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Abstract: In this work we investigate the endomorphism monoid of certain ultrametric spaces. According to our main
result, if𝒳 = ⟨𝑋, ϱ⟩ is an ultrametric space such that the range of ϱ is finite, then the set of locally finite endomorphisms is
dense in the endomorphism monoid of 𝒳 and the endomorphism monoid of 𝒳 has a dense, locally finite submonoid. This
can be regarded as a homomorphism oriented counterpart of some recently obtained results about the existence of dense,
locally finite subgroups of the automorphism group of certain homogeneous structures. Further, as a byproduct, we obtain
Hrushovski style extension theorems for the ages of certain ultrametric spaces, but here, instead of partial isomorphisms
we extend partial homomorphisms.
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1. Introduction
Continuing investigations initiated in [1–3] we study some model theoretic properties of ultrametric spaces. More

concretely, we study extension properties of finite partial endomorphisms of certain ultrametric spaces. This area is still
active, and valuable related results can be found e.g., in [4–6]. For further details on recent results about ultrametric spaces
we refer to [7]. This work has two motivations.

Our first motivation originates from theoretical computer science. More concretely, assume
• 𝑋 is a set of instances of an abstract data type and
• ϱ is a distance function on 𝑋 measuring similarity of elements of 𝑋 (that is, if ϱ (𝑎, 𝑏) is smaller, then 𝑎 and 𝑏 are

“more similar”).
Suppose we are given a fixed set 𝐴 ⊆ 𝑋 and the question is to find all elements 𝑎 ∈ 𝐴 which are “similar enough”

to the input 𝑥. Versions of this question are called “similarity detecting problems”. Usually, 𝑋 may be infinite and often,
the distance function ϱ is an ultrametric. For further details we refer to [2, 8]. The crucial point for designing an efficient
similarity detecting algorithm is to find a clever representation for 𝐴.

The second motivation of this work comes from the model theory of homogeneous structures in general, and from the
model theory of metric spaces in particular (see e.g., [5, 6, 9]). Related investigations provide a better understanding how
a “nice” countably infinite structure can be built up from its finite substructures. In case of metric or ultrametric spaces,
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such information may help to construct representations of certain (ultra) metric spaces as we mentioned at the end of the
previous paragraph. To be more concrete, we recall the following model theoretical results. In his celebrated paper [10],
Hrushovski proved that each finite graph 𝒢 can be embedded into another finite graph ℋ such that isomorphisms between
subgraphs of 𝒢 can be extended to automorphisms of ℋ. With contemporary terminology that result often cited as the
class of finite graphs have the extension property (𝐸𝑃 for short). Since then, many different proofs has been found for the
fact that the class of finite graphs have the 𝐸𝑃 and instead of graphs, and the 𝐸𝑃 has been proved to many other classes of
finite structures. For further details we refer to [11–17] and to the excellent survey [18]. In [19], a particularly interesting
proof has been presented for the 𝐸𝑃 of finite graphs: it was shown that the automorphism group of the Rado graph (i.e.
the countable random graph) has a dense, locally finite subgroup. Related investigations received renewed impetus, see
[20, 21] where the existence of locally finite, dense subgroups of the automorphism group of certain structures has been
thoroughly studied.

The main results of the present work are as follows. As in [4–6, 22, 23], instead of the automorphism group, we
will investigate the endomorphism monoid of certain ultrametric spaces. In Theorem 3 we show that the endomorphism
monoid of an ultrametric space of finite spectrum always has a dense, locally finite submonoid. Further, as a byproduct,
in Theorems 1 and 2 we present Hrushovski style extension theorems for finite substructures of certain ultrametric spaces,
but at this time, instead of partial isomorphisms we are extending partial homomorphisms. At the technical level these
proofs are short and elementary, but the results can be regarded as a homomorphism oriented counterpart of some results
in [16, 17, 21].

The structure of the rest of this paper is rather simple. At the end of this section we sum up our system of notation.
Section 2 contains the proofs of the main results of the paper.

1.1 Notation
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae,

felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec
vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus
sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo
ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor
semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget
orci sit amet orci dignissim rutrum.

Our notation is mostly standard, but the following list may be helpful.
Throughout 𝜔 denotes the set of natural numbers and for every 𝑛 ∈ 𝜔 we have 𝑛 = {0, 1, ..., 𝑛 − 1}. Let 𝐴 and

𝐵 be sets. Then 𝐴𝐵 denotes the set of functions whose domain is 𝐴 and whose range is a subset of 𝐵. In addition, |𝐴|
denotes the cardinality of 𝐴.

Throughout we use function composition in such a way that the rightmost factor acts first. That is, for functions 𝑓, 𝑔
we define 𝑓 ∘ 𝑔(𝑥) = 𝑓(𝑔(𝑥)). Further, Id𝐴 is the identity function on 𝐴 and if 𝐶 ⊆ 𝐴 then 𝑓|𝐶 denotes the restriction of
𝑓 to 𝐶.

If 𝒢 is a group or semigroup (with underlying set 𝐺) and 𝑓0, ..., 𝑓𝑛−1 ∈ 𝐺 then ⟨𝑓0, ..., 𝑓𝑛−1⟩ denotes the subgroup
(or subsemigroup) of 𝒢 generated by {𝑓0, ..., 𝑓𝑛−1}. We warn the reader that sometimes ⟨𝑓0, ..., 𝑓𝑛−1⟩ simply denotes
the sequence with terms 𝑓0, ..., 𝑓𝑛−1. It will always be clear from the context if we mean the substructure generated by
the 𝑓𝑖.

If 𝒜 and ℬ are structures, then 𝐴 ≤ ℬ denotes the fact that 𝒜 is a substructure of ℬ. Structures will be denoted
by calligraphic letters and their underlying sets will be denoted by the corresponding latin letter (in the case of groups,
monoids and semigroups, sometimes, we don’t make such a strict distinction between the structure itself and its underlying
set and simply denote both by latin letters).
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2. Proofs
In this section we present proofs of our main results. We start by some technical preparations.
Let 𝒜 be an arbitrary structure. The endomorphism monoid Endo (𝒜) and the automorphism group Aut(𝒜) can

be endowed with a topology as follows. Endow 𝐴 with the discrete topology and 𝐴𝐴 with the product topology (or
equivalently, with the pointwise convergence topology) 𝜏 . Throughout this paper Endo(𝒜) (respectively Aut(𝒜)) will be
endowed with the subspace topology inherited from 𝜏 . Further, if 𝑛 ∈ 𝜔 and 𝑓𝑖 ∶ 𝐴 → 𝐴 are finite partial functions for
all 𝑖 < 𝑛 then, for 𝑓 = ⟨𝑓0, ..., 𝑓𝑛−1⟩, the elementary open set 𝑁𝑓 in the product space 𝑛Endo(𝒜) is defined to be

𝑁𝑓 = {𝑔 = ⟨𝑔0, ..., 𝑔𝑛−1⟩ ∈ 𝑛Endo(𝒜) ∶ (∀𝑖 < 𝑛)(𝑓𝑖 ⊆ 𝑔𝑖)}.

In order to apply model theoretic methods to metric spaces we recall a standard method associating a relational
structure 𝒜(𝒳) to a metric space 𝒳 = ⟨𝑋, ϱ⟩. The universe of 𝒜(𝒳) is 𝑋 and for each 𝑑 ∈ ran (ϱ) (range of ϱ) there is
a binary relation symbol 𝑅𝑑 in the language of 𝒜(𝒳) denoting the relation

𝑅𝑑 = {⟨𝑎, 𝑏⟩ ∈ 𝑋2 ∶ ϱ (𝑎, 𝑏) ≤ 𝑑}.

The range of ϱ is called the spectrum of 𝒳. In this work, by a slight abuse of notation, we do not make a strict
distinction between 𝒜(𝒳) and 𝒳; when we mention a model theoretic property of 𝒳 we tacitly mean 𝒜(𝒳) in place of
𝒳.

Definition 1 Let 𝒳 = ⟨𝑋, ϱ⟩ be a metric space, if the distance function ϱ also satisfies the following, rather strong
form of the triangle inequality: for all 𝑎, 𝑏, 𝑐 ∈ 𝑋 we have

ϱ(𝑎, 𝑏) ≤ 𝑚𝑎𝑥{ϱ (𝑎, 𝑐), ϱ (𝑐, 𝑏)}

then 𝒳 = ⟨𝑋, ϱ⟩ is defined to be an ultrametric space.
Definition 2Let𝒳 = ⟨𝑋, ϱ⟩ be ametric space and let𝑌 ⊆ 𝑋. A function 𝑓 ∶ 𝑋 → 𝑋 is defined to be a homomorphism

iff

(∀𝑎, 𝑏 ∈ 𝑋)(ϱ (𝑓(𝑎), 𝑓(𝑏)) ≤ ϱ (𝑎, 𝑏)).

In addition, 𝑓 is defined to be a retraction over 𝑌 𝑖𝑓𝑓 𝑓 is a homomorphism, 𝑓|𝑌 is the identity function of 𝑌 and
ran(𝑓) ⊆ 𝑌 .

In the context of metric spaces homomorphisms are the same as “nonexpansive mappings” or “1-Lipschitz
functions”. We also recall that a structure 𝒜 is defined to be homomorphism homogeneous iff homomorphisms between
finite substructures of 𝒜 can be extended to endomorphisms of 𝒜.

In Lemma 1 below we establish the existence of several retractions. Although we are using different terminology, the
essence of our proof is similar to that of Theorem 3.2 in [5] (however, we obtained it independently). The main difference
is that Theorem 3.2 of [5] applies to finite or countably infinite ultrametric spaces (of arbitrary spectrum), while our
Lemma 1 applies to all (even uncountable) ultrametric spaces with finite spectrum.

Lemma 1 Let 𝒳 = ⟨𝑋, ϱ⟩ be an ultrametric space with a finite spectrum. Let ∅ ≠ 𝑌 ⊆ 𝑋 be arbitrary. Then there
exists a function 𝑓 ∶ 𝑋 → 𝑌 which is a retraction over 𝑌 .
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Proof. Let 𝜅 = |𝑌 | and let {𝑦𝑖 ∶ 𝑖 < 𝜅} be a (possibly transfinite) enumeration of 𝑌 . Let 𝑥 ∈ 𝑋 be arbitrary. Since
𝒳 has finite spectrum, the set {ϱ (𝑥, 𝑦𝑖) ∶ 𝑖 < 𝜅} has a minimum 𝑚𝑥. Define 𝑓(𝑥) = 𝑦𝑖 where 𝑖 is the smallest element
of 𝜅 for which ϱ (𝑥, 𝑦𝑖) = 𝑚𝑥. Clearly, 𝑓|𝑌 = Id𝑌 and ran(𝑓) ⊆ 𝑌 . It remains to show that 𝑓 is a homomorphism. Let
𝑎, 𝑏 ∈ 𝑋, we shall show

ϱ (𝑓(𝑎), 𝑓(𝑏)) ≤ ϱ (𝑎, 𝑏). (1)

We apply a case distinction.
Case 1 ϱ (𝑎, 𝑓(𝑏)) > ϱ (𝑏, 𝑓(𝑏)). On one hand, ϱ (𝑎, 𝑏) ≥ ϱ (𝑎, 𝑓(𝑏)) (because otherwise ϱ (𝑎, 𝑓(𝑏)) ≤

𝑚𝑎𝑥{ϱ (𝑎, 𝑏), ϱ (𝑏, 𝑓(𝑏))} would not hold). On the other hand,

ϱ (𝑓(𝑎), 𝑓(𝑏)) ≤ max{ϱ (𝑓(𝑎), 𝑎), ϱ(𝑎, 𝑓(𝑏))} def. of 𝑓(𝑎)= ϱ (𝑎, 𝑓(𝑏)).

combining these observations, one obtains (1).
Case 2 ϱ (𝑏, 𝑓(𝑎)) > ϱ (𝑎, 𝑓(𝑎)). It is similar to Case 1, by symmetry.
Case 3 ϱ (𝑎, 𝑓(𝑏)) ≤ ϱ (𝑏, 𝑓(𝑏)) and ϱ (𝑏, 𝑓(𝑎)) ≤ ϱ (𝑎, 𝑓(𝑎)). By construction, there are 𝑖, 𝑗 < 𝜅 such that

𝑓(𝑎) = 𝑦𝑖 and 𝑓(𝑏) = 𝑦𝑗. Observe that

ϱ (𝑎, 𝑓(𝑎)) ≥ ϱ (𝑏,𝑓(𝑎))
def. of 𝑓(𝑏)

≥ ϱ (𝑏, 𝑓(𝑏)) ≥ ϱ (𝑎, 𝑓(𝑏))
def. of 𝑓(𝑎)

≥ ϱ (𝑎, 𝑓(𝑎)).

Hence, in the previous line equality holds everywhere. In particular, ϱ (𝑎, 𝑓(𝑎)) = ϱ (𝑎, 𝑓(𝑏)). Completely similarly,
ϱ (𝑏, 𝑓(𝑏)) = ϱ (𝑏, 𝑓(𝑎)). Further,

𝑚𝑎 = ϱ (𝑎, 𝑓(𝑎)) = ϱ (𝑎, 𝑓(𝑏)).

Hence 𝑖 ≤ 𝑗. Similarly, 𝑚𝑏 = ϱ (𝑏, 𝑓(𝑏)) = ϱ (𝑏, 𝑓(𝑎)), hence 𝑗 ≤ 𝑖. It follows, that 𝑖 = 𝑗, that is, 𝑓(𝑎) = 𝑓(𝑏).
Therefore ϱ (𝑓(𝑎), 𝑓(𝑏)) = 0, so (∗) holds, as desired.

Now we present our first result. It states that the endomorphism monoid of an ultrametric space of finite spectrum
is smoothly approximated in a strong sense. (We use the expression “smoothly approximated” in its group theoretic and
semigroup theoretic meaning).

Theorem 1 Suppose 𝒳 = ⟨𝑋, ϱ⟩ is an ultrametric space with a finite spectrum. Then Endo(𝒳) is smoothly
approximated in the following sense. For all nonempty, finite 𝐴 ⊆ 𝑋, if 𝑎, 𝑏 ∈ 𝐴 are finite tuples such that there exists
𝑓 ∈ Endo(𝒳) with 𝑓(𝑎) = 𝑓(𝑏), then there exists 𝑓 ′ ∈ Endo(𝒳) which maps 𝐴 into itself (in fact, ran(𝑓 ′) ⊆ 𝐴) and still
𝑓 ′(𝑎) = 𝑓 ′(𝑏).

Proof. Applying Lemma 1 we obtain a function 𝑔 ∶ 𝑋 → 𝐴 which is a retraction over 𝐴. Assume 𝑎, 𝑏 ∈ 𝐴 and
𝑓 ∈ Endo(𝒳) with 𝑓(𝑎) = 𝑓(𝑓 ′(�̄�)). Then 𝑓 ′ ∶= 𝑔 ∘𝑓 maps 𝑎 onto 𝑏 and maps 𝐴 into itself, as desired.

Let 𝑋 be an arbitrary set and let 𝐺 be a monoid acting on 𝑋. The 𝐺-orbit 𝑂𝐺(𝑎) of 𝑎 ∈ 𝑋 is defined to be

𝑂𝐺(𝑎) = {𝑔(𝑎) ∶ 𝑔 ∈ 𝐺}.
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For Id ∈ 𝐺 we have Id(𝑎) = 𝑎, hence 𝑎 ∈ 𝑂𝐺(𝑎) holds always (in particular, the orbit of an element is never empty).
However, if 𝐺 is not a group, then the 𝐺-orbits of elements of 𝑋 may not form a partition of 𝑋 because different orbits
may not be disjoint.

Let 𝒜 be any first order structure and let 𝑛 ∈ 𝜔. Then the set EndoFin𝑛 (𝒜) of finitary (or locally finite) 𝑛-tuples of
endomorphisms of 𝒜 is defined to be

EndoFin𝑛 (𝒜) = {𝑔 ∈ 𝑛𝐺 ∶ (∀𝑎 ∈ 𝐴)(|𝑂⟨𝑔⟩(𝑎)| < ℵ0)}.

Our next result has been motivated by Theorem of [24], see also Lemma and Theorem of [16].
Theorem 2 Suppose 𝒳 = ⟨𝑋, ϱ⟩ is an ultrametric space with a finite spectrum. Then EndoFin𝑛 (𝒳) is dense in

𝑛Endo(𝒳) for each 𝑛 ∈ 𝜔.
Proof. Fix 𝑛 ∈ 𝜔 and let 𝑁𝑓 be a nonempty elementary open subset of Endo(𝒳). It is enough to show that

there exists 𝑓 ′ ∈ 𝑁𝑓 ∩ EndoFin𝑛 (𝒳). (2)

.
Let

𝐴 = ⋃
𝑖<𝑛

(dom(𝑓𝑖)∪ ran(𝑓𝑖)).

Applying the proof of Theorem 1, we obtain that for each 𝑖 < 𝑛 there exists 𝑓 ′
𝑖 ∈ Endo(𝒳) mapping dom(𝑓𝑖) onto

ran(𝑓𝑖) and ran(𝑓 ′
𝑖 ) ⊆ 𝐴. Hence, 𝑓 ′ ∶= ⟨𝑓 ′

𝑖 ∶ 𝑖 < 𝑛⟩ is an element of 𝑁𝑓 . In addition, since ran(𝑓 ′
𝑖 ) ⊆ 𝐴 holds for all

𝑖 < 𝑛, it follows that 𝑓 ′ ∈ EndoFin𝑛 (𝒳). Thus, (2) holds, as desired.
As usual, for a structure 𝒞, the set of finitely generated substructures of 𝒞 will be denoted by Age(𝒞). If AutFin𝑛 (𝒞) is

dense in 𝑛Aut(𝒞) for all 𝑛, then there is a standard method for deriving Hrushovski style extension theorems for Age(𝒞)
(for more information we refer to Corollary 2.4 of [15] and Remark 4.5 of [16]). This method can be adapted to EndoFin𝑛 (𝒞)
in a straightforwardway. Hence Theorem 1 implies Hrushovski style extension theorems for partial homomorphisms in the
context of ultrametric spaces which can be regarded as a homomorphism oriented counterpart of Theorem 2.1 in [17] (see
also Corollary 1.13 in [21]). However, for an ultrametric space 𝒳, there is a drastically simpler way to obtain Hrushovski
style theorems for Age(𝒳) and for their partial homomorphisms: by Theorem 3.2 of [5], each finite ultrametric space 𝒜
is homomorphism homogeneous (that is, partial endomorphisms of 𝒜 can be extended to endomorphisms of 𝒜; this also
can be quickly derived from Lemma 1. Therefore for any 𝒜 ∈ Age(𝒳), a Hrushovski extension of 𝒜 is 𝒜 itself. This
establishes the next Corollary.

Proposition 1 Suppose 𝒳 = ⟨𝑋, ϱ ⟩ is an ultrametric space with a finite spectrum. Then Age(𝒳) satisfies 𝐸𝑃𝑃𝐸
(the extension property of partial endomorphisms), that is, for all 𝒜 ∈ Age(𝒳) there exists ℬ ∈ Age(𝒳) such that the
following holds. If 𝑓 is a homomorphism between substructures of 𝒜 that extends to an endomorphism of 𝒳 then there
exists an endomorphism of ℬ which extends 𝑓 .

In fact, ℬ can be chosen to be ℬ = 𝒜 so the same conclusion holds, if 𝑓 is a homomorphism between substructures
of ℬ.

Motivated by [19] and the more recent [20, 21], in the last theorem of this work we deal with the existence of locally
finite, dense submonoids of the endomorphism monoid of certain ultrametric spaces. It turns out, that modulo some mild
technical conditions, such submonoids always exist.
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Theorem 3 Suppose 𝒳 = ⟨𝑋, ϱ⟩ is an ultrametric space with finite spectrum. Then there exists a dense, locally
finite submonoid 𝐺 ≤ Endo(𝒳).

Proof. Let 𝑓 be an arbitrary finite partial endomorphism of 𝒳. Applying the proof of Theorem 1 to 𝐴 ∶= dom(𝑓) ∪
ran(𝑓) we obtain 𝑓 ′ ∈ Endo(𝒳) such that ran(𝑓 ′) ⊆ 𝐴 and 𝑓 ′ maps dom(𝑓) onto ran(𝑓). It follows that each finite
endomorphism of 𝒳 can be extended to an endomorphism 𝑓 ′ ∈ Endo(𝒳) such that ran(𝑓 ′) is finite. Let 𝒢 be the
submonoid of Endo(𝒳) generated by {𝑓 ′ ∶ 𝑓 is a finite endomorphism of 𝒳}. Clearly, 𝒢 is dense in Endo(𝒳) and
each element of 𝒢 has finite range.

In order to complete the proof, we prove a little bit more: we show that if ℋ is any submonoid of Endo(𝒳) such that
all elements of ℋ has finite range, then ℋ is locally finite. To do so, assume {ℎ0, ..., ℎ𝑛−1} is a finite subset of ℋ. Let

𝐴 =
𝑛−1
⋃
𝑖=0

ran(ℎ𝑖) and 𝑀 = {Id𝑋}∪{𝑓 ∘ℎ𝑖 ∶ 𝑓 ∈ 𝐴𝐴, 𝑖 < 𝑛}.

Clearly, ℎ𝑖 ∈ 𝑀 holds for all 𝑖 < 𝑛. Further, 𝑀 is closed under composition because of the following. If 𝑖, 𝑗 < 𝑛
and 𝑓, 𝑔 ∈ 𝐴𝐴 then 𝑓 ∘ℎ𝑖 ∘ 𝑔 ∈ 𝐴𝐴 (that is, dom(𝑓 ∘ℎ𝑖 ∘ 𝑔) = 𝐴 and ran(𝑓 ∘ℎ𝑖 ∘ 𝑔) ⊆ 𝐴) because ran(ℎ𝑖) ⊆ 𝐴. Hence

(𝑓 ∘ℎ𝑖) ∘ (𝑔 ∘ℎ𝑗) = (𝑓 ∘ℎ𝑖 ∘ 𝑔) ∘ℎ𝑗

shows that 𝑀 is indeed closed under composition. It follows that the submonoid ℋ0 of ℋ generated by {ℎ0, ..., ℎ𝑛−1}
is contained in 𝑀 . But obviously, 𝑀 is finite, hence ℋ0 is finite, as desired.

3. Conclusion
As we discussed in the Introduction, investigating the model theoretic properties of ultrametric space is a rather

active research topic recently. In the present work we focused our attention to the endomorphism monoids of ultrametric
spaces and obtained the following results. According to Theorem 3, the endomorphism monoid of an ultrameric space of
finite spectrum always contains a dense, locally finite submonoid. As a byproduct of this result, in Theorems 1 and 2 we
established Hrushovski style extension theorems for finite substructures of certain ultrametric spaces.
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