
Contemporary Mathematics
https://ojs.wiserpub.com/index.php/CM/

Research Article

The Approximate Numerical Solutions to First Order Non-Linear
Differential Equations and Their Connections to the Orthogonal
Double Cover in Graph Theory

Amany Saad1* , A. Elrokh2, M. Mubarak3, S. Nada2

1Department of Mathematics, Faculty of Science, Helwan University, Cairo, Egypt
2Department of Mathematics, Faculty of Science, Menofia University, Shebeen Elkom, Egypt
3Department of Basic Sciences, Giza High Institute of Engineering and Technology, Giza, Egypt
E-mail: amany.saad78@yahoo.com

Received: 6 October 2023; Revised: 31 October 2023; Accepted: 2 November 2025
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evaluated which prove the accuracy of the studied method.

Keywords: orthogonal double cover, symmetric starter, generalized Fibonacci polynomials, collocation method

MSC: 05C70, 05B30

1. Introduction
Throughout this work, we make use of usual notations: As the following Km, n denotes the complete bipartite graph

with m-vertices that are labeled by a10 , a20 , ..., am0 in one partite set and n-vertices that are labeled by a11 , a21 , ..., an1

in the other partite set [1].
For the complete bipartite graph Kn, n with 2n vertices, the family G = {G0, G1, . . . , G(2n−1)} of 2n subgraphs

(briefly, pages) of Kn, n. This family is an Orthogonal Double Cover (ODC) of Kn, n if it fit the following properties:
1. Every edge of Kn, n is contained in exactly two pages in G (double cover property).
2. For any two distinct pages Gc and Gd in G , |E(Gc) ∩ E(Gd)| = 1 if and only if c and d are adjacent in

Kn, n (orthogonality property).
If Gc ∼= G for all c ∈ {0, 1, . . . , 2n−1}, then G is an ODC of Kn, n by G [2].
Recently, the spectral methods evaluate the approximated solution of the differential equations. These methods

have a lot of advantages such as small error and small number of unknowns. The algorithm of these methods depends
on the solution which can be expressed as the expansion of the polynomials. In addition, theses methods investigate
different kinds of differential and integral equations in the form of fractional differential equations such as: solving
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fractional pantograph differential equation, multi-term initial value problems and Volterra-Fredholm integral equation
using generalized Lucas polynomials [3–7]. Different attempts of solving the variable order Space-Fractional diffusion
equations, system of fractional differential equations, Volterra-Fredholm integral equations andVolterra-Fredholm integral
differential equations where performed via Generalized Fibonacci Polynomials (GFP) [8–13]. The framework of our study
is to reformulate an ODC graphs to metric graphs, then transform it to matrices which are used to solve the non-linear
differential equations. Also, we present and analyze a spectral algorithm for solving these equations. Finally, the numerical
solutions are evaluated in a series of Fibonacci polynomials, then we apply the spectral collocation method.

Consider the following differential equation

P(y)υ
′
(y)+Q(y)υ(y) = g(y)υm(y) (1)

Where υ(y) is an unknown function. P(y), Q(y) and g(y) are continuous known functions. The organizations of
the next sections are summarized as follows: section 2 aims to solve the differential equations using the graph theory
as a unique technique away from the exact and the numerical ones. In section 3, the recurrence relation, properties of
generalized Fibonacci polynomials and the algorithm of the methods are explored in details. Section 4, we satisfied our
theorem for different function of the right-hand-side. In addition, we give some examples which prove the accuracy and
efficiency of our method in section 5. At the end, some conclusions are introduced in section 6.

2. The method of the problem
Let us suppose that G = (V, E)whereV (G) = {a1, a2, ..., an} and E(G) = {e1, e2, ..., en}. If G represents an ODC

graph, then one can reformulate this ODC in the following way. Define the outgoing incidence matrix (mapping) Φ− by

ϕ−
i j =

{
1 if x j(0) = ai

0 otherwise.
(2)

and the incoming incidence matrix (mapping) Φ+ by

ϕ+
i j =

{
1 if x j(l j) = ai

0 otherwise.
(3)

Obviously, Φ+ = (ϕ+
i j ) and Φ− = (ϕ−

i j ) are m×n matrices, and they have exactly one nonzero entry in each column
if G has no isolated vertex.

If Gi is one of the pages. The new suggested formula for this page takes the vertices ani of Gi as a1i , a2i , ..., ani

[14].
Now, look at each one of this vertices and edges between them in Gi. If one of them is connected to itself, this will

make a loop, and if it connected to another vertex, we can draw a directed edge starting from the first to the second.
When a vertex is not connected to any other vertex so we shall call it isolated vertex.
The following example illustrates the above discussion in Figure 1.

Contemporary Mathematics 3874 | Amany Saad, et al.



a
10

a
1

a
2

a
3

a
20

a
30

a
11

a
21

a
31

Figure 1. Convert of an ODC of K3, 3 by K1, 3 to new suggested graph G1

Now, let us turn our attention to impose the non-linear differential equation (1). Where

υ(1) = (ϕ+)T d, υ(0) = (ϕ−)T d (4)

and

υ(y) = S(y, 0)υ(0)+
∫ y

0
S(y, r)P−1(r)g(r)dr

where

S(y, r) =−
∫ y

r

Q(t)
P(t)

dt (5)

From conditions in (2). Then, we have

[(ϕ+)T −S(1, 0)(ϕ−)T ]d = ǧ(1) (6)

The function g(y) and S(y, r) are given by the information ϕ+ and ϕ−. The solution becomes



1 0 0 . 0 K1

0 1 0 . 0 K2

0 0 1 . 0 .

. . . . . .

. . . . . .

0 0 . . 1 Kn





d1

d2

d3

.

.

dm


=



ǧ1

ǧ2

.

.

.

ǧn


(7)

We can choose the right hand side is one of the following basic functions:
1. Polynomial function.
2. sine or cosine functions.
3. Exponential function.
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3. Properties and used formulas
In this section, some definitions and properties for the generalized Fibonacci polynomials are stated [9]. These

relations have been used in the following section [15–18].
If α and β are non zero real numbers. The recurrence relation for generalized Fibonacci:

ζ α, β
k (y) = α y ζ α, β

k−1 (y)+β ζ α, β
k−2 (y) , k ≥ 2 (8)

with the initial condition

ζ α, β
0 (y) = 1, ζ α, β

1 (y) = α y.

it has the Binet’s form:

ζ α, β
k (y) =

(
α y+

√
α2y2 +4β

)k
−
(

α y−
√

α2y2 +4β
)k

2k
√

α2y2 +4β
, k ≥ 0. (9)

We evaluate υ(y) as terms in generalized Fibonacci polynomials which has the following form

vvv(y) =
∞

∑
k=0

ckζ α, β
k (y)

Which has the approximate solution

υ(y)≈ υM(y) =
M

∑
k=0

ck ζ α, β
k (y) =CT ℑ(y), (10)

Where

ℑ(y) =
[
ζ α.β

0 (y) , ζ α.β
1 (y) , ..., ζ α.β

M (y)
]T

,

and the constants which must be determined have the following form

CT = [c0, c1, ..., cM] .

we will discuss the algorithm of the method:
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υ
′
(y) = Aℑ(y),

ak, l =

{
(−1)

l−k+1
2 lαβ l−k+1

2 γk if l > k, (l + k) odd,
0 otherwise.

and

γk =


1
2
, k = 0

1, otherwise.

Substituting these relations in equation (1), −

d
dy

(
M

∑
k=0

ck ζ α, β
k (y)

)
+

M

∑
k=0

ck ζ α, β
k (y) = g(y).

So, we have the following

M

∑
k=0

ck uk(y) = g(y).

where

uk(y) =
d(ζ α, β

k (y))
dy

+ ζ α, β
k (y) ,

By collecting, we have a system of equations

M

∑
k=0

ck uk(y) = g(yk). (11)

We have the matrix form of these equations:

UTC = G.

So, the constant has the form

C =
(
UT )−1

G,

Volume 6 Issue 4|2025| 3877 Contemporary Mathematics



G = (g(yk)) = [g(y0), g(y1), ..., g(yM)]T with the initial condition

CT ℑ(0) = 0.

Algorithm 1 Coding algorithm for the proposed schema.
Input 1 P(y), Q(y) and g(y) continuous functions.
Step 1. Define Fibonacci polynomials by (8).
Step 2. Evaluate the basis function of Fibonacci polynomials by (9).
Step 3. Define the function vector ℑ(y) by (10).
Step 4. Collocating Eq. (11) in (M+1) roots.
Step 5. Use Nsolve command in Mathematica software to solve these equations.
In the coming section, we will use the forgoing relations which are defined by the ODC to evaluate the exact of

numerical solutions of the given differential equation.

4. Main result
We shall use the next important theorem in ODC for the coming work [19].
Theorem 1 Let n > 2 be an even integer, n ̸≡ 0 (mod 6) and n ̸≡ 0 (mod 10). Then there is a symmetric starter of an

ODC of Kn, n by disjoint union of paths.
Theorem 2 By using Theorem 11 in [19], we can explain the solution of (1) using graph theory. We have the form

of D in each case.
Case 1 Suppose that g(y) = y2, then the 1st order differential equation has this form

P(y)υ
′
(y)+Q(y)υ(y) = y2υ

m
(y)

Proof. Using the definition of ϕ−, ϕ+ in equations (2), (3) to substitute in equation (7), we conclude that



3n+1
3n

d1

.

.

.

.

.


=



((n4 −2n3 +3n2 −2n+2)e−n(n−1))−2
(n5 −2n4 +n3)

.

.

.

.

.



by solving the above matrices, we have conclude that

D =
3(((n4 −2n3 +3n2 −2n+2)e−n(n−1))−2)

(3n5 −5n4 +n3 +n2)

Example 1 At n = 4, V (G) = (0, 0, 1, 2). In the following figure, we convert of an ODC of K4, 4 by P4 ∪P2 to new
suggested graph G0 in Figure 2.
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Figure 2. The deformed of P4 ∪P2 to G0

ϕ =


1, −1 −1 0 0

0 1 −1 1
0 0 0 −1
0 0 1 0


and then we conclude

ϕ+ =


1 0 0 0
0 1 0 1
0 0 0 0
0 0 1 0

 , ϕ− =


1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



from (5),

S(1, 0)I =



−1
12

0 0 0

0
−1
12

0 0

0 0
−1
12

0

0 0 0
−1
12



ğ(1) =
∫ 1

0 −3r2e−12rdr =

(
85e−12 −1

)
288

then by using equation (6).
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

13
12

0 0 0

1
12

1 0 0

0
1
12

0 1

0 1
1

12
0




d1

d2

d3

d4

=



(
85e−12 −1

)
288(

85e−12 −1
)

288(
85e−12 −1

)
288(

85e−12 −1
)

288


So, we find that

d1 = d2 = d3 = d4 =
(85e−12 −1)

312
.

Example 2 At n = 8, V (G) = (0, 0, 5, 2, 7, 4, 1, 6). In the following figure, we convert of an ODC of K8, 8 by
P4 ∪2P3 ∪P2 to new suggested graph G1 in Figure 3.
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Figure 3. The deformed of P4 ∪2P3 ∪P2 to G1
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ϕ =



1, −1 −1 0 0 0 0 0 0
0 1 0 0 0 1 −1 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 −1
0 0 1 0 −1 0 1 0


and then we conclude

ϕ+ =



1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0



ϕ− =



1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0



from (5),
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S(1, 0)I =



−1
24

0 0 0 0 0 0 0

0
−1
24

0 0 0 0 0 0

0 0
−1
24

0 0 0 0 0

0 0 0
−1
24

0 0 0 0

0 0 0 0
−1
24

0 0 0

0 0 0 0 0
−1
24

0 0

0 0 0 0 0 0
−1
24

0

0 0 0 0 0 0 0
−1
24



ǧ(1) =
∫ 1

0
−7r2e−56rdr =

1,625e−56 −1
12,544

then by using equation (6).



25
24

0 0 0 0 0 0 0

1
24

1 0 0 0 0 0 0

0 0 0 0 0
1
24

0 1

0 0
1
24

0 0 1 0 0

0 0 0 1 0 0 0
1
24

0 1 0 0
1
24

0 0 0

0
1
24

0 0 0 0 0 1

0 0 0 0 0 1
1
24

0





d1

d2

d3

d4

d5

d6

d7

d8


=



1,625e−56 −1
12,544

1,625e−56 −1
12,544

1,625e−56 −1
12,544

1,625e−56 −1
12,544

1,625e−56 −1
12,544

1,625e−56 −1
12,544

1,625e−56 −1
12,544

1,625e−56 −1
12,544


So, we find that
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d1 = d2 = d3 = d4 = d5 = d6 = d7 = d8 =
3(1,625e−56 −1)

39,200
.

Case 2 Let g(y) = ey, then D has the following form

D =
(n2 −n)(e−n2+n+1 −1)
(n2 −n−1)(e+n−1)

.

Proof. Using the definition of ϕ−, ϕ+ in equations (2), (3) similarly as case 2, we conclude that



1
n
(e+n−1)d1

.

.

.

.

.


=



(n−1)(e−n2+n+1 −1)
(n2 −n−1)

.

.

.

.

.



So, if we equal two matrices. Then, we prove this case.
Case 3 Let g(y) = cosy, as the same.
Proof. We conclude that



(
1+

1
n

sin(1)
)

d1

.

.

.

.

.


=



(1−n)
[
e−n2+n(sin(1)− (n2 −n)cos(1))+n2 −n

]
n4 −2n3 +n2 +1

.

.

.

.

.


So,

D =
(1−n)

[
e−n2+n(sin(1)− (n2 −n)cos(1))+n2 −n

]
(n4 −2n3 +n2 +1)

(
1+

1
n

sin(1)
) .

Case 4 Suppose that g(y) = siny, similarly.
Proof. We conclude that
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

(
1
n
(n+1− cos(1))

)
d1

.

.

.

.

.


=



(n−1)
[
e−n2+n(cos(1)+(n2 −n)sin(1))−1

]
n4 −2n3 +n2 +1

.

.

.

.

.


So

D =
(n2 −n)

[
e−n2+n(cos(1)+(n2 −n)sin(1))−1

]
(n4 −2n3 +n2 +1)(n+1− cos(1))

.

5. Numerical examples
In this section, we solve some numerical examples.
Example 3We consider the nonlinear differential equation on case (4) when the function g(y) = y2, as follows:

υ
′
(y)+υ(y) = y2υm(y) υ(0) = 0

The exact solution of this equation is

υ(y) = y2 −2y+2−2e−y.

In Table 1, 2, lists the numerical results obtained by the proposed method at n = 2, 3, 4, 5, m = 4 and for different
values of a and b. The absolute errors of this method are plotted in Figure 4. We observe from the figure that the
convergence is exponential and the errors are better when the values of n and m are large in Table 3, 4.

Table 1. Maximum absolute errors with various values of n and m = 4

a b n = 2 n = 3 n = 4 n = 5

1 1 7.3×10−3 6.5×10−4 1.1×10−4 6.6×10−5

2 1 7.3×10−3 6.5×10−4 1.2×10−4 6.6×10−5

2 −1 7.3×10−3 6.5×10−4 1.2×10−4 6.6×10−5

3 −2 7.3×10−3 6.5×10−4 1.2×10−4 6.6×10−5
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Table 2. Maximum absolute errors with various values of n and m = 8

a b n = 2 n = 3

1 1 5.3×10−3 6.1×10−4

2 1 5.3×10−3 6.1×10−4

2 −1 5.3×10−3 6.1×10−4

3 −2 5.3×10−3 6.1×10−4

Figure 4. Graph of the error at N = 3, 6, 8 and 9

Table 3. CPU time at n = 2, 3, 4, 5 and m = 4

n CPU time

2 5.812

3 30.875

4 216.249

5 377.344

Table 4. CPU time at n = 2, 3 and m = 8

n CPU time

2 27

3 237.219

Example 4We consider the nonlinear differential equation on case (9) when the function g(y) = siny, as follows:

υ
′
(y)+υ(y) = (siny)υm(y) υ(0) = 0

The exact solution of this equation is

υ(y) =
1
2

siny− 1
2

cosy+
1
2

e−y.
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Table 5, 6, there is a comparison between the absolute errors of the present method at different values of m, n, a and
b. Figure 5 displays the absolute errors at the same values. The figure shows that the convergence is exponential. The
values at m = 4 are better than at m = 8 in Table 7, 8.

Table 5. Comparison between absolute errors with different values of n and m = 4

a b n = 2 n = 3 n = 4 n = 5

1 1 8.5×10−3 2.5×10−3 2×10−3 3.8×10−3

2 1 8.5×10−3 2.5×10−3 4.7×10−3 3.9×10−2

2 −1 8.5×10−3 2.5×10−3 1.5×10−3 2.4×10−3

3 −2 8.5×10−3 2.5×10−3 1.5×10−3 2.5×10−3

Table 6. Maximum absolute errors with various values of n and m = 8

a b n = 2 n = 3

1 1 4.2×10−3 3.4×10−2

2 1 4.2×10−3 3.3×10−2

2 −1 4.2×10−3 3.3×10−2

3 −2 4.2×10−3 4×10−3

Figure 5. Graph of the absolute error at N = 3, 6, 8 and different values of ν1 and ν2

Table 7. CPU time at n = 2, 3, 4, 5 and m = 4

n CPU time

2 41.438
3 152.624
4 1,319.11
5 2,467.98

Table 8. CPU time at n = 2, 3 and m = 8

n CPU time

2 143.844
3 1,990.11
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Example 5We consider the nonlinear differential equation on case (8) when the function g(y) = cosy, as follows:

υ
′
(y)+υ(y) = (cosy)υm(y) υ(0) = 0

The exact solution of this equation is

υ(y) =
1
2

cosy+
1
2

siny− 1
2

e−y.

In Table 9, 10, we observe that the absolute errors obtained by our method at m = 4 are better than obtained at m = 8.
In Figure 6, we illustrate the results of the present method at n = 2, 3, 4, 5 and m = 4, 8 in Table 11, 12.

Table 9. Comparison between absolute errors with different values of n and m = 4

a b n = 2 n = 3 n = 4 n = 5

1 1 3.5×10−2 6.2×10−3 5×10−3 7.1×10−3

2 1 3.5×10−2 6.2×10−3 6.3×10−2 1.6×10−1

2 −1 3.5×10−2 6.2×10−3 5.6×10−3 7.1×10−3

3 −2 3.5×10−2 6.2×10−3 6.9×10−3 3.3×10−1

Table 10. Maximum absolute errors with various values of n and m = 8

a b n = 2 n = 3

1 1 1.5×10−1 1.5×10−1

2 1 1.5×10−1 1.5×10−1

2 −1 1.5×10−1 1.5×10−1

3 −2 1.5×10−1 2×10−1

Figure 6. Graph of the error at N = 3, 6 and 8
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Table 11. CPU time at n = 2, 3, 4, 5 and m = 4

n CPU time

2 78.14

3 183.64

4 1,419.19

5 2,928.42

Table 12. CPU time at n = 2, 3 and m = 8

n CPU time

2 211.359

3 2,352.86

When increasing the values of n−steps, the error increases. So, the method is accurate for small values of n. In this
problem

υ
′
(y)+υ(y) = eyυm(y)

the solution can not be evaluated. So this function is not convergent.

6. Conclusion
In this article, we studied the conversion of ODC graph to a metric graph then represent it in the form of matrices.

From the obtained matrices, we can solve Bernoulli’s differential equations. As a result, some exact and numerical
examples (which modified to a system of linear equation) can be computed using Mathematica software. Due to the
fact that the numerical approximation depends on the generalized Fibonacci polynomials to evaluate errors in each
case.The theoretical analysis and effectiveness of the recently created algorithm are supported by numerical evidence.
As a conclusion, Results proved that the studied method is strong adequacy and viability. We plan to generalize the
offered algorithm to more general differential problems and study the stability in the near future.

Data availability
The data used to support the findings of this study are included within the article.

Conflict of interest
The authors declare that there are not conflict of interest.

Contemporary Mathematics 3888 | Amany Saad, et al.



References
[1] Blinco A, El-Zanati S, Vanden C. On the cyclic decomposition of complete graphs into almost-bipartite graphs.

Discrete Mathematics. 2004; 284: 71-81.
[2] El-Shanawany R, Gronau HDOF, Grüttmüller M. Orthogonal double covers of Kn, n by small graphs. Discrete

Applied Mathematics. 2004; 138(1-2): 47-63.
[3] Atta AG, Abd-Elhameed WM, Moatimid GM, Youssri YH. Novel spectral schemes to fractional problems with

nonsmooth solutions. Mathematical Methods in the Applied Sciences. 2023; 46(13): 14745-14764.
[4] Magdy E, Abd-ElhameedWM,Youssri YH,Moatimid GM,Atta AG. A potent collocation approach based on shifted

gegenbauer polynomials for nonlinear time fractional burgers’ equations. Contemporary Mathematics. 2023; 4(4):
647-665.

[5] Mohamed AS. Spectral solutions with error analysis of volterra-fredholm integral equation via generalized lucas
collection method. International Journal of Applied and Computational Mathematics. 2021; 7(5): 178.

[6] Mokhtar MM, Mohamed AS. Lucas polynomials semi-analytic solution for fractional multi-term initial value
problems. Advances in Difference Equations. 2019; 2019(1): 1-13.

[7] Youssri YH, Abd-Elhameed WM, Mohamed AS, Sayed SM. Generalized lucas polynomial sequence treatment of
fractional pantograph differential equation. International Journal of Applied and Computational Mathematics. 2021;
7(2): 1-16.

[8] Abo-Eldahab EM, Mohamed AS, Ali SM. Spectral collection algorithm for solving fractional volterra-fredholm
integro-differential equations via generalized fibonacci polynomials. Contemporary Mathematics. 2022; 3(3): 308-
325.

[9] Abd-Elhameed WM, Youssri YH. Spectral tau algorithm for certain coupled system of fractional differential
equations via generalized fibonacci polynomial sequence. Iranian Journal of Science and Technology, Transactions
of Science. 2017; 43(2): 543-554.

[10] Mohamed AS. Fibonacci collection pseudo-spectral method of variable order space-fractional diffusion equations
with error analysis. AIMS Mathematics. 2022; 7(8): 14323-14337.

[11] Moastafa M, Youssri YH, Atta AG. Explicit Chebyshev Petov-Galerkin scheme for time-fractional fourth-order
uniform euller-bernoulli pinned-pinned beam equation. Nonlinear Engineering. 2023; 12(1): 20220308.

[12] Mokhtar MM, Dewaik MH, Mohamed AS. Semi-analytic fibonacci polynomials solution for volterra-fredholm
integral equation with error analysis. Fractals. 2022; 30(8): 2240230.

[13] Abd-Elhameed WM, Youssri YH, Amin AK, Atta AG. Eighth-kind chebyshev polynomials collocation algorithm
for the nonlinear time-fractional generalized kawahera equation. Fractal and Fractional. 2023; 7(9): 652.

[14] Xu GQ, Mastorakis NE. Differential Equations on Metric Graph. Greece: WSEAS Press; 2010.
[15] Ataa AG, Moatimid GM, Youssri YH. Generalized fibonacci operational collection approach for fractional initial

value problems. International Journal of Applied and Computational Mathematics. 2019; 5(1): 1-9.
[16] Rainville ED. Special Functions. New York: Chelsea; 1960.
[17] Koshy T. Fibonacci and Lucas Numbers With Applications. New York: USA; 2019.
[18] Youssri YH, Abd-Elhameed WM. Spectral solutions for multi-term fractional initial value problems using a new

fibonacci operational matrix of fractional integration. Progress in Fractional Differentiation and Applications. 2016;
2(2): 141-151.

[19] El‐Shanawany RA, Nada S, Elrokh A, Mubarak M. On orthogonal double cover of complete bipartite graphs by
disjoint union of paths. Ars Combinatoria. 2019; 142(1): 123-135.

Volume 6 Issue 4|2025| 3889 Contemporary Mathematics


	Introduction
	The method of the problem
	Properties and used formulas
	Main result
	Numerical examples
	Conclusion

