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Abstract: This article presents a contribution to modelling of rainfall hazards in a stochastic framework. The indepen-
dence of the realizations of a process conditionally on the latent random effect, which also allowing us to calculate the
likelihood of the observed annual maxima. We also showed the predominance of the moment estimator over the Hill
estimator. Furthernore, we used a stochastic model to provide a temporal framework for modeling extreme events, as
well as the evolution of extreme rainfall in west Africa from 2019 to 2169, which shows a significant decrease over the
entire range of the different stations.
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1. Introduction
Our planet is increasingly polluted by human activities activities (industry, transport, agriculture...) see [1]. The

Intergovernmental Panel on Climate Change (IPCC), unequivocally states that human activities are the cause of current
global warming, which is having an indisputable impact on extreme extreme events [2], several models exist in the
pluviometric literature Regional Climate Model [2] which uses simulations of a global simulations of a global model
to define boundary conditions. This model simulates, over a limited area, all atmospheric atmospheric circulations. The
reduced domain enables us to a seasonal Markov Model [3, 4] this model was formalized by Baum and Petrie, who
also studied its asymptotic properties, this model and their generations have since given rise to an abundant literature.
literature, both theoretical and applied. Chain models [5], the schadex model for ungauged sites [6]. Sawadogo and
Barro [7] proposes a new method for estimating extreme precipitation at points where we have no observations, using
information from marginal distributions and dependence structure.

Extreme Values Theory (EVT) focuses on the analysis of and inference about extreme events, i.e. events with a very
low probability of occurrence. And the study of rainfall and hydrological droughts in tropical Africa [8] Panthou Geremy,
for example, highlights recent rainfall trends and explains the hydrological and agronomic dynamics of the West African
region, using simple statistical methods in two sub-regions, Senegambia and the Niger Basin. Furthernore, the Reich
Shaby model is defined

Z (s) =Uα (s)×ϑα (s) . (1)
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where Z is the spatial process, Uα an independent process of marginal laws GEV (1, α, α) and ϑα a process composed
of independent variables of positive law and positive deterministic functions.

Since observations began in 1854, three main dry periods have been recognized. periods have been recognized up to
the present day (see [2]). This has particularly harmful effects on human activity and the environment. human activities
and on the environment [9, 10]. Recently, following rainy years, some authors are wondering whether the events of the
1990s are not a sign of a return a gradual return to more favorable rainfall conditions (see [11]).

While modeling in extreme values theory is one of the best the Pickands estimator strong convergence and asymptotic
normality have been demonstrated by Dekkers and de Haan. Pickands’ estimator is defined for ξ ∈ R,

ξ̂ P = ξ̂ P (k) =
1

log2
log
(

Xn−k+1:n −Xn−2k+1:n

Xn−2k+1:n −Xn−4k+1:n

)
(2)

where X1, X2, ..., Xn are n independent and indetically distributed random variables, k is an integer sequence 1 < k < n.
The Hill estimator was introduced by Hill in 1975, to estimate the tail parameter of distributions belonging to the

Frechet attraction domain D
(

Φ 1
ξ

)
, i.e., when the tail of the distribution has a Pareto shape. A great deal of theoretical

work has been devoted to studying the properties of Hill’s estimator. Weak consistency was established [12], strong
consistency [13–15] and more recently [16].

Hill’s estimator is defined by

ξ̂ H = ξ̂ H (k) =
1
k ∑ logXn+i−1:n − logXn−k:n (3)

where X1, X2, ..., Xn are n independent and indetically distributed random variables, k is an integer sequence 1 < k < n.
One drawback of Hill’s estimator is that it is designed only for heavy-tailed distributions. In 1989, Dekkers et al.

proposed an extension for all types of distribution, called the Moments estimator.

ξ̂ M = ξ̂ M(k) = M(1)
n +Tn = M(1)

n +1− 1
2


(

M(1)
n

)2

M(2)
n

 (4)

with

Mr
n = Mr

n(k) =
1
k

k

∑
i=1

(logXn−i+1:n − logXn−k:n) , r = 1, 2

where M1
n is the Hill estimator ξ̂ H .

The contribution of this article is to show, first of all, the independence of the realizations of the processY conditional
on the latent random effect A. Thus, is it possible to reduce to a process Y whose marginal law at a site s is a GEV of
parameters µ(s), σ(s) and ξ (s) knowing that the margins of Z have a unit Frechet law? Next, the error of the estimators
is illustrated by showing which of Hill’s estimator and the Moment estimator wins the most, while a number of interesting
theorems, definitions and propositions are established. The rest of the article is organized as follows: in section 2, we
recall the concepts essential to the study, in section 3, we present the main results obtained, and in section 4, we provide
a conclusion and a discussion.
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2. Preliminaries
In this section, we collect some important definitions and themes on extreme value modelling and extreme quantiles,

which prove necessary for our approach. We refer the reader to the references to detailed introductions to the subject (see
[17–21]).

2.1 Extreme values results
The Generalized Extreme Value (GEV) and Generalized Pareto Distributions (GPD) are widely used in extreme

value analysis in hydrology. The calibration of these distributions beyond a threshold, however, poses a number of in
particular that of bias in the tails of the distributions. As a reminder, a variable X follows the generalized extreme law
if its distribution function FX is given by assumption the c.d.f. Ht of the process is max-stable. That means in particular
that, for all site x, there exist constants an, x > 0 and bn, x ∈ R such that, for any realization y(x) of {Yx, x ∈ χ} the
one-dimensional margin of G is a spatial GEV-distribution defined at all spatial site x ∈ χ by

Hk(an, xy(x)+bn, x) = GEV(µ, σ , ξ )(y) =


exp

{
−
[

1+ξx

(
y(x)−µ

σ

)]−1
ξ

+

}
if ξ ̸= 0

exp
{
−exp

(
−y(x)−µ

σ

)}
if ξ = 0

; (5)

with u+ = max(u, 0), where µ is a real location parameter, σ a positive scale parameter and ξ a real shape parameter for
the site x. While modelling spatial snow depth [2] considered these parameters as respectively the longitude, latitude and
elevation of the site xi. This means in particulary that, there is no loss of generality by making such a assumption since
every one-dimensional extreme values distribution can be obtained by a functional transformation of another. Note that,
if for a given site xi,

Z (xi)∼ Fréchet (xi) =⇒ Y (xi) = µxi +
σxi

ξxi

[
Z (xi)

ξxi −1
]
∼ GEV(σxi , µxi , ξxi)

(xi) . (6)

2.2 GEV’s catchment area
Theorem 2.1 The F distribution function of the random variable X belongs to the max-domain of attraction of the

generalized extreme value distribution GEV Gξ if and only if, there exists a measurable function δ such that:

lim
t→xF

F̃(t + xδ (t))
F̃(t)

=


(1+ξ x)−1/ξ if ξ ̸= 0

e−x if ξ = 0
;

with 1+ξ x > 0 and x ∈ R.
We are looking for a parametric model to describe the shape of the distribution function F of a random variable X

above a high level u. According to Fisher and Tippet, it is natural to assume that for n large

P(max(X1, ..., Xn ⩽ x)) = Fn(x)≈ exp

(
−
[

1+ k
x−µ

σ

]−1/k
)
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and therefore, we obtain, the survival function

P(X ⩾ x) = 1−F(x)≈ 1
n

[
1+ k

x−µ
σ

]−1/k

Moreover, for a conditional distribution of X −u (the level u) knowing that X ⩾ u (the level u is exceeded)

P(X −u ≤ y\X ≥ u)≈ 1−
[

1+
ky
σ̂

]−1/k

furthermore

P [X −u\X ⩾ u]∼ GPD(σ + ku, k)

The Pickands-Balkema-de Haan theorem is the second theorem of extreme value theory.
Theorem 2.2 (Pickands-Balkema-de Haan). A distribution function F belongs to the domain of maximum attraction

of Hξ , if and only if there exists a positive function β (u) such that:

lim
u→xF

sup
o≤y≤xF−u

|Fu(y)−Gξ , β (u)(y)|= 0

where Fu(y) is the conditional excess distribution function for high u, xF is the terminal point of F , is the conditional
excess distribution function for high u. xF = {x ∈ R : F(x)< 1} and Gξ , β (u)(y) is the GPD given by :

Gξ , β (u)(x) =


1−
(

1+ξ
y

β (u)

)−1
ξ

if ξ ̸= 0

1− exp
(
− y

β (u)

)
if ξ = 0

(7)

where y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤−β (u)
ξ

for ξ < 0.

2.3 Extreme quantile estimation methods

While estimating extreme quantiles for climatic application three essentials methods are used: The Pickands estimator,
Hill and Moments one.

Let X1, X2, ..., Xn n be independent and identically distributed random variables with distribution function F ∈
D
(
Hξ
)
, where ξ ∈ R. Let K = Kn be a sequence of integers with 1 < K < n, Pickands’ estimator is defined by

ξ̂ P = ξ̂ P (K) =
1

log2
log
(

Xn−k+1:n −Xn−2K+1:n

Xn−2k+1:n −Xn−4K+1:n

)
.
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For Hil estimator, we estimate in a non-parametric way the tail parameter. So, let F ∈ D
(

Φ 1
ξ

)
, or ξ < 0. Let k = kn

be a sequence of integers with 1 < k < n, Hill’s estimator is defined by

ξ̂ H = ξ̂ H (K) =
1
k ∑ logXn+i−1:n − logXn−k:n.

If we consider the distribution functions belonging to Frechet’s domain of maximum attraction (ξ > 0), then the
survival function can be written as F = x−1/ξ L(x) where L is a slowly varying function. So we can write

ˆ(x)
F̂(Xn−k)

=
L(x)

L(Xn−k)

(
x

Xn−k

)−1/ξ

and if we consider that the ratio of slowly varying functions is close to 1, we find

F̂(x)≃ F̂(Xn−k)

(
x

Xn−k

)−1/ξ

For ξ ∈ R, the estimator of moments is:

ξ̂ M = ξ̂ M(k) = M(1)
n +Tn

with

Mr
n = Mr

n(k) =
1
k

k

∑
i=1

(logXn−i+1:n − logXn−k:n) , r = 1, 2

Tn = 1− 1
2


(

M(1)
n

)2

M(2)
n

 .

where M1
n is the Hill estimator ξ̂ H .

3. Main results
In this section, we propose a Reich and Shaby model appropriate to the data we’re simulating. appropriate to the

data, i.e. the simulated data at our disposal. our objective. Let Z be a spatial process defined for all s ∈ S.
Proposition 3.1 Let Uα be an independent process with marginal laws GEV (1, α, α). Suppose Z is the spatial

process defined for all s ∈ S by the product Z (s) = Uα (s) × ϑα (s) then there is a process built by ϑα (s) =
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(
L

∑
l=1

Alwl (s)
1/α

)α

such that A1, ..., AL are independent variables with a positive stable law PS(α), with characteristic

exponent α , and ω1, ..., ωL are positive deterministic functions vérifying the condition
L

∑
l=1

ωl(s) = 1 for all s ∈ S.

Proof. Let Y be a marginal law process at a site s.
We have

Y (s)/µ, σ , ξ , α, ϑα ∼indep GEV (µ⋆(s), σ⋆(s), ξ ⋆(s)).

Therefore

µ⋆(s) = µ(s)+
σ(s)
ξ (s)

(ϑα(s)ξ (s)−1),

and moreover

σ⋆(s) = ασ(s)ϑα(s)ξ (s),

and

ξ ⋆(s) = αξ (s),

or

ϑα(s) =

(
L

∑
l=1

A
lω1/α

l (s)

)α

,

from which

A1, ..., AL ∼iid PS(α).

The independence of the realizations of the Y process conditional on the the latent random effect A, we can calculate
the likelihood of the observed observed annual maxima, by taking the product of the density functions of the GEV laws
for each site.

Shaby and Reich differentiate between two types of prediction that different in the choice of positive stable variables
At = {A1t , ..., ALt} used to calculate ϑα, t(s⋆). Among these predictions, the one of interest is the climatological one,
which predicts what might have happened with the model’s parameters, by sampling At independently according to the
positive stable law PS(α).

Proposition 3.2 Let Z be the distribution function evaluated at positions {s1, ..., sd}.
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The function of répartition évaluée on the set of sites {s1, ..., sd} is written as:

Pr(Z(s1)⩽ z1, ..., Z(sd)⩽ zd) = exp

(
−

L

∑
l=1

[
d

∑
j=1

{
ωl(s j)

z j

}1/α
]α)

.

As a result,

Z(s) =
[

1+ξ (s)
Y (s)−µ(s)

σ(s)

]1/ξ (s)
.

Proof. First, the Laplace transform of a random variable A of positive stable law with characteristic exponent α is
written as:

E
[
e−tA]= ∫ ∞

0
e−tA fPS(α) (A)dA = e−tα

, ∀t ∈ R

where fPS(α) is the density function of the positive stable lawPS(α). This densit’e is not explicit forα ∈ (0, 1). Thereafter,
we denote by A = (A1, ..., AL). The random vector whose components are i.i.d. of stable laws positive PS(α) and by
a = (a1, ..., aL) a particular realization of this vector. The multidimensional multidimensional fPS(α) (a) is the product

of product, by independence of al , of the marginal functions α(S) =

(
L

∑
l=1

alwl(S)1/α

)α

to designate vα(S)\A = a.

The joint distribution function G of the vector (Z(s1), ..., Z(sd)) is written:

G(z1, ..., zd) = Pr(Z(s1)≤ z1, ..., Z(sd)≤ zd)

=
∫
RL
+

Pr (Z (s1)≤ z1, ..., Z (sd)≤ zd\A = a) fPS(α)(a) (a)da

(8)

According to equation (8), we obtain

G(z1, ..., zd) =
∫
RL
+

Pr
(

Uα (s1)≤
z1

vα (s1)
, ..., Uα (sd)≤

zd

vα (sd)
\A = a

)
fPS(α)(a) (a)da (9)

however

Pr(Z(s1)≤ z1, ..., Z(sd)≤ zd) = Πd
j=1Pr

(
uα (s j)≤

z j

ϑα (s1)
\A = a

)
(10)

Replacing equation (10) in equation (9), we obtain
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G(z1, ..., zd) =
∫
RL
+

Πd
j=1Pr

(
Uα (S j)≤

z j

vα (s1)
\A = a

)
fPS(α)(a) (a)da (11)

We have

Pr
(

Uα (S j)≤
z j

vα (s1)
\A = a

)
= exp

[
−
(

θα(s j)

z j

)1/α
]

=−

L

∑
l=1

alwl(s j)
1/α

z j

Furthermore, we have

Pr
(

Uα (S j)≤
z j

vα (s1)
\A = a

)
=−

L

∑
l=1

al

(
wl (s j)

z j

)1/α

Which gives

G(z1, ..., zd) =
∫
RL
+

exp

(
−

L

∑
l=1

al

[
d

∑
j=1

(
wl (s j)

z j

)1/α
])

fPS(α)(a) (a)da (12)

Assuming that

d

∑
j=1

(
wl (s j)

z j

)1/α
= tl (13)

Then we have

Pr(Z(s1)≤ z1, ..., Z(sd)≤ zd) =
∫
RL
+

exp

(
−

L

∑
l=1

altl

)
fPS(α)(a) (a)da

Using the Laplace transformation, we obtain
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Pr(Z(s1)≤ z1, ..., Z(sd)≤ zd) = E

e
−

L

∑
l=1

tlAl



= ΠL
l=1E

[
e−tlAl

]
= ΠL

l=1e−tα
l

= e
−

L

∑
l=1

tα
l

(14)

By introducing (14) and (13) into (12), we finally obtain

Pr(Z(s1)≤ z1, ..., Z(sd)≤ zd) = exp

(
−

L

∑
l=1

[
d

∑
j=1

(
wl (s j)

z j

)1/α
]α)

From this result, it is easy to show that the Z process is of margin GEV (1, 1, 1) using the assumption of normalization
hypothesis.

Pr(Z (s)⩽ z) = exp

(
−

L

∑
l=1

wl (s)
z

)

= exp(−1/z)

The exponent function V of the Reich and Shaby model evaluated at positions s1, ..., sd of the form:

V (z1, ..., zd) =
L

∑
l=1

[
d

∑
j=1

{
ωl(s j)

z j

}1/α
]α

Proposition 3.3 The hierarchical formulation of Reich and Shaby’s max-stable model uses, on the one hand, the
form of the product Z(s) =Uα(s)ϑα(s) and the relationship between Z and Y :

Z(s) =
[

1+ξ (s)
Y (s)−µ(s)

σ(s)

]1/ξ (s)
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Proof. Since the process Uα is spatially independent and of marginal laws GEV (1, α, α), we have the product
Uα ϑα

Z(s)/ϑα ∼indep GEV (ϑα , αϑα , α)

and since Z has unit Frechet margins, we have:

Pr (Z (s)≤ z/ϑα (s)) = exp

(
−
[

1+α
z−ϑα (s)
αϑα (s)

]−1/α
)

= exp
(
−ϑα (s)1/αz−1/α

)
The marginal laws of the process Y conditioned by ϑα are given for all s by:

Pr (Y (s)≤ y/ϑα (s)) = Pr
(

µ (s)+
σ (s)
ξ (s)

[
Z (s)ξ (s)−1

]
≤ y/ϑα (s)

)

= Pr

(
Z (s)≤

[
1+ξ (s)

y−µ (s)
σ (s)

]1/ξ (s)
/ϑα (s)

)

Furthermore

Pr

(
Z (s)≤

[
1+ξ (s)

y−µ (s)
σ (s)

]1/ξ (s)
/ϑα (s)

)

= exp

(
−ϑα (s)1/αz

[
1+ξ (s)

y−µ (s)
σ (s)

]−1/αξ (s)
) (15)

According to (15)

Pr (Y (s)≤ y/ϑα (s)) = exp

(
−ϑα (s)1/αz

[
1+ξ (s)

y−µ (s)
σ (s)

]−1/αξ (s)
)

posing for s ∈ S
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

µ⋆(s) = µ(s)+
σ(s)
ξ (s)

(ϑα(s)ξ (s)−1)

σ⋆(s) = ασ(s)ϑα(s)ξ (s)

ξ ⋆(s) = αξ (s)

;

by successive identifications of ξ ⋆(s), σ⋆(s) and µ⋆(s), it comes that:

Pr (Y (s)≤ y/ϑα (s)) = exp

−

[
ϑα (s)−ξ (s)+ξ ⋆ (s)

y−µ (s)

αϑα (s)ξ (s) σ (s)

]−1/ξ ⋆(s)
 ;

which gives

Pr (Y (s)≤ y/ϑα (s)) = exp

(
−
[

ϑα (s)−ξ (s)+ξ ⋆ (s)
y−µ (s)

σ⋆ (s)

]−1/ξ ⋆)
(16)

However, taking equation (16), we have

exp

(
−
[

ϑα (s)−ξ (s)+ξ ⋆ (s)
y−µ (s)

σ⋆ (s)

]−1/ξ ⋆)

= exp

(
−
[

1+ϑα (s)−ξ (s)−1+ξ ⋆ (s)
y−µ (s)

σ⋆ (s)

]−1/ξ ⋆(s)
)

= exp

(
−
[

1+
ξ ⋆ (s)σ⋆ (s)
σ⋆ (s)ξ ⋆ (s)

(
ϑα (s)−ξ (s)−1

)
+ξ ⋆ (s)

y−µ (s)
σ⋆ (s)

]−1/ξ ⋆(s)
)

Let’s put

Kξ ⋆, σ⋆, µ⋆ (y) = exp

(
−
[

1+
ξ ⋆ (s)σ⋆ (s)
σ⋆ (s)ξ ⋆ (s)

(
ϑα (s)−ξ (s)−1

)
+ξ ⋆ (s)

y−µ (s)
σ⋆ (s)

]−1/ξ ⋆(s)
)

(17)

Which gives
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Kξ ⋆, σ⋆, µ⋆ (y) = exp

(
−
[

1+
ξ ⋆ (s)
σ⋆ (s)

(
y−
[

µ (s)− ξ ⋆ (s)
σ⋆ (s)

(
ϑα (s)−ξ (s)−1

)])]−1/ξ ⋆(s)
)

= exp

(
−
[

1+ξ ⋆ (s)
y−µ⋆ (s)

σ⋆ (s)

]−1/ξ ⋆(s)
)

As a result, we obtain

Pr (Y (s)≤ y/ϑα (s)) = exp

(
−
[

1+ξ ⋆ (s)
y−µ⋆ (s)

σ⋆ (s)

]−1/ξ ⋆(s)
)

At the current rate of warming, the earth is experiencing dangerous climate shifts. To this end, we define the return
level as the value xt such that we expect to detect on average a single overshoot of this quantity at the end of t period, i.e.

E

(
t

∑
i=1

IXi>XY

)
= 1 ⇐⇒ Pr(Xi > xt) =

1
t
⇐⇒ 1−F(xt) =

1
t

The estimator of a return level of order t amounts to the estimation of an extreme quantile of order pt = 1− 1
t
.

For the Pickands estimator, let (kn)n>0 be an integer sequence such that 1 < kn < n, kn → +∞ and limn→∞
kn

n
= 0

then: ξ̂ H
kn
converges in probability to ξ .

Furthermore, if limn→∞
kn

log logn
=+∞ then: ξ̂ H

kn
almost surely converges to ξ .

Under additional conditions on the sequence kn and the repartition function F , we will have:

√
kn

(
ξ̂ P

kn
−ξ
)
converges in law N

0,
ξ 2
(

22ξ+1 +1
)

4(log2)2 (2ξ −1
)2

 .

Turning to Hill’s estimator, let (kn)n>0 be an integer sequence such that 1 < kn < n, kn → +∞ and limn→∞
kn

n
= 0

then: ξ̂ H
kn
converges in probability to ξ .

Furthermore, if limn→∞
kn

log logn
=+∞ then: ξ̂ H

kn
converges almost surely to ξ .

Also, if other variation conditions are verified with
√

knε
(n

k

)
→ 0 then:

√
kn

(
ξ̂ H

kn
−ξ
)
converges in law to

N
(
0, ξ 2

)
(asymptotic normality).

As far as moments are concerned, suppose F ∈D
(
Hγ
)
, γ ∈R, k →∞ and

k
n
→ 0 when n→∞ we have: γ̂M

n converges

in probability to γ and almost certainly converges to γ moreover, if γ ≥ 0 then
√

k
(
γ̂M

n − γ
)
−→d N

(
0, 1+ γ2

)
in Figure

1 and 2.
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The precision behavior of the different estimators presented and illustrated in the graphs below highlights the error
of the three estimators as a function of sample size for two levels 1% and 3% in Figure 3 and 4.

Our findings focus primarily on the Hill and moments estimators.
We note that:
- Hill’s estimator is relatively more volatile and less efficient than moments’, especially for k < 0.02×n.
- The moments estimator starts with a significant deviation, but it gets closer as the sample size increases.
- The Hill estimator varies between -0.0425 and 0.0154 for a level of 1% and 3% and between -0.038 and 0.029 for

a level not exceeding 1%. For the Moment estimator, it varies between -0.026 and 0.0003 for a level of 1% and 3% and
between -0.0446 and 0.0019 for a level of 1%. So, as we go down, the curves get closer together, and on the other hand,
the curves become more rapidly linear and aligned with 0, meaning that the estimator converges more rapidly to the true
value. In addition, the dominance of the moments estimator is clearly visible.

Figure 1. To the left: graphical representation of the Pickands estimator, to the righ: graphical representation of the Hill estimator

Figure 2. Graphical representation of the moment estimator
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Figure 3. Comparison of estimation error a 1%

Figure 4. Comparison of estimation error a 3%

The Hill estimator makes it possible to estimate the tail parameter of the distributions belonging to the Frchet domain
of attraction, that is to say, when the tail of the distribution has a Pareto shape. Its disadvantage is that it is designed only
for heavy tailed distributions. Thus, the Moments estimator is an extension of all types of distribution. The Hill estimator
is more volatile and less efficient, however the School Moments estimator has a significant deviation.

Using simulated data generated by our model, we can explore different precipitation estimation methods and compare
their performance. We can test various estimators, adjust the parameters and evaluate their effectiveness in terms of
estimating the amount of water fallen. This allows us to identify the most appropriate method to use in real-world studies,
based on statistical criteria such as precision and bias.

The simulated data allows us to test the robustness of the estimators in the face of hypothetical situations. For
example, we can simulate different extreme weather conditions, such as intense storms or prolonged periods of drought.
By evaluating the performance of the estimators in these fictitious scenarios, we can determine their ability to provide
estimators with reliable and consistent estimates, taking into account the statistical notions of reliability and stability.

The use of simulated nopus data allows the design of more effective empirical studies on precipitation.
We use the function Â (hkevp.rand Â) of the hkevp package of the R software which allows to simulate Hierarchical

Kernel Extreme Value Process (HKEVP) realizations on a set of sites {s1, ..., sd} given. To achieve our objectives, we
first estimate the parameters of shape, location and scale of the GEV law for each site, using the Â function (extrapol.gev
Â) Â (extrapol.return.level Â) package Â hkevp Â software R.

α and τ describe the dependency structure.
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The generalized extreme value distribution models the behavior of a sample maximum.
To determine the distribution and estimate these parameters, 1,000 observations are programmed in R software.
The results in R language are as follows (Table 1).
As part of our research, we generated nine random samples, each consisting of a thousand observations, which gave

us nine means {µ1, ..., µ9} and nine standard deviation {σ1, ..., σ9}. In order to estimate the overall sample mean, we
obtained mean estimators from each sample (Table 2). In this context, we plan to take the mean of these mean estimators
as an aggregate estimator, subject to compliance with the rules for reducing variability, the size of the samples (which are
all identical in our case) and the necessary precautions for avoid bias.

We then set the parameters of the HKEVP model.
The mean is statistically significant at the 5%, because they belong to the confidence interval. According to the

results obtained, the 3 parameters are statistically significant at the α = 5%.
The location parameter estimator is included in the confidence interval for a threshold of α = 5%.
The interval width is 0.0531, so the smaller the interval, the higher the quality.
The dispersion (scale) parameter is included in a confidence interval [1.3946; 1.4488].
The most important parameter in extreme distributions is the tail index, and the estimator of this parameter ξ̂ is

included in a confidence interval and tends towards zero.

Table 1. The results in R language

µ σ ξ

1.790064 0.4116456 0.08547153
1.113826 0.3196874 0.08547153
1.575862 0.4909657 0.08547153
1.689209 0.4035377 0.08547153
1.005482 0.3358132 0.08547153
1.214773 0.3776105 0.08547153
1.952399 0.5632503 0.08547153
1.222140 0.5355208 0.08547153
1.231882 0.4192192 0.08547153

Table 2. The result of aggregate estimator

µ⋆ σ⋆ ξ ⋆

1.421737 0.4285833 0.08547153

The first phase, from 2019 to 2029, during which the projections show a slight increase in precipitation over West
Africa reaching a maximum of around 3,500 mm in 2029. Then a trend reversal in the second phase from 2029 to 2079
during which we see a significant drop in precipitation, reaching a minimum reaching a minimum water level of around
1,550 mm in 2079 (Figure 5).
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Figure 5. Evolution of a precipitation time series in West Africa from 2019 to 2169

This, of course, can be explained by the production of CO2 through the activities of major industries that pollute the
atmosphere, the release of which has an impact on global rainfall, and many other factors. The third phase (2079-2169)
saw a slight increase in rainfall before maintaining a relatively stable trend fluctuating between between 1,500 and 1,700
mm for the rest of the period.

4. Conclusion and discussion
In the present work, we have made a contribution to this theme. In particular, the results allow us to model and

describe the independence of the realizations of the Y process conditional on the latent random effect A allows us to
calculate the likelihood of the observed annual maxima, by taking the product of the density functions of the GEV laws
for each site.

The HKEVP model is a model co-designed by Reich Shaby in 2012. This model is both hierarchical and max-stable.
It is a spatial model which makes it possible to consider information on an entire region around the ungauged position
concerned and to produce a prediction of the risk measure. We can also predict the value of the observed phenomenon
having a spatial character.

In addition, the Reich Shaby model gives us a temporal framework for modeling extreme events (extreme
precipitation), and we have also used it to study the evolution of extreme precipitation in West Africa from 2019 to
2169 using simulated data in Figure 6. We also estimated the extreme quantiles, which led to the estimation of the return
period and the return level. The most interesting fact is that they verify the max-stability property, which makes them
related to max-stable processes. Fortunately, the latter are used in statistical modeling.

Volume 5 Issue 4|2024| 4905 Contemporary Mathematics



Figure 6. Predictive volume construction

Looking ahead, it would be interesting to construct coherent estimators for predictive measures in the context of
extreme values for possible applications to real data.
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