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1. Introduction
Fredholm integral equations play a significant role in various scientific applications. These equations can be found in

fields such as engineering and mathematical physics, and provide a powerful mathematical tool for studying phenomena
in various scientific disciplines. They can be used to model a wide range of physical systems and to analyze their behavior.
Many researchers and scientists heavily rely on these equations to solve complex problems, one of them to find efficient
and accurate methods to solve the problems of multiple integral equations.

Wang and Zhou [1] have recently studied the numerical solution of Fredholm integral equations using the Nyström
method. Moreover, they discussed a two-grid iterative method for solving this class of equations based on the radial basis
function interpolation (see [2]).
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In [3], Noble presented a multiplying-factor method to transfer some dual and triple integral equations to Fredholm
integral equations of the second kind. Cheshmehkani and Ghadi [4] extended Noble’s method to solve the following
system:

∫ ∞

0
tα D(t)B(t)Jν(ρt)dt = f (ρ), 0 ≤ ρ ≤ a, (1)

∫ ∞

0
B(t)Jν(ρt)dt = g(ρ), ρ > a, (2)

with some conditions imposed on the functions f , g and D. They converted (1)-(2) to the first and second kind Fredholm
integral equations.

In [5], the authors considered and solved three different systems of dual q-integral equations where the kernel is the
third Jackson q-Bessel functions by different methods. They used the q-Mellin transform, the fractional q-calculus and
applied the multiplying factor method. Mansour and AL-Towailb [6] employed the fractional q-calculus in solving a triple
system of q-integral equations (see also [7–10]).

Our aim to study a q-analogue of the system (1)-(2), where the kernel is the third Jackson q-Bessel functions, and we
apply the results to convert a certain triple q-integral equations to two simultaneous Fredholm q-integral equations.

The paper is organized as follows: In the next section, we provide a recap of the fundamental concepts and principles
of q-analysis that are essential for our investigations. Section 3 focuses on the study of a special system of dual q-integral
equations. We analyze different cases that encompass a wider scope of dual q-integral equations involving third Jackson
q-Bessel functions. Section 4 outlines the process of converting the dual q-integral equations into the first and second kind
Fredholm q-integral equations. Additionally, we present an illustrative example to exemplify this conversion. Section 5
centers around the consideration of a certain system of triple q-integral equations. We utilize our findings from earlier
sections to successfully reduce this system to Fredholm q-integral equations. The conclusions are presented in the last
section.

2. Preliminaries
Throughout this paper, we follow Gasper and Rahman [11] for the definitions of the q-shifted factorial, q-gamma

function and Jackson q-integrals, where 0 < |q|< 1. For t > 0, let Rq, t,+, Aq, t and Bq, t be the following sets:

Rq, t,+: = {tqk: k ∈ Z}, Aq, t : = {tqn: n ∈ N0}, Bq, t : = {tq−n: n ∈ N}.

Note that, for t = 1 we write Rq,+, Aq and Bq, and we will use following spaces:

Lq, η(Rq,+): =
{

f : ∥ f∥q, η : =
∫ ∞

0
|tη f (t)|dqt < ∞

}
,

Lq, η(Aq): =
{

f : ∥ f∥Aq, η : =
∫ 1

0
|tη f (t)|dqt < ∞

}
,

Lq, η(Bq): =
{

f : ∥ f∥Bq, η : =
∫ ∞

1
|tη f (t)|dqt < ∞

}
,

Contemporary Mathematics 2 | Maryam AL-Towailb



where η ∈ C and Lq, η(Rq,+) = Lq, η(Aq)∩Lq, η(Bq).
In [12], the authors introduced inverse pair of q-Hankel integral transforms:

f (x) =
∫ ∞

0
λg(λ )Jν(λ x; q2)dqλ ;

g(λ ) =
∫ ∞

0
x f (x)Jν(λ x; q2)dqx, (3)

where f , g ∈ L2
q(Rq,+), and λ , x ∈ Rq,+.

A set A ⊆ R is called a q-geometric set if qx ∈ A for any x ∈ A. If f is a function defined on a q-geometric set A, the
q-derivative Dq f is defined by

Dq f (z) =


f (z)− f (qz)
(1−q)z

, z ∈ A−{0};

f ′(0), z = 0,

(4)

provided that f is differentiable at zero (see [13]).
The third Jackson q-Bessel function is defined by

Jν(z; q): =
(qν+1; q)∞

(q; q)∞

∞

∑
n=0

(−1)n qn(n+1)/2z2n+ν

(q; q)n(qν+1; q)n
(z ∈ C), (5)

and satisfies the following relations:

Dq
[
(.)−ν Jν(.; q2)

]
(z) =−q1−ν z−ν

1−q
Jν+1(qz; q2), (6)

Dq
[
(.)ν Jν(.; q2)

]
(z) =

zν

1−q
Jν−1(z; q2) (7)

(see [14, 15]). Also, for ℜ(ν)>−1, the q-Bessel function Jν(.; q2) satisfies:

∣∣Jν(qn; q2)
∣∣≤ (−q2; q2)∞(−q2ν+2; q2)∞

(q2; q2)∞


qnν , if n ≥ 0;

qn2−(ν+1)n, if n < 0,
(8)

(see [12, 16]). We need the following results (see [13]):
Lemma 1 Let x, ν and γ be complex numbers and u ∈ Rq,+. Then, for ℜ(γ) > −1 and ℜ(ν) > −1 the following

identity holds:
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∫ x

0
ρν+1(q2ρ2/x2; q2)γ Jν(uρ; q2)dqρ

=xν−γ+1u−γ−1(1−q)(1−q2)γ Γq2(γ +1)Jγ+ν+1(ux; q2). (9)

Moreover, if ℜ(γ)> 0 and ℜ(ν)>−1, then

∫ ∞

x
ρ2γ−ν−1(x2/ρ2; q2)γ−1Jν(uρ; q2)dqρ

=xγ−ν u−γ(1−q)qγ (q2; q2)∞

(q2γ ; q2)∞
Jν−γ(

ux
q

; q2). (10)

Now, we recall some of q-fractional operators. The Riemann-Liouville fractional q-integral operator is defined in
[17] by

Iα
q f (x): =

xα−1

Γq(α)

∫ x

0
(qt/x; q)α−1 f (t)dqt,

where α ̸∈ {−1, −2, ...}. Agarwal [18] defined the q-fractional derivative to be

Dα
q f (x): = I−α

q f (x) =
x−α−1

Γq(−α)

∫ x

0
(qt/x; q)−α−1 f (t)dqt. (11)

In [17], Al-Salam defined a two parameter q-fractional operator by

Kη , α
q ϕ(x): =

q−η xη

Γq(α)

∫ ∞

x

(
x/t; q

)
α−1t−η−1ϕ(tq1−α)dqt,

α ̸= −1, −2, . . .. In [5], the authors introduced a slight modification of the operator Kη , α
q . This operator is denoted by

K η , α
q and defined by

K η , α
q ϕ(x): =

q−η xη

Γq(α)

∫ ∞

x
(x/t; q)α−1t−η−1ϕ(qt)dqt,

where α ̸=−1, −2, . . .. In case of η =−α , we set
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K α
q f (x): =q−α xα qα(α−1)/2K −α, α

q f (x)

=
q−α(α−1)/2

Γq(α)

∫ ∞

x
tα−1(x/t; q)α−1 f (qt)dqt. (12)

3. Extension of Noble’s method for wider range of dual q-integral equations
We consider the following dual q-integral equations:

∫ ∞

0
u2α D(u)ψ(u)Jν(uρ; q2)dqu = f (ρ), ρ ∈ Aq, a, (13)

∫ ∞

0
ψ(u)Jν(uρ; q2)dqu = g(ρ), ρ ∈ Bq, a, (14)

where 0 < a < ∞, D(u) is a bounded function with the condition

lim
n→∞

D(aqn) = 0 or lim
n→∞

D(aq−n) = 1,

α and ν are complex numbers such that ℜ(ν) > −1, ψ ∈ Lq, ν(Rq,+)∩ Lq, ν+2α(Rq,+) is an unknown function to be
determined, and the functions f and g are known functions defined on Aq, a and Bq, a respectively.

We study the double q-integral Equations (13) and (14) in several cases for variations of α and ν .
We start by multiplying both sides of (13) by

ρν+1(q2ρ2/x2; q2)γ ,

and then integrating with respect to ρ from 0 to x (x ∈ Aq, a), we get

∫ x

0
ρν+1 (q2ρ2/x2; q2)γ

[∫ ∞

0
u2α D(u)ψ(u)Jν(uρ; q2)dqu

]
dqρ

=
∫ x

0
ρν+1 (q2ρ2/x2; q2)γ f (ρ)dqρ. (15)

Notice, the double q-integral on the left hand side of (15) is absolutely convergent for ℜ(ν) > −1 provided that
ψ ∈ Lq, ν(Rq,+) (see Equation (8)). So, by interchanging the order of integration, and using (9), we get

Volume 5 Issue 2|2024| 5 Contemporary Mathematics



∫ ∞

0
u2α−γ−1 D(u)ψ(u)Jν+γ+1(xu; q2)dqu

=
xγ−ν−1

(1−q)(1−q2)γ Γq2(γ +1)

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)γ f (ρ)dqρ (x ∈ Aq, a). (16)

Similarly, multiplying both sides of (14) by

ρ2β−ν−1(x2/ρ2; q2)β−1

and integrating with respect to ρ from x to ∞ (x ∈ Bq, a), and then using (10) we obtain the following:

∫ ∞

0
u−β−1 ψ(u)Jν−β−1(

xu
ρ

; q2)dqu

=
(q2(β+1); q2)∞

(1−q)qβ+1 (q2; q2)∞
xν−β−1

∫ ∞

x
ρ2β−ν+1(

x2

ρ2 ; q2)β g(ρ)dqρ (x ∈ Bq, a). (17)

From the Equations (16) and (17), we will get

∫ ∞

0
uα D(u)ψ(u)Jν+α(xu; q2)dqu = Fi(x), x ∈ Aq, a, (18)

∫ ∞

0
uα ψ(u)Jν+α(xu; q2)dqu = Gi(qx), x ∈ Bq, a, (19)

where, i in the functions Fi and Gi denotes to the case number considered for the range of α and ν .
Case [i]: 0 < ℜ(α)< 1, ℜ(ν +α)> 0.
In this case we assume that γ = α −1 and β =−α . Replacing these parameters in Equations (16) and (17), we obtain

∫ ∞

0
uα D(u)ψ(u)Jν+α(xu; q2)dqu

=
xα−ν−2

(1−q)(1−q2)α−1Γq2(α)

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)α−1 f (ρ)dqρ, (20)

∫ ∞

0
uα−1 ψ(u)Jν+α−1(

xu
q

; q2)dqu

=
(q2(1−α); q2)∞

(1−q)q1−α (q2; q2)∞
xν+α−1

∫ ∞

x
ρ−2α−ν+1(

x2

ρ2 ; q2)−α g(ρ)dqρ. (21)
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Multiplying both sides of (21) by x1−ν−α , and then calculating the q-derivative of the two sides with respect to x and
using Equation (6), we obtain

∫ ∞

0
uα ψ(u)Jν+α(xu; q2)dqu (22)

=−q−(1+ν) (q
2(1−α); q2)∞

(q2; q2)∞
xν+α−1 Dq, x

∫ ∞

x
ρ−2α−ν+1(

x2

ρ2 ; q2)−α g(ρ)dqρ. (23)

Therefore, the Equations (20) and (22) can be written in the form of Equations (18) and (19), where

F1(x) =
xα−ν−2

(1−q)(1−q2)α−1Γq2(α)

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)α−1 f (ρ)dqρ,

G1(qx) =−q−(1+ν) (q
2(1−α); q2)∞

(q2; q2)∞
xν+α−1 Dq, x

∫ ∞

x
ρ−2α−ν+1(

x2

ρ2 ; q2)−α g(ρ)dqρ.

By using (12), we get

G1(qx) =−q
α2−α

2

qν+1 (1−q2)α xν+α−1Dq, x

[
K 1−α

q2 [(.)−
ν
2 g(

√
.)](

x
q2 )

]
(x ∈ Bq, a).

Case [ii]: −1 < ℜ(α)< 0, ℜ(ν +α)>−1.
In this case we assume that γ = α and β =−1−α . By the same argument in Case [i], the Equations (16) and (17)

are transformed to (18) and (19), where

F2(x) =
x−(α+ν−1)

(1−q2)α Γq2(α +1)
Dq, x

[
x2α

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)α f (ρ)dqρ
]
,

G2(x) =
qα(1−q2)1+α

(1−q)Γq2(−α)
xν+α

∫ ∞

x
ρ−2α−ν−1(

x2

ρ2 ; q2)−α−1 g(ρ)dqρ.

By using (11), F2(x) can be rewritten in the following form:

F2(x) =
x−(α+ν−1)

(1−q2)α Dq, x

[
D(−α)

q2, x [(.)
ν
2 f (

√
.)](x)

]
(x ∈ Aq, a).

Remark 1 Case [i] and [ii] are q-analogous of the results introduced by Noble in [3].
Case [iii]: −1 < α < 1, ℜ(ν +α)>−1. Replacing γ by α and β by −α in Equations (16) and (17), we obtain
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∫ ∞

0
uα−1 D(u)ψ(u)Jν+α+1(xu; q2)dqu

=
xα−ν−1

(1−q)(1−q2)α Γq2(α +1)

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)α f (ρ)dqρ (x ∈ Aq, a); (24)

∫ ∞

0
uα−1 ψ(u)Jν+α−1(

xu
q

; q2)dqu

=
(q2−α ; q2)∞

(1−q)q1−α (q2; q2)∞
xν+α−1

∫ ∞

x
ρ−2α−ν+1(

x2

ρ2 ; q2)−α g(ρ)dqρ (x ∈ Bq, a). (25)

Multiplying both sides of (24) and (25) by x1+ν+α and x1−ν−α respectively, and then calculating the q-derivative of
the two sides of each equation with respect to x and using Equation (6) and Equation (7), we get

∫ ∞

0
uα D(u)ψ(u)Jν+α(xu; q2)dqu (26)

=
x−(1+α+ν)

(1−q2)α Γq2(α +1)
Dq, x

[
x2α

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)α f (ρ)dqρ
]

(x ∈ Aq, a); (27)

∫ ∞

0
uα ψ(u)Jν+α(xu; q2)dqu (28)

=−q−(1+ν) (q
2−α ; q2)∞

(q2; q2)∞
xν+α−1 Dq, x

∫ ∞

x
ρ−2α−ν+1(

x2

ρ2 ; q2)−α g(ρ)dqρ (x ∈ Bq, a). (29)

The order of the third Jackson q-Bessel functions and the power of u in Equations (27) and (29) are equal. Therefore,
these equations are transformed to Equations (18) and (19) respectively, where

F3(x) =
x−(α+ν+1)

(1−q2)α Γq2(α +1)
Dq, x

[
x2α

∫ x

0
ρν+1(

q2ρ2

x2 ; q2)α f (ρ)dqρ
]

=
x−(α+ν−1)

(1−q2)α Dq, x

[
D(−α)

q2, x [(.)
ν
2 f (

√
.)](x)

]
(x ∈ Aq, a);

G3(qx) =−q−(1+ν) (q
2−α ; q2)∞

(q2; q2)∞
xν+α−1 Dq, x

∫ ∞

x
ρ−2α−ν+1(

x2

ρ2 ; q2)−α g(ρ) dqρ

=− q
α2−α

2

qν+1 (1−q2)α xν+α−1Dq, x

[
K 1−α

q2 [(.)−
ν
2 g(

√
.)](

x
q2 )

]
(x ∈ Bq, a).
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Remark 2 Case [iii] is an extension to the cases [i] and [ii] which presents one single formulation for the whole
range of −1 < α < 1 including α = 0.

4. The reduction of dual q-integral equations to Fredholm q-integral equations
Our aim to convert the dual q-integral Equations (18) and (19) to the Fredholm q-integral equations, where D(u) is

a given function with the condition of either lim
n→∞

D(aq−n) = 1 or lim
n→∞

D(aqn) = 0.
Case [a]: lim

n→∞
D(aq−n) = 1.

For getting the solution, we assume that

D(u) = 1+w(u) where lim
n→∞

w(aq−n) = 0.

Then, the dual q-integral Equations (18) and (19) can be represented as

∫ ∞

0
uα [1+w(u)]ψ(u)Jν+α(xu; q2)dqu = Fi(x), x ∈ Aq, a, (30)

∫ ∞

0
uα ψ(u)Jν+α(xu; q2)dqu = Gi(qx), x ∈ Bq, a, (31)

where Fi(x) and Gi(x) are defined in Section 3 for different cases.
By the argument in the previous section, we can assume that

∫ ∞

0
uα ψ(u)Jν+α(ux; q2)dqu =


Φ(x), x ∈ Aq, a,

Gi(qx), x ∈ Bq, a,

(32)

where, Φ(x) is an unknown function to be determined. Applying the inverse pair of q-Hankel integral transforms (3) on
(32), we obtain

ψ(u): = u1−α
[∫ a

0
yΦ(y)Jν+α(uy; q2)dqy+

∫ ∞

a
yGi(qx)Jν+α(uy; q2)dqy

]
. (33)

Substituting from (32) and (33) into (30), we get

Φ(x)+
∫ a

0
yΦ(y)

[∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu

]
dqy+

∫ ∞

a
yGi(qy)

[∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu

]
dqy = Fi(x) (x ∈ Aq, a). (34)

This equation can be written in the form
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Φ(x)+
∫ a

0
K(x, y)Φ(y)dqy = Θ(x) (x ∈ Aq, a), (35)

where,

K(x, y) = y
∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu;

Θ(x): = Fi(x)−
∫ ∞

a
K(x, y)Gi(qx)dqy.

Notice:
1. Φ(x) satisfies the Fredholm q-integral equation of the second kind, and we can solve Equation (35) numerically

in the general case.
2. x−ν−α Φ(x) is bounded function in Aq, a.
Remark 3 Case [a] with D(u) = 1 and g(ρ) = 0 was considered and solved with some examples in [5].
Case [b]: lim

n→∞
D(aqn) = 0

Assume that D(u) = w(u) with lim
n→∞

w(aqn) = 0. Then the dual q-integral Equations (18) and (19) can be represented
as

∫ ∞

0
uα w(u)ψ(u)Jν+α(xu; q2)dqu = Fi(x), x ∈ Aq, a, (36)

∫ ∞

0
uα ψ(u)Jν+α(xu; q2)dqu = Gi(qx), x ∈ Bq, a. (37)

Hence, similar to Case [a], we assumed that Φ̂(x) is the function defined by

∫ ∞

0
uα ψ(u)Jν+α(ux; q2)dqu = Φ̂(x), x ∈ Aq, a, (38)

provided that ℜ(ν +α)> 0. Then Φ̂(x) satisfies the first kind Fredholm q-integral equation of the form

∫ a

0
K̂(x, y)Φ̂(y)dqy = Θ̂(x), x ∈ Aq, a;

where,

K̂(x, y) = y
∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu;

Θ̂(x): = Fi(x)−
∫ ∞

a
K̂(x, y)Gi(qx)dqy.
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5. Converting certain triple q-integral equations to Fredholm q-integral equations
The problem of the change distribution on a circular annulus can be formulated as a triple integral equations of the

form

∫ ∞

0
ϕ(ξ )Jν(ξ x)dξ = 0, 0 < x < a, (39)

∫ ∞

0
ξ−1ϕ(ξ )Jν(ξ x)dξ = f (x), a < x < b, (40)

∫ ∞

0
ϕ(ξ )Jν(ξ x)dξ = 0, b < x < ∞. (41)

The solution of the integral Equations (39)-(41) given by Noble in [3].
In this section, we consider a general case of this system in q-calculus, and we will reduce the equations to two

simultaneous Fredholm q-integral equations by using the results in Sections 3 and 4.
Consider the following system:

∫ ∞

0
ψ(u)Jν(uρ; q2)dqu = f (ρ), ρ ∈ Aq, a; (42)

∫ ∞

0
u2α D(u)ψ(u)Jν(uρ; q2)dqu = g(ρ), ρ ∈ Aq, b ∩Bq, a; (43)

∫ ∞

0
ψ(u)Jν(uρ; q2)dqu = h(ρ), ρ ∈ Bq, b, (44)

where 0 < a < b < ∞, α and ν are complex numbers such that ℜ(ν) > −1, ψ ∈ Lq, ν(Rq,+)∩ Lq, ν+2α(Rq,+) is an
unknown function to be determined, the functions f , g and h are known functions, and D(u) is a bounded function with
the following conditions:

lim
n→∞

D(aqn) = 0 = lim
n→∞

D(bqn) or lim
n→∞

D(aq−n) = 1 = lim
n→∞

D(bq−n). (45)

Since the function g(ρ) is defined in Aq, b ∩Bq, a, we can write

g(ρ) = g1(ρ)+g2(ρ),

g1 and g2 defined in Aq, b and Bq, a respectively. So, we may assume that ψ = ψ1 +ψ2. Then, we rewrite the Equations
(42)-(44) in the following form
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∫ ∞

0
u2α D(u)ψ1(u)Jν(uρ; q2)dqu = g1(ρ), ρ ∈ Aq, b,

∫ ∞

0
u2α D(u)ψ2(u)Jν(uρ; q2)dqu = g2(ρ), ρ ∈ Bq, a,

∫ ∞

0
(ψ1 +ψ2)(u)Jν(uρ; q2)dqu =


f (ρ), ρ ∈ Aq, a,

h(ρ), ρ ∈ Bq, b.

Now, we can consider the following pairs of dual q-integral equations:


∫ ∞

0
u2α D(u)ψ1(u)Jν(uρ; q2)dqu = g1(ρ), ρ ∈ Aq, b,

∫ ∞

0
ψ1(u)Jν(uρ; q2)dqu = h(ρ)−h1(ρ), ρ ∈ Bq, b,

(46)


∫ ∞

0
u2α D(u)ψ2(u)Jν(uρ; q2)dqu = g2(ρ), ρ ∈ Bq, a,

∫ ∞

0
ψ2(u)Jν(uρ; q2)dqu = f (ρ)− f1(ρ), ρ ∈ Aq, a,

(47)

where the functions f1 and h1 defined by

f1(ρ) =
∫ ∞

0
ψ1(u)Jν(ρu; q2)dqu ρ ∈ Aq, a;

h1(ρ) =
∫ ∞

0
ψ2(u)Jν(ρu; q2)dqu ρ ∈ Bq, b.

Case [a]: lim
n→∞

D(bq−n) = 1 = lim
n→∞

D(aq−n).
We assume that D(u) = 1 + w(u), where lim

n→∞
w(aq−n) = 0 = lim

n→∞
w(bq−n). For the first pair (46), by the same

argument in Section 3, we obtain

∫ ∞

0
uα D(u)ψ1(u)Jν+α(xu; q2)dqu = Gi(x), x ∈ Aq, b, (48)

∫ ∞

0
uα ψ1(u)Jν+α(xu; q2)dqu = Hi(qx), x ∈ Bq, b, (49)

with the condition ℜ(ν +α)>−1, and the functions Gi and Hi depend on g1 and (h−h1) respectively.
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From Section 4, we can convert the system (48)-(49) to the Fredholm q-integral equations of the second kinds, that
is

ψ1(u): = u1−α
[∫ b

0
yΦ1(y)Jν+α(uy; q2)dqy+

∫ ∞

b
yHi(qy)Jν+α(uy; q2)dqy

]
,

Φ1(x) =
∫ ∞

0
uα ψ1(u)Jν+α(xu; q2)dqu, x ∈ Aq, b, and

Φ1(x)+
∫ b

0
K1(x, y)Φ1(y)dqy = Θ1(x), x ∈ Aq, b, (50)

where,

K1(x, y) = y
∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu;

Θ1(x): = Gi(x)−
∫ ∞

b
K1(x, y)Hi(qy)dqy.

We next apply the results for second pair of dual q-integral Equations (47). Proceeding exactly as before, we obtain

ψ2(u): = u1−α
[∫ a

0
yFi(y)Jν+α(uy; q2)dqy+

∫ ∞

a
yΦ2(qy)Jν+α(uy; q2)dqy

]
;

Φ2(qx) =
∫ ∞

0
uα ψ2(u)Jν+α(xu; q2)dqu, x ∈ Bq, a;

Φ2(qx)+
∫ a

0
K2(x, y)Fi(y)dqy = Θ2(x), x ∈ Aq, a, (51)

where,

K2(x, y) = y
∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu;

Θ2(x): = G̃i(x)−
∫ ∞

a
K2(x, y)Φ2(qy)dqy. (52)

Notice, Equations (50) and (51) are two simultaneous Fredholm q-integral equations of the second kinds which may
be solved numerically.

Case [b]: lim
n→∞

D(bq−n) = 0 = lim
n→∞

D(aq−n).
In this case, we assume that D(u) = w(u) with lim

n→∞
w(aqn) = 0 = lim

n→∞
w(bqn).

Similarly, from Section 4, we can convert the dual q-integral Equations (48) and (49) to the Fredholm q-integral
equations of the first kinds. Assume that Φ̂1(x) is the function defined by
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∫ ∞

0
uα ψ1(u)Jν+α(ux; q2)dqu = Φ̂1(x), x ∈ Aq, b,

provided that ℜ(ν +α)> 0. Then Φ̂1(x) satisfies the first kind Fredholm q-integral equation of the form

∫ a

0
K̂1(x, y)Φ̂1(y)dqy = Θ̂1(x), x ∈ Aq, b; (53)

where,

K̂1(x, y) = y
∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu;

Θ̂1(x): = Gi(x)−
∫ ∞

a
K̂1(x, y)Hi(qy)dqy.

For system (47), we get

∫ a

0
K̂2(x, y)Fi(y)dqy = Θ̂2(x), x ∈ Aq, b; (54)

where,

K̂2(x, y) = y
∫ ∞

0
uw(u)Jν+α(uy; q2)Jν+α(ux; q2)dqu;

Θ̂2(x): = G̃i(x)−
∫ ∞

a
K̂2(x, y)Φ̂2(qy)dqy;

Φ̂2(qx) =
∫ ∞

0
uα ψ2(u)Jν+α(xu; q2)dqu, x ∈ Bq, a.

Remark 4 • If f = h = 0, D(u) = 1 and α =− 1
2 we get a q-analogue of the integral Equations (39)-(41).

• Similar system of the triple q-integral Equations (42)-(44) is considered and solved analytically in [6].

6. Conclusion
In this paper, we extended the Noble’s multiplying-factor method to transfer the system:
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∫ ∞

0
u2α D(u)ψ(u)Jν(uρ; q2)dqu = f (ρ), ρ ∈ Aq, a,

∫ ∞

0
ψ(u)Jν(uρ; q2)dqu = g(ρ), ρ ∈ Bq, a,

to Fredholm integral equations of the second kind. We used also this method to convert a certain triple q-integral equations
to two simultaneous Fredholm q-integral equations. Another study to provide some applications and numerically solutions
of these systems is in progress.
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