation model and its associated 
concepts.
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2. Model of concatenation with power-law nonlinearity
The concatenation model with power-law nonlinearity has recently been studied in [2-4] and is given in its 

dimensional form by:

( )2 22 2 2 22
1 1 2 3 4 5 6

n n n
t xx xxxx x x xx xxiq aq b q q c q q q q q q q q q q qσ σ σ σ σ σ +∗ ∗ + + + + + + + +  

(1)2 2
2 7 8 9 0, 1.n

xxx x xic q q q q q iσ σ σ ∗ + + + = = −  

In the present research, a complex-valued function q(x, t) is employed to describe the wave profile. t and x 
correspond, respectively, to temporal and spatial coordinates. The parameter n is derived from the power law of the self-
phase modulation (SPM). Specifically, 0 < n < 2 is necessary to prevent wave collapse [5]. In particular, b represents the 
coefficient of SPM and a represents the coefficient of chromatic dispersion (CD). Subsequently, the coefficient of c1 is 
derived from the Lakshmanan-Porsezian-Daniel (LPD) model, while c2 is derived from the Sasa-Satsuma equation (SSE).

The main motivation for this research arises from exhaustive theoretical and experimental inquiries extending over 
five decades, which have demonstrated the substantial influence of solitons in the practical realm of nonlinear wave 
mechanics. This study presents an algorithm for obtaining optical solitons that are capable of existing within the optical 
system as described by the model (1). This paper makes a valuable contribution to the science of nonlinear optics by 
investigating the characteristics and dynamics of bright solitons inside a model that incorporates various nonlinear 
processes. This find-ing improves our comprehension of intricate optical systems. Previous studies have examined the 
nonlinear Schrödinger equation with various potentials, which can be found in [6-10]. Additionally, there are more 
publications that address optical difficulties by utilizing fractional derivatives, which may be consulted in [11-15].

Bright solitons for the model (1) will be provided for the first time utilizing the Adomian decomposition procedure 
in conjunction with the well-known Laplace transform. The occurrence of solitons can also be guaranteed by several 
types of constraint requirements that arise inherently from the system’s structure. In subsequent sections, specific details 
are enumerated and displayed.

3. The governing model’s bright soliton
The bright soliton solution to (1), which was recently investigated employing the method of indeterminate 

coefficients in [2], is provided by

(2)( )0
1

( , ) sech [ ( )] ,i x tnq x t A B x vt e κ ω θ− + += −

where the bright soliton’s velocity v is computed as

(3)( )2
1 12 4 .v a cκ σ κ= − +

The frequency of the soliton κ is connected with some system coefficients as per

(4)2 8

1 4
.

2
c
c
σ

κ
σ

=
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The angular velocity ω is also calculated from the system coefficients, as

(5)
2 2 2 2 2

1 1 2 1 1 3 5
2

2 3 5

2 ( 12 ) ( 4 )( )
.

( )

[ ]a c a cκ σ κ σ σ κ σ σ
ω

σ σ σ

+ − + +
=

+ +

The width of the soliton as a function of n and some coefficients of the model is obtained as follows

(6)2 3 5

2 3 5

3
,B n

σ σ σ
κ

σ σ σ
− −

=
+ +

where the restriction must be imposed:

(7)2 3 5 2 3 5(3 )( ) 0.σ σ σ σ σ σ− − + + >

In finality, the amplitude of the soliton can be obtained by

(8)
2

2 3 5 2 3 52
2 3 5 6

(3 )[ ( 1)]
,

( )
n n

A
κ σ σ σ σ σ σ

σ σ σ σ
− − + + +

=
+ +

resulting in the ensuing restriction:

(9)2
6 2 3 5 2 3 5 2 3 5(3 )[ ( 1)]( ) 0.nκ σ σ σ σ σ σ σ σ σ σ− − + + + + + >

4. Materials and methods
In this part, we will provide a concise exposition of the widely used Adomian decomposition method and its 

enhanced version achieved through the integration of the approach with the Laplace transform [16-17]. The proposed 
methodology will be employed to acquire bright solitons for the novel concatenation model with power-law nonlinearity 
(1).

In general, using operators we can write Eq. (1) as

(10)( , ) ( , ) ( , ) 0tD q x t Lq x t Nq x t+ + =

subject to an initial condition

(11)( , 0) ( ).q x f x=

In the context of the operational Eq. (10), the operators involved act on a complex-valued function q as:

(12),t tD q iq=

(13)1 1 2 7( , ) ,xx xxxx xxxLq x t aq c q ic qσ σ= + +
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2 22 2 2
1 2 1 3 1 4 1 5( , ) | | ( ) n nn

x x xx xxNq x t b q q c q q c q q c q q c q qσ σ σ σ∗ ∗= + + + +

(14)2 2 2 2
1 6 2 8 9( ).n n

x xc q q ic q q q qσ σ σ+ ∗+ + +

It is clear that the operator N is nonlinear. Consequently, according to the Adomian decomposition approach, it may 
be decomposed into a series:

(15)0
0

( , ) ( , , ),k k
k

Nq x t M q q
∞

=
= …∑

where each of the Mn is an Adomian polynomial [18]. Also, by the Adomian decomposition method we have

(16)
0

( , ) ( , ).k
k

q x t q x t
∞

=
= ∑

To conveniently represent the nonlinear operator denoted by (15), we may write it as

(17)1 2 3 4 5 6 7 8( , ) ( ) ( , ),Nq x t N N N N N N N N q x t= + + + + + + +

where

2 22 2
1 2 1 2 3 1 3 4 1 4| | , ( ) , , ,nn

x x xxN q b q q N q c q q N q c q q N q c q qσ σ σ∗= = = =

(18)2 2 22 2
5 1 5 6 1 6 7 2 8 8 2 9, , , ,n n

xx x xN q c q q N q c q q N q ic q q N q ic q qσ σ σ σ+∗ ∗= = = =

and all nonlinear components N1, …, N8 can be decomposed into infinite series of Adomian polynomials given by:

(19)0 1
0

( , , , ),  1, 2, , 8.j
j kk

k
N q M q q q j

∞

=
= … = …∑

Mk
j represents the Adomian polynomials for each  j  = 1, 2, …, 8 in Eq. (19), which can be calculated using the 

formulas established in [19], i.e.

(20)
0

10 1
1 1

00

( ), 0

( , , , ) 1 ( 1) , 1, 2, 3, 

j
j knk j

i n i
i

N q k

M q q q
i q M k

k q

−

+ − −
=

=


… =  ∂
+ = … ∂

∑

In this context, the symbol  L  will be used to represent the Laplace transform, while  L  −1 will represent its inverse 
operator. Next, we apply the Laplace transform  L  to both sides of the operational Eq. (10) to obtain
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(21){ ( , ) ( , ) ( , )} 0.tD q x t Lq x t Nq x t+ + =L

By utilizing the initial condition, which is obtained from the initial profiles of the solitons  f , we acquire

1 1{ ( , )} ( ) { ( , )} { ( , )} .( )q x t f x Lq x t Nq x t
s s

= − +L L L (22)

By substituting the Eqs. (15), (16) and (19) into Eq. (22), we get

8

0
0 0 1 0

1 1( , ) ( ) ( , ) ( , , ) .{ } ( { ( )} { })j
k k kk

k k j k
q x t f x L q x t M q q

s s

∞ ∞ ∞

= = = =
= − + …∑ ∑ ∑∑L L L (23)

By equating both sides of Eq. (23), we can calculate the Laplace transform of each individual component of the 
solution, that is

(24)0
1{ ( , )} ( )q x t f x
s

=L

and for every m ≥ 1, the recursive relations are given by

8

1 0 11
1 0

1{ ( , )} { ( , )} ( , , ) .( { })j
m m mm

j m
q x t Lq x t M q q

s

∞

− −−
= =

= − + …∑ ∑L L L (25)

In order to calculate Adomian polynomials, we will focus on the nonlinear operators Nj acting on the function q 
described in Eq. (18). By applying the formula (20), for example, for n = 1, we may get the following results:



2 2
0 1 2 0 0 ,xM c q qσ ∗=

2 2
1 1 2 1 0 0 1 0( 2 ),x x xM c q q q q qσ ∗ ∗= +

1 2
0 0 0 ,M bq q∗=

1 2
1 1 0 0 1 0( 2 ),M b q q q q q∗ ∗= +

1 2 2
2 2 0 0 1 0 2 0 1 1 0( 2 2 ),M b q q q q q q q q q q∗ ∗ ∗ ∗= + + +

1 2 2
3 3 0 1 1 2 1 0 1 2 0 0 3 0 0 1 2( 2 2 2 2 ),M b q q q q q q q q q q q q q q q q∗ ∗ ∗ ∗ ∗ ∗= + + + + +

1 2 2 2
4 4 0 2 1 0 2 3 1 0 2 2 0 1 3 0 0 4 0 1 1 2 0 1 3( 2 2 2 2 2 2 ),M b q q q q q q q q q q q q q q q q q q q q q q q q∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + + + +
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4
0 1 4 0 0 0 ,xxM c q q qσ ∗=

4
1 1 4 1 0 0 0 1 0 0 0 1( ),xx xx xxM c q q q q q q q q qσ ∗ ∗ ∗= + +

4
2 1 4 2 0 0 1 1 0 0 2 0 1 0 1 0 1 1 0 0 2( ),xx xx xx xx xx xxM c q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +

4
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0 1 2 0 0 3 ),xx xxq q q q q q∗ ∗+ +

4
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0 3 1 2 0 2 1 1 2 0 2 2 1 0 3 0 1 3 0 0 4 ),xx xx xx xx xx xx xxq q q q q q q q q q q q q q q q q q q q q∗ ∗ ∗ ∗ ∗ ∗ ∗+ + + + + + +

2 2 2
2 1 2 2 0 0 1 0 2 0 1 1 0( 2 2 ),x x x x x xM c q q q q q q q q q qσ ∗ ∗ ∗ ∗= + + +

2 2 2
3 1 2 3 0 1 1 2 1 0 1 2 0 0 3 0 0 1 2( 2 2 2 2 ),x x x x x x x x x xM c q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +

2 2 2 2
4 1 2 4 0 2 1 0 2 3 1 0 2 2 0 1 3 0 0 4 0 1 1 2( 2 2 2 2 2x x x x x x x x x x x x xM c q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + + +

0 1 32 ),x xq q q∗+

3
0 1 3 0 0 0 ,x xM c q q qσ ∗=

3
1 1 3 0 0 1 0 1 0 1 0 0( ),x x x x x xM c q q q q q q q q qσ ∗ ∗ ∗= + +

3
2 1 3 0 0 2 0 1 1 0 2 0 1 0 1 1 1 0 2 0 0( ),x x x x x x x x x x x xM c q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +

3
3 1 3 0 0 3 0 1 2 0 2 1 0 3 0 1 0 2 1 1 1 1 2 0 2 0 1( x x x x x x x x x x x x x x x xM c q q q q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + + +

2 1 0 3 0 0 ),x x x xq q q q q q∗ ∗+ +

3
4 1 3 0 0 4 0 1 3 0 2 2 0 3 1 0 4 0 1 0 3 1 1 2( x x x x x x x x x x x x x xM c q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + +

1 2 1 1 3 0 2 0 2 2 1 1 2 2 0 3 0 1 3 1 0 4 0 0 ),x x x x x x x x x x x x x x x xq q q q q q q q q q q q q q q q q q q q q q q q∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗+ + + + + + + +







Contemporary Mathematics 1240 | Yakup Yildirim, et al.



5 2
0 1 5 0 0 ,xxM c q qσ ∗=

5 2
1 1 5 0 1 0 1 0( 2 ),xx xxM c q q q q qσ ∗ ∗= +

5 2 2
2 1 5 1 0 0 2 0 0 1 1 0 2( 2 2 ),xx xx xx xxM c q q q q q q q q q qσ ∗ ∗ ∗ ∗= + + +

5 2 2
3 1 5 1 1 1 2 0 0 3 0 0 2 1 0 1 2 0 3( 2 2 2 2 ),xx xx xx xx xx xxM c q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +

5 2 2
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2
0 1 3 0 42 ),xx xxq q q q q∗ ∗+ +



6 2 3
0 1 6 0 0 ,M c q qσ ∗=

6 3 2 2
1 1 6 0 1 0 0 1 0(2 3 ),M c q q q q q qσ ∗ ∗ ∗= +

6 2 3 3 2 2 2 2 2
2 1 6 1 0 0 2 0 0 1 1 0 0 2 0 0 1 0( 2 6 3 3 ),M c q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + +

6 3 3 2 2 2 2 2 2 2
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2 2 3
0 1 2 0 0 16 ),q q q q q q∗ ∗+ +

6 2 3 3 3 2 2 2 2 2
4 1 6 2 0 1 3 0 0 4 0 1 2 1 0 0 3 1 0 1 2 0 0 2 2 0( 2 2 6 6 3 6M c q q q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + +
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3 2 2
0 1 1 0 1 22 3 ),q q q q q q∗ ∗ ∗+ +

7
0 2 8 0 0 0 ,xM ic q q qσ ∗=

7
1 2 8 1 0 0 0 1 0 0 0 1( ),x x xM ic q q q q q q q q qσ ∗ ∗ ∗= + +

7
2 2 8 2 0 0 1 1 0 0 2 0 1 0 1 0 1 1 0 0 2( ),x x x x x xM ic q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +
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7
3 2 8 3 0 0 2 1 0 1 2 0 0 3 0 2 0 1 1 1 1 0 2 1 1 0 2( x x x x x x x xM ic q q q q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + + +

0 1 2 0 0 3 ),x xq q q q q q∗ ∗+ +

7
4 2 8 4 0 0 3 1 0 2 2 0 1 3 0 0 4 0 3 0 1 2 1 1 1 2 1( x x x x x x x xM ic q q q q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + + +

0 3 1 2 0 2 1 1 2 0 2 2 1 0 3 0 1 3 0 0 4 ),x x x x x x xq q q q q q q q q q q q q q q q q q q q q∗ ∗ ∗ ∗ ∗ ∗ ∗+ + + + + + +



8 2
0 2 9 0 0 ,xM ic q qσ ∗=

8 2
1 2 9 1 0 0 1 0( 2 ),x xM ic q q q q qσ ∗ ∗= +

8 2 2
2 2 9 2 0 1 1 0 0 2 0 0 1( 2 2 ),x x x xM ic q q q q q q q q q qσ ∗ ∗ ∗ ∗= + + +

8 2 2
3 2 9 3 0 2 1 0 1 2 0 0 3 0 1 1 0 1 2( 2 2 2 2 ),x x x x x xM ic q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +

8 2 2
4 2 9 4 0 3 1 0 2 2 0 1 3 0 0 4 0 2 1 1 1 2 0 1 3( 2 2 2 2 2 2 ),x x x x x x x xM ic q q q q q q q q q q q q q q q q q q q q q qσ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + + + +

and so on for other Adomian polynomials.
Eventually, when contemplating the inverse Laplace transform  L  −1, the components q0, q1, q2, and so forth, are 

subsequently ascertained through an iterative procedure, which is given as:

0
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j

j
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q x t f x

q x t Rq x t P q
s s

q x t Rq x t P q q
s s

q x t Rq x t P q q m
s s

−

=

−

=

−
− −−

=

=
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= − + … ≥


∑

∑

∑



L L L

L L L

L L L


(26)

where q0 is referred to as the zero-th component, which is taken as the initial condition in this method.
The solution functions q in the Laplace-Adomian decomposition method are derived as

(27)
0

( , ) ( , ).i
i

q x t q x t
∞

=
= ∑

The following is the approximate N-step solution obtained:
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(28)
0

( , ).
N

N i
i

q q x t
=

= ∑

The series solution (28) can be used for numerical purposes. For further detail about the convergence of the 
proposed method, we refer [20].

The below flowchart presents a concise visual representation of the algorithm derived from the combined use of the 
Adomian approach and the Laplace transform.

Start, taking i = 0

Calculate M1
i, …, M 8

i.

Desired accuracy?

Make 

0
( , )

N

N i
i

q q x t
=

= ∑

no

yes

Calculate qi+1(x, t) 
using LADM

Make i = i + 1 and 
take qi+1 as the 
initial condition 

Calculate the 
approximate 

solution qN(x, t)

Use q0(x, t) as the initial condition

Consider qN as the approximate solution

Stop
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5. Results
Using the method we discussed in the last part, we will simulate how the bright solitons in the concatenation model 

behave when the parameter n has different values.

5.1 Bright soliton simulation for n = 1/3

The coefficients of the concatenation model (1) as presented in Table 1 are to be taken into consideration for the 
simulations.

Table 1. Parameters for bright soliton simulation and with N = 13 steps

Cases a b c1 c2 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 |Max Error|

Case 1 2.2 0.5 9.0 0.6 2.3 6.1 0.1 3.1 0.3 8.9 2.2 0.3 6.2 2.4 × 10−7

Case 2 0.8 2.2 3.4 2.8 0.3 4.8 1.1 6.1 0.8 2.0 8.2 1.1 5.5 8.2 × 10−7

Consider, for the two cases presented in Table 1, the condition at time t = 0 provided by

(29)( )03( , 0) ( ) sech [ ( ) .] i xq x f x A B x e κ θ− += =

Figures 1 and 2 illustrate the results obtained from simulations performed on the scenarios enumerated in Table 1.
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Figure 1. (left) 3D optical bright soliton using LADM for the parameters given in Case 1. (right) 2D density graphs represent bright soliton solutions 
of Eq. (1)
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Figure 2. (left) 3D optical bright soliton using LADM for the parameters given in Case 2. (right) 2D density graphs represent bright soliton solutions 
of Eq. (1)

5.2 Bright soliton simulation for n = 1/2

The coefficients of the concatenation model (1) as presented in Table 2 are to be taken into consideration for the 
simulations.

Table 2. Parameters for bright soliton simulation and with N = 13 steps

Cases a b c1 c2 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 |Max Error|

Case 3 3.2 0.2 0.4 4.2 5.3 4.9 8.4 0.3 0.2 0.1 2.2 1.5 1.2 7.2 × 10−8

Case 4 2.5 1.0 7.7 3.2 5.7 6.8 6.2 4.4 0.4 1.8 0.6 2.0 2.4 5.5 × 10−7

Consider, for the two cases presented in Table 2, the condition at time t = 0 provided by

(30)( )02( , 0) ( ) sech [ ( ) .] i xq x f x A B x e κ θ− += =

Figures 3 and 4 illustrate the results obtained from simulations performed on the scenarios enumerated in Table 2.
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Figure 3. (left) 3D optical bright soliton using LADM for the parameters given in Case 3. (right) 2D density graphs represent bright soliton solutions 
of Eq. (1)
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Figure 4. (left) 3D optical bright soliton using LADM for the parameters given in Case 4. (right) 2D density graphs represent bright soliton solutions 
of Eq. (1)

5.3 Bright soliton simulation for n = 3/2

The coefficients of the concatenation model (1) as presented in Table 3 are to be taken into consideration for the 
simulations.
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Table 3. Parameters for bright soliton simulation and with N = 13 steps

Cases a b c1 c2 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 |Max Error|

Case 3 9.2 2.3 7.7 1.1 0.4 7.0 0.4 5.5 0.3 4.4 3.6 0.5 1.9 5.1 × 10−7

Case 4 0.4 1.8 9.0 6.2 3.2 4.4 1.9 4.7 1.1 0.1 0.9 2.9 6.6 6.7 × 10−8

Consider, for the two cases presented in Table 3 , the condition at time t = 0 provided by

(31)( )0
2
3( , 0) ( ) sech [ ( )] .i xq x f x A B x e κ θ− += =

Figures 5 and 6 illustrate the results obtained from simulations performed on the scenarios enumerated in Table 3.
In this part, we illustrate the graphical representations of some solutions to Eq. (1). Figures 1-6 depict the solutions 

derived in the present study. In order to achieve this objective, we choose specific values for the parameters that have 
been acquired.

Based on the aforementioned data, it is evident that the retrieved solutions exhibit the presence of brigh soliton 
solutions as described in Eq. (1). Furthermore, these plots effectively depict the characteristics of the solutions, 
providing readers with a comprehensive understanding of how the solutions behave across various values of n, in 
particular in relation to different values of SPM.
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Figure 5. (left) 3D optical bright soliton using LADM for the parameters given in Case 5. (right) 2D density graphs represent bright soliton solutions 
of Eq. (1)



Contemporary MathematicsVolume 4 Issue 4|2023| 1247

|q|2

x

t

1.0

0.5

0.0

-0.5

-1.0

0.0

0.5

1.0

1.5

0.5

1.0

0.0

x
t

1.00.50.0-0.5-1.0

0.0

0.4

0.8

0.2

0.6

1.0

1.2

1.4

Figure 6. (left) 3D optical bright soliton using LADM for the parameters given in Case 6. (right) 2D density graphs represent bright soliton solutions 
of Eq. (1)

6. Conclusions
The concatenation model via the via the Adomian decomposition method combined with the Laplace transform 

was addressed in the present study. The bright solitons solutions were examined for some specific values of the power-
law nonlinearity parameter n. These typical values of n are chosen to tacitly avoid the self-focusing singularity issue. It 
must be noted that the numerical scheme for the dark solitons is not considered in this paper. This is because the dark 
solitons for power-law nonlinearity is possible only when the power-law nonlinearity parameter n collapses to unity. 
This means dark solitons are only possible when power-law nonlinearity reduces to Kerr law as established during 2023 
[1].

One notable benefit of this approach is in its direct applicability to a wide range of differential equations, 
encompassing both linear and nonlinear forms, as well as homogeneous and inhomogeneous variations. Furthermore, 
this method can effectively handle equations with either constant or variable coefficients. An further noteworthy aspect 
is that the Adomian decomposition method combined with the Laplace transform is capable of addressing non-linear 
problems without the need for linearization, discretization, or perturbed parameters.

The future of this paper holds strong in this work. Later, the other form of the concatenation model will be taken 
up for its numerical scheme, namely the dispersive concatenation model. The results of these research activities are 
currently awaited and would be made visible once recovered.

Acknowledgements
The authors would like to thank the editor and the reviewers for their valuable comments which improved the 

paper.

Conflict of interest
The authors declare no competing financial interest.



Contemporary Mathematics 1248 | Yakup Yildirim, et al.

References
[1] Arnous AH, Biswas A, Kara AH, Yildirim Y, Moraru L, Iticescu C, et al. Optical solitons and conservation laws for 

the concatenation model: Power-law nonlinearity. Ain Shams Engineering Journal. 2024; 15(2): 102381. Available 
from: doi:10.1016/j.asej.2023.102381.

[2] Biswas A, Vega-Guzman J, Yildirim Y, Moshokoa SP, Aphane M, Alghamdi AA. Optical solitons for the concate-
nation model with power-law nonlinearity: Undetermined coefficients. Ukrainian Journal of Physical Optics. 2023; 
24(3): 185-192. Available from: doi:10.3116/16091833/24/3/185/2023.

[3] González-Gaxiola O, Biswas A, Ruiz de Chavez J, Asiri A. Bright and dark optical solitons for the concatenation 
model by the Laplace-Adomian decomposition scheme. Ukrainian Journal of Physical Optics. 2023; 24(3): 222-
234. Available from: doi:10.3116/16091833/24/3/222/2023.

[4] Biswas A, Vega-Guzman J, Kara AH, Khan S, Triki H, González-Gaxiola O, et al. Optical solitons and conservation 
laws for the concatenation model: undetermined coefficients and multipliers approach. Universe. 2023; 9(15): 1-10. 
Available from: doi:10.3390/universe9010015.

[5] Biswas A, Konar S. Introduction to non-Kerr Law Optical Solitons. New York: Chapman and Hall/CRC; 2006.
[6] Guo Y-S, Li W, Dong S-H. Gaussian solitary solution for a class of logarithmic nonlinear Schrödinger equation in (1 

+ n) dimensions. Results in Physics. 2023; 44: 106187. Available from: doi:10.1016/j.rinp.2022.106187.
[7] Yamano T. Gaussian solitary waves for argument-Schrödinger equation. Communications in Nonlinear Science and 

Numerical Simulation. 2020; 91: 105449. Available from: doi:10.1016/j.cnsns.2020.105449.
[8] Castro López R, Sun G-H, Camacho-Nieto O, Yáñez-Márquez C, Dong S-H. Analytical traveling-wave solutions 

to a generalized Gross-Pitaevskii equation with some new time and space varying nonlinearity coefficients and 
external fields. Physics Letters A. 2017; 381(35): 2978-2985. Available from: doi:10.1016/j.physleta.2017.07.012.

[9] Dong S-H. Schrödinger equation with the potential V(r) = Ar−4 + Br−3 + Cr−2 + Dr−1. Physica Scripta. 2001; 64(4): 
273. Available from: doi:10.1238/Physica.Regular.064a00273.

[10] Dong S-H. The ansatz method for analyzing Schrödinger’s equation with three anharmonic potentials in D 
dimensions. Foundations of Physics Letters. 2002; 15: 385-395. Available from: doi:10.1023/A:1021220712636.

[11] Korpinar Z, Inc M, Baleanu D, Bayram M. Theory and application for the time fractional Gardner equation with 
Mittag-Leffler kernel. Journal of Taibah University for Science. 2019; 13(1): 813-819. Available from: doi:10.1080
/16583655.2019.1640446.

[12] Cinar M, Ceser A, Ozisik M, Bayram M. Derivation of optical solitons of dimensionless Fokas-Lenells equation 
with perturbation term using Sardar sub-equation method. Optical and Quantum Electronics. 2022; 54: 403. 
Available from: doi:10.1007/s11082-022-03819-0.

[13] Hashemi MS, Inc M, Bayram M. Symmetry properties and exact solutions of the time fractional Kolmogorov-
Petrovskii-Piskunov equation. Revista Mexicana de Fisica. 2019; 65(5): 529-535. Available from: doi:10.31349/
RevMexFis.65.529.

[14] Akinlar MA, Ceser A, Ceser A, Bayram M. Numerical solution of fractional Benney equation. Applied 
Mathematics & Information Sciences. 2014; 8(4): 1633-1637.

[15] Yusuf A, Sulaiman TA, Khalil EM, Bayram M, Ahmad H. Construction of multi-wave complexiton solutions of 
the Kadomtsev-Petviashvili equation via two efficient analyzing techniques. Results in Physics. 2021; 21: 103775. 
Available from: doi:10.1016/j.rinp.2020.103775.

[16] Adomian G, Rach R. On the solution of nonlinear differential equations with convolution product nonlinearities. 
Journal of Mathematical Analysis and Applications. 1986; 114(1): 171-175. Available from: doi:10.1016/0022-
247X(86)90074-0.

[17] Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Boston: Kluwer; 1994.
[18] Mohammed ASHF, Bakodah HO. Numerical investigation of the Adomian-based methods with w-shaped optical 

solitons of Chen-Lee-Liu equation. Physica Scripta. 2021; 96: 035206. Available from: doi:10.1088/1402-4896/
abd0bb.

[19] Duan J-S. Convenient analytic recurrence algorithms for the Adomian polynomials. Applied Mathematics and 
Computation. 2011; 217(13): 6337-6348. Available from: doi:10.1016/j.amc.2011.01.007.

[20] Himoun N, Abbaoui K, Cherruault Y. New results of convergence of Adomian’s method. Kybernetes. 1999; 28(4): 
423-429. Available from: doi:10.1108/03684929910267752.


