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Abstract: We present an innovative technique to find numerical solutions of the Lane-Emden-Fowler singular-type
BVPs which plays a crucial role in comprehending a wide range of physical phenomena. The core concept of this
technique is based on transforming the differential equation into the Fredholm integral equation, then it is converted into
system of linear or nonlinear algebraic equations by utilizing the collocation technique based on Chebyshev polynomials.
Subsequently, we employ an iterative numerical method, such as the Newton’s method, for solving the system to get
the approximate solution. Error analysis is included which helps to assess the accuracy of the obtained solutions and
provides insights into the reliability of the numerical results. Furthermore, we have also considered various examples
to demonstrate the applicability of the collocation technique based on Chebyshev polynomials and compared with the
existing results.
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1. Introduction
Lane-Emden-Fowler singular-type BVPs [1–3] is essential for understanding the structure, behavior, and evolution

of self-gravitating systems like stars and for addressing fundamental questions in astrophysics, cosmology, various other
scientific and engineering fields [4–10]. Many natural or physical processes like oxygen concentration inside spherical
cells [11], shallow membrane caps [12], heat conduction in the human head [13] etc. demonstrate the crucial existence of
the Lane-Emden-Fowler BVPs. Therefore we focus on studying Lane-Emden-Fowler singular-type BVPs as follows:


(
tbv′(t)

)′
= tbϕ(t, v(t)), t ∈ (0, 1),

v(0) = Γ or v′(0) = 0, γ1 v(1)+ γ2 v′(1) = γ3,

(1)

where b > 0, γ1 > 0, γ2, γ3 and Γ are real constants.
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The analytical solution of second-order singular boundary value problems (SBVPs) was only known for b = 0 in
the early 1940s, while for b = 1, 2 the analytical solution with boundary conditions v′(0) = 0, v(1) = 0 was explored
by Chambre [14] in 1952. The collocation method, the patch basis method and the finite difference approach were later
proposed by Russell and Shampine [15] to solve SBVPs involving boundary conditions (BCs) v′(0) = 0, v(1) = B and
b = 0, 1 or 2. Using the finite difference method, Chawla and Katti [16] assessed a numerical solution of (tbv′(t))′ =
ϕ(t, v(t)), 0< b< 1 with BCs v(0) = A, v(1) = B and for b≥ 1, Chawla et al. [17] explored this method based on uniform
mesh. The approach of the spline finite difference was proposed by Iyengar and Jain [18] for solving the particular case
of second order SBVPs with BCs v(0) = c1 or v′(0) = 0 and v(1) = c2 while the non-polynomial spline approach was
proposed by Sakai and Usmani [19] for second order SBVPs with BCs v′(0) = 0, v(1) = c1 for b ≥ 1 and v(0) = c2, v(1) =
c3 for 0 < b < 1.

Numerous semi-numerical techniques like homotopy perturbation method [20], the optimal homotopy analysis
method [21], the Adomian decomposition method with Green’s function [22–25], the variational iteration method [26, 27]
have been used to solve second order SBVPs. To deal with such second order SBVPs numerous collocation techniques
have been used recently. For example the Haar-wavelet collocation method [28, 29], the Laguerre wavelets collocation
method [30], the Haar wavelet quasi-linearizationmethod [31, 32] and the cubic B-spline collocationmethod [33], singular
and doubly SBVPs is solved by using collocation method [34, 35]. Despite the fact that these numerical techniques
are effective in their use, identifying the numerical solution of non-linear SBVPs requires a significant amount of
computational work.

The use of Chebyshev polynomials [36–38] has become a preferred choice in scientific computing due to its ability
to reduce oscillations, minimize approximation errors, and exhibit stable numerical properties. Therefore, we introduce
an innovative technique based on Chebyshev polynomials to solve singular and doubly SBVPs.

Structure of this paper is as follows. We develop a method by transforming the SBVPs into the Fredholm integral
equation. Subsequently, we employ the collocation technique based on Chebyshev polynomial to convert the Fredholm
integral equation into system of non-linear equations and then we get approximate solution by using Newton’s approach.
Error estimation describe the accuracy of the current technique. Various examples are also given to examine the accuracy
by comparing its numerical results with the existing results of the BCM [35]. We have also included the graph for few
examples. It end with a concise conclusion.

Overall, the paper presents a novel collocation technique by using Chebyshev polynomial to approximate singular
and doubly SBVPs. The current technique renders a promising alternative for efficient and accurate solutions to these
challenging mathematical problems.

2. The construction of proposed method
This section includes equivalent Fredholm integral equation of singular and doubly SBVPs.

2.1 Transformation of the emden-fowler bvps into fredholm integral form

We explore the differential equation with Dirichlet-Robin BCs as


(
tbv′(t)

)′
= tbϕ(t, v(t)), t ∈ (0, 1),

v(0) = Γ, γ1 v(1)+ γ2 v′(1) = γ3.

(2)

Eq. (2) is equivalent to
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v(t) = Γ+
(γ3 − γ1Γ)

γ1 + γ2(1−b)
t1−b +

1∫
0

κ(t, ζ ) ζ b ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1), (3)

where

κ(t, ζ ) =


1

1−b

(
1− γ1 ζ 1−b

γ1 + γ2(1−b)

)
t1−b, t ≤ ζ ,

1
1−b

(
1− γ1 t1−b

γ1 + γ2(1−b)

)
ζ 1−b, ζ ≤ t.

(4)

We explore the differential equation with Neumann-Robin BCs as


(
tbv′(t)

)′
= tbϕ(t, v(t)), t ∈ (0, 1),

v′(0) = 0, γ1 v(1)+ γ2 v′(1) = γ3.

(5)

Eq. (5) is equivalent to

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) ζ a ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1), (6)

where

κ(t, ζ ) =


lnζ − γ2

γ1
, t ≤ ζ , for b = 1,

ln t − γ2

γ1
, ζ ≤ t

(7)

and

κ(t, ζ ) =


ζ 1−b −1

1−b
− γ2

γ1
, t ≤ ζ , for b > 1,

t1−b −1
1−b

− γ2

γ1
, ζ ≤ t.

(8)

2.2 Transformation of the doubly SBVPs into fredholm integral form

We explore doubly SBVPs with Drichlet-Robin BCs
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
(p(t)v′(t))′ = q(t)ϕ(t, v(t)), t ∈ (0, 1),

v(0) = Γ, γ1 v(1)+ γ2 v′(1) = γ3.

(9)

Its equivalent integral equation is

v(t) = Γ+
(γ3 − γ1 Γ)

γ1 ℓ(1)+ γ2 ℓ′(1)
ℓ(t)+

1∫
0

κ(t, ζ ) q(ζ ) ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1), (10)

where

κ(t, ζ ) =


ℓ(t)− γ1 l(ζ ) ℓ(t)

γ1 l(1)+ γ2 ℓ′(1)
, t ≤ ζ ,

l(ζ )− γ1 ℓ(t) l(ζ )
γ1 l(1)+ γ2 ℓ′(1)

, ζ ≤ t

(11)

and ℓ(t) =
t∫

0

1
p(t)

dt.

We explore doubly SBVPs with the Neumann-Robin BCs


(p(t)v′(t))′ = q(t)ϕ(t, v(t)), t ∈ (0, 1),

v′(0) = 0, γ1 v(1)+ γ2 v′(1) = γ3.

(12)

Equivalently,

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) q(ζ ) ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1), (13)

where

κ(t, ζ ) =


ℓ(1)− l(ζ )+

γ2

γ1
l′(1), t ≤ ζ ,

ℓ(1)− ℓ(t)+
γ2

γ1
ℓ′(1), ζ ≤ t.

(14)

3. Chebyshev collocation method (CCM)
This section includes derivation of the CCM to approximate integral equations (10) and (13).
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Definition 1 Shifted Chebyshev polynomials are defined on [0, 1] therefore we introduce a new variable s = 2t −1
and define shifted Chebyshev polynomials in the interval [0, 1] as


τ0(t) = 1,
τ1(t) = 2t −1,
τn(t) = 2(2t −1)τn−1(t)− τn−2(t)

(15)

which forms a complete basis and shifted Chebyshev polynomials τn(t) are orthogonal w.r.t weight function w(t) =
1

2
√
(t − t2)

.

We can approximate a function f (t) ∈ L2[0, 1] by shifted Chebyshev polynomials as

f (t) =
∞

∑
r=0

ar τr(t). (16)

For numerical purpose, we consider the first (n+1) terms of the above expansion as

f (t)≈
n

∑
r=0

ar τr(t) = AT τττ(t), (17)

where A and τττ(t) are column vectors of order (n+1) and are defined as

A = [a0, a1, · · · , an]
T , τττ(t) = [τn

0 (t), τn
1 (t) · · · , τn

n (t)]
T . (18)

3.1 Dirichlet-Robin BCs
We apply the present method in equation (10)

v(t) = Γ+
(γ3 − γ1 Γ)

γ1 ℓ(1)+ γ2 ℓ′(1)
ℓ(t)+

1∫
0

κ(t, ζ ) q(ζ ) ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1). (19)

We take

z(t) = ϕ(t, v(t)), (20)

in equation (19). We approximate v(t) and z(t) by using equation (17) as

v(t)≈ AT τ(t)andz(t)≈ BT τ(t), (21)

where τT = [b0, b1, b2, · · · , bn].
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Employing (20) and (21), the integral equation (19) reduces as follows

AT τ(t) = g(t)+
1∫

0

κ(t, ζ ) q(ζ ) BT τ(ζ )dζ . (22)

It becomes

AT τ(t) = g(t)+BT K(t), (23)

where

g(t) = Γ+
(γ3 − γ1 Γ)

γ1 ℓ(1)+ γ2 ℓ′(1)
ℓ(t) (24)

and

K(t) =
1∫

0

κ(t, ζ ) q(ζ ) τ(ζ )dζ . (25)

Substituting equation (21) in equation (20), we get

BT τ(t) = ϕ
(
t, AT τ(t)

)
. (26)

To insert the collocation points ti =
1
2

(
cos

(
(2i+1)π

2n

)
+1

)
, i = 0(1)n in equation (23), we have

BT τ(ti)−ϕ
(
ti, g(ti)+BT K(ti)

)
= 0. (27)

Unknown vector B can be determined by rewriting the system of equations (27) in the matrix form as

φ(B) = 0, (28)

where 0 is the column vector of (n+1) order, and

φ(B) = [φ0(B), φ1(B), · · · , φn(B)]T

with φi(B) = BT P(ti)−ϕ
(
ti, g(ti)+BT K(ti)

)
.

We apply the Newton’s method to get approximate solution of equation (28) as
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B[r+1]−B[r] =−J−1(B[r])φ(B[r]), r = 0, 1, 2, · · · , (29)

where

J((B))ml = ∂φm(B)/∂Bl , for m, l = 0(1)n

and B[r] is the rth iterative solution of (28).
In order to obtain the approximate solution of (19), we substitute the unknown co-efficient in (23) which are obtained

by applying the iteration approach (29).
Note that a desired accuracy ε of Newton’s method can be obtained by using the stopping criteria ∥B[r+1]−B[r]∥< ε.

3.2 Neumann-Robin BCs
Consider the equation (13) as

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) q(ζ ) ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1). (30)

Using similar steps as in earlier subsection, we set the expressions from equations (20) and (21) into equation (30),
we have

AT τ(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) q(ζ ) BT τ(ζ )dζ (31)

which can be further expressed as

AT τ(t) =
γ3

γ1
+BT K(t), (32)

where K(t) is given by (25). Using equation (32) into equation (26), we have

BT τ(t) = ϕ
(

t,
γ3

γ1
+BT K(t)

)
. (33)

We insert the collocation points ti =
1
2

(
cos

(
(2i+1)π

2n

)
+1

)
, i = 0(1)n into equation (33)

BT τ(ti) = ϕ
(

ti,
γ3

γ1
+BT K(ti)

)
(34)
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and b0, b1, b2, . . . , bn are the unknown.
In order to obtain the approximate solution of (30), we substitute the unknown co-efficient in (32) which are obtained

by applying Newton’s method [39] in equation (34).

4. Error analysis
The CCM’s error bound for solving integral equations (10) and (13) is presented in this section. For this, we take

following equation as

v = g+
1∫

0

κ(t, ζ ) q(ζ ) ϕ(ζ , v(ζ ))dζ , t ∈ (0, 1). (35)

We observe that the equations (10) and (13) are the particular cases of equation (35) when g = Γ+
ℓ(t)(γ3 − γ1Γ)

γ1ℓ(1)+ γ2ℓ′(1)

and g =
γ3

γ1
respectively.

Let the maximum norm for the Banach space X =C[0, 1] be described as

∥v∥= max
t∈[0, 1]

|v(t)|. (36)

Theorem 1 If the Chebyshev approximation function is τn( f ) = ∑n
i=0 aiτn

i (x) of the function f ∈ C[0, 1], then the
sequence {τn( f )} converges uniformly to f i.e a number n exists corresponding to any given ε > 0 such that

∥τn( f )− f∥< ε.

Proof. To get proof of this theorem see [40].
Theorem 2 Let f be bounded function and its second derivative exists in [0, 1] then the error bound for Chebyshev

approximation function is found as

∥τn( f )− f∥ ≤ 1
2n

t(1− t)∥ f ′′∥, (37)

where ∥.∥ denotes the maximum norm.
Proof. For proof of this theorem see [41].
Theorem 3 Consider the Banach space X with maximum norm. Let vn(t) and v(t) denote the estimated and exact

solutions respectively to the integral equation (35). Let the function ϕ(t, v(t)) meets the state of Lipschitz condition

|ϕ(t, v(t))−ϕ(t, v∗(t))| ≤ L|v(t)− v∗(t)|. (38)

where L is the Lipschitz constant and if
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M = max
t∈[0, 1]

∣∣∣∣∫ 1

0
κ(t, ζ ) q(ζ ) dζ

∣∣∣∣ , (39)

then the error bound is approximated as

∥v(t)− vn(t)∥ ≤
ML
8n

∥v′′∥. (40)

Proof. Consider

∥v(t)− vn(t)∥= max
t∈[0, 1]

∣∣∣∣g(t)+ 1∫
0

κ(t, ζ ) q(ζ ) ϕ(ζ , v(ζ ))dζ −g(t)−
1∫

0

κ(t, ζ ) q(ζ ) ϕ(ζ , vn(ζ ))dζ
∣∣∣∣

= max
t∈[0, 1]

∣∣∣∣∫ 1

0
κ(t, ζ ) q(ζ )

(
ϕ(ζ , v(ζ ))−ϕ(ζ , vn(ζ ))

)
dζ

∣∣∣∣
≤ max

ζ∈[0, 1]

∣∣ϕ(ζ , v(ζ ))−ϕ(ζ , vn(ζ ))
∣∣× max

t∈[0, 1]

∣∣∣∣∫ 1

0
κ(t, ζ ) q(ζ ) dζ

∣∣∣∣ .
Using equation (4.4) and (4.5) into above inequality then it becomes

∥v(t)− vn(t)∥ ≤ ML max
ζ∈[0, 1]

|v(ζ )− vn(ζ )|. (41)

To apply the CCM, the numerical solution of (35) is τn(v(t)) and substituting vn(ζ ) as τn
(
v(ζ )

)
, the equation (41)

is reduced to

∥v(t)− vn(t)∥ ≤ ML max
ζ∈[0, 1]

|v(ζ )− τn(v(ζ ))|. (42)

Using equation (37) into above equation, we obtain

∥v(t)− vn(t)∥ ≤ ML∥v− τn(v)∥

≤ ML
∥v′′∥
2n

max
ζ∈[0, 1]

(
ζ (1−ζ )

)
. (43)

Hence, we have
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∥v(t)− vn(t)∥ ≤ ML
∥v′′∥
8n

. (44)

5. Numerical illustrations
To examine the accuracy of the current method, we utilized MATLAB R2015a to get an estimated solution, while we

computed maximum absolute errors using both L∞ and L2 norms for different examples of singular and doubly SBVPs.
Subsequently, we compared these results with the BCM [35] in the different tables. Graph drawn for some of the examples
between the estimated solutions and the exact solutions demonstrate the behaviour of the solution. We specify L∞ and L2

norm errors as follows:

L∞ = max
t∈[0, 1]

|v(t)− vn(t)|,

and

L2 =

( m

∑
j=1

|v(t j)− vn(t j)|2
)1/2

,

where vn(t) and v(t) are the estimated and exact solutions respectively.
Example 1

(
t

1
2 v′

)′
= t

1
2

(
ev

2
− e2v

)
, v(0) = ln(2), v(1) = 0, t ∈ (0, 1).

Equivalent integral form of the above equation is

v(t) = Γ+
γ3 − γ1 Γ

γ1 + γ2 (1−b)
t1−b +

1∫
0

κ(t, ζ ) ζ
1
2

(
1
2

ev(ζ )− e2v(ζ )
)

dζ ,

where

κ(t, ζ ) =


2
(
1−ζ 1

2
)
t

1
2 , t ≤ ζ ,

2
(
1− t

1
2
)
ζ 1

2 , ζ ≤ t.

Here b =
1
2
, γ1 = 1, γ2 = 0, γ3 = 0, Γ = ln(2).

Exact solution is
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v(t) = ln
(

2
t2 +1

)
.

The precise and approximate solutions which is assessed using the present method are shown in Table 1, while error
estimation is given in Table 2. We observe from Table 1 and Table 2 that CCM is more accurate than the BCM.

Table 1. Exact and estimated solutions of Example 1

t CCM n = 3 BCM n = 3 Exact sol.

0.1 0.683197 0.682056 0.683197

0.2 0.653926 0.652587 0.653926

0.3 0.606969 0.605782 0.606969

0.4 0.544727 0.543801 0.544727

0.5 0.470003 0.469224 0.470004

0.6 0.385662 0.384828 0.385662

0.7 0.294370 0.293380 0.294371

0.8 0.198450 0.197435 0.198451

0.9 0.099820 0.099133 0.099820

Table 2. The error analysis of Example 1

L∞ L2

n CCM BCM CCM BCM

3 1.09E-03 1.34E-03 2.89E-03 3.03E-03

4 1.38E-04 2.73E-04 2.73E-04 5.79E-04

5 2.04E-05 9.43E-05 3.49E-05 2.15E-04

6 2.25E-06 5.69E-06 3.77E-06 1.24E-05

7 3.24E-07 3.52E-06 5.22E-07 7.25E-06

8 1.71E-07 7.00E-07 1.83E-07 1.05E-06

9 8.17E-09 9.14E-08 1.43E-08 2.38E-07
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Figure 1. Comparison of estimate and exact solution of example 1

Example 2

(
t

1
2 v′

)′
= t

1
2

(
t2ev(14−16t4ev)), v(0) = ln

(
1
4

)
, v(1) = ln

(
1
5

)
, t ∈ (0, 1).

Its equivalent integral form is

v(t) = Γ+
γ3 − γ1 Γ

γ1 + γ2 (1−b)
t1−b +

1∫
0

κ(t, ζ ) ζ
1
2
(
ζ 2ev(ζ )(14−16ζ 4ev(ζ ))dζ ,

where

κ(t, ζ ) =


2
(
1−ζ 1

2
)
t

1
2 , t ≤ ζ ,

2
(
1− t

1
2
)
ζ 1

2 , ζ ≤ t.

Here b =
1
2
, γ1 = 1, γ2 = 0, γ3 = ln

(1
5
)
, Γ = ln

(1
4
)
.

Exact solution is

v(t) = ln
(

1
t4 +4

)
.

The precise and approximate solutions which is assessed using the provided method are shown in Table 3, while
error analysis is given in Table 4. We see from Table 3 and Table 4 that CCM is more accurate than the BCM.
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Table 3. Exact and estimated solutions of Example 2

t CCM n = 3 BCM n = 3 Exact sol.

0.1 -1.38631933 -1.38713067 -1.38631936

0.2 -1.38669429 -1.38754235 -1.38669428

0.3 -1.38831739 -1.38891015 -1.38831731

0.4 -1.39267386 -1.39297002 -1.39267397

0.5 -1.40179830 -1.40196436 -1.40179855

0.6 -1.41818062 -1.41844631 -1.41818055

0.7 -1.44458715 -1.44507103 -1.44458685

0.8 -1.48378386 -1.48438429 -1.48378398

0.9 -1.53817801 -1.53861008 -1.53817819

1.0 -1.60943791 -1.60943791 -1.60943791

Table 4. Errors analysis of Example 2

L∞ L2

n CCM BCM CCM BCM

3 8.04E-04 8.48E-04 1.36E-03 1.64E-03

4 5.79E-05 1.07E-04 1.18E-04 2.55E-04

5 1.58E-05 3.91E-05 3.08E-05 9.83E-05

6 2.15E-06 6.85E-06 3.71E-06 8.89E-06

7 3.02E-07 1.55E-06 4.65E-07 3.13E-06

8 1.09E-07 4.24E-07 1.77E-07 6.83E-07

9 9.19E-09 8.76E-08 1.51E-08 1.40E-07

Figure 2. Comparison of estimate and exact solution of example 2
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Example 3

(
t2v′

)′
=−t2v5, v′(0) = 0, v(1) =

√
3
4
, t ∈ (0, 1).

Equivalent Integral form is

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) ζ 2 (− v5(ζ )
)
dζ ,

where

κ(t, ζ ) =


1− 1

ζ
, t ≤ ζ ,

1− 1
t
, ζ ≤ t

and b = 2, γ1 = 1, γ2 = 0, γ3 =

√
3
4
, Γ = 0.

Exact solution is

v(t) =

√
3

3+ t2 .

The precise and approximate solutions which is assessed using the provided method are shown in Table 5, while
error analysis is given in Table 6. We see from Table 5 and Table 6 that CCM is more accurate rather than the BCM.

Table 5. Exact and estimated solutions of Example 3

t CCM n = 3 BCM n = 3 Exact sol.

0.1 0.998348 0.998337 0.998337

0.2 0.993408 0.993393 0.993399

0.3 0.985336 0.985325 0.985329

0.4 0.974360 0.974361 0.974355

0.5 0.960773 0.960788 0.960769

0.6 0.944911 0.944939 0.944911

0.7 0.927139 0.927170 0.927146

0.8 0.907831 0.907855 0.907841

0.9 0.887348 0.887358 0.887357

1.0 0.866025 0.866025 0.866025
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Table 6. Errors analysis of Example 3

L∞ L2

n CCM BCM CCM BCM

3 1.11E-05 2.74E-05 2.56E-05 4.50E-05

4 6.56E-06 1.40E-05 1.03E-05 2.36E-05

5 3.81E-07 7.70E-07 6.94E-07 1.16E-06

6 4.59E-08 1.29E-07 6.79E-08 1.83E-07

7 8.89E-09 3.19E-08 1.29E-08 3.66E-08

8 4.43E-09 6.95E-09 1.01E-09 1.39E-09

9 8.15E-10 8.70E-10 8.35E-10 9.52E-10

Figure 3. Comparison of estimate and exact solution of example 3

Example 4

(
tv′

)′
=−tev, v′(0) = 0, v(1) = 0, t ∈ (0, 1).

Its equivalent integral form is

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) ζ
(
− ev(ζ ))dζ ,

where

κ(t, ζ ) =


lnζ , t ≤ ζ ,

ln t, ζ ≤ t.
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Here b = 1, γ1 = 1, γ2 = 0, γ3 = 0, Γ = 0.
Exact solution is

v(t) = 2ln
(

4−2
√

2
(3−2

√
2)(t2 +1)

)
.

The precise and approximate solutions which is assessed using the provided method are shown in Table 7, while
error analysis is included in Table 8. It can be observe from Table 7 and Table 8 that CCM is more accurate rather than
the BCM.

Table 7. Exact and estimated solutions of Example 4

t CCM n = 3 BCM n = 3 Exact sol.

0.1 0.313265 0.313265 0.313266

0.2 0.303015 0.303019 0.303015

0.3 0.286047 0.286053 0.286047

0.4 0.262531 0.262536 0.262531

0.5 0.232696 0.232700 0.232697

0.6 0.196826 0.196829 0.196827

0.7 0.155248 0.155250 0.155248

0.8 0.108322 0.108324 0.108323

0.9 0.056438 0.056438 0.056438

1.0 0.000000 0.056438 0.000000

Table 8. Errors analysis of Example 4

L∞ L2

n CCM BCM CCM BCM

3 1.12E-05 5.55E-06 2.07E-07 9.59E-06

4 1.14E-06 3.26E-06 2.13E-06 5.77E-06

5 1.35E-08 2.41E-08 2.42E-08 4.02E-08

6 6.59E-09 2.21E-08 1.11E-08 3.70E-08

7 2.85E-10 6.80E-10 4.27E-10 1.01E-09

8 3.76E-11 1.28E-10 6.45E-11 2.13E-10

9 2.86E-12 9.89E-12 5.60E-12 1.17E-11
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Figure 4. Comparison of estimate and exact solution of example 4

Example 5

(
t2v′

)′
=−t2e−v, v′(0) = 0, 2v(1)+ v′(1) = 0, t ∈ (0, 1).

Its integral form is

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) ζ 2 (− e−v(ζ ))dζ ,

where b = 2, γ1 = 2, γ2 = 1, γ3 = 0, Γ = 0 and

κ(t, ζ ) =


1− 1

ζ
, t ≤ ζ ,

1− 1
t
, ζ ≤ t.

We have compared absolute difference of estimated solutions E45 = ∥v4 − v5∥ of CCM with the BCM in Table 9
which shows that the CCM is far better than the BCM.
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Table 9. Approximated solutions of Example 5

CCM BCM

t v4 v5 E45 v4 v5 E45

0.1 0.26875701 0.26875690 1.05E-08 0.26875692 0.26875694 1.60E-08

0.2 0.26493295 0.26493282 1.31E-08 0.26493280 0.26493285 5.50E-08

0.3 0.25853993 0.25853979 1.41E-08 0.25853984 0.25853982 2.35E-08

0.4 0.24954829 0.24954819 1.05E-07 0.24954832 0.24954820 1.21E-07

0.5 0.23791594 0.23791590 4.31E-08 0.23791607 0.23791591 1.60E-07

0.6 0.22358772 0.22358771 4.73E-09 0.22358787 0.22358773 1.40E-07

0.7 0.20649451 0.20649448 2.69E-08 0.20649462 0.20649450 1.17E-07

0.8 0.18655211 0.18655201 9.49E-08 0.18655218 0.18655203 1.43E-07

0.9 0.16365983 0.16365969 1.42E-08 0.16365991 0.16365971 2.08E-07

1.0 0.13769888 0.13769875 1.27E-08 0.13769900 0.13769877 2.25E-07

Example 6

{(
t2v′

)′
= t2 0.76129v

v+0.03119
, v′(0) = 0, 5v(1)+ v′(1) = 5, t ∈ (0, 1).

It is equivalent to

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) ζ 2
(

0.76129 v(ζ )
v(ζ )+0.03119

)
dζ ,

where

κ(t, ζ ) =


(
1− 1

ζ
)
− 1

5
, t ≤ ζ ,

(
1− 1

t

)
− 1

5
, ζ ≤ t

and b = 2, γ1 = 5, γ2 = 1, γ3 = 5, Γ = 0.
We have compared the absolute difference of estimated solutions E45 = ∥v4 − v5∥ of CCM with the BCM in Table

10 and we can observe that the CCM perform better than the BCM.
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Table 10. Estimated solutions of Example 6

CCM BCM

t v4 v5 E45 v4 v5 E45

0.1 0.82970609 0.82970609 8.53E-10 0.82970610 0.82970609 5.21E-09
0.2 0.83337473 0.83337473 6.07E-10 0.0.83337474 0.83337473 6.83E-09
0.3 0.83948991 0.83948991 3.37E-10 0.83948992 0.83948991 4.07E-09
0.4 0.84805278 0.84805278 1.22E-10 0.84805279 0.84805278 4.58E-10
0.5 0.85906492 0.85906492 1.06E-10 0.85906493 0.85906493 1.09E-09
0.6 0.87252832 0.87252831 7.50E-11 0.87252832 0.87252832 4.46E-10
0.7 0.88844530 0.88844530 6.95E-11 0.88844531 0.88844531 4.49E-10
0.8 0.90681854 0.90681854 2.15E-11 0.90681855 0.90681855 2.70E-10
0.9 0.92765098 0.92765098 1.82E-11 0.92765099 0.92765099 2.35E-09
1.0 0.95094579 0.95094579 1.28E-11 0.95094580 0.95094580 2.90E-09

Example 7

{
(tbv′(t))

′
= tb−1(te2v(t)−bev(t)), v(0) = ln

(
1
2

)
, v(1) = ln

(
1
3

)
, t ∈ (0, 1).

It is equivalent to

v(t) = Γ+
(γ3 − γ1Γ)

γ1ℓ(1)+ γ2ℓ′(1)
ℓ(t)+

1∫
0

κ(t, ζ ) ζ b−1 (ζ e2v(ζ )−bev(ζ ))dζ ,

where

κ(t, ζ ) =


ℓ(t)− ℓ(ζ )ℓ(t)

γ1ℓ(1)+ γ2ℓ′(1)
, t ≤ ζ ,

ℓ(ζ )− ℓ(t)ℓ(ζ )
γ1ℓ(1)+ γ2ℓ′(1)

, ζ ≤ t.

γ1 = 1, γ2 = 0, γ3 = ln
(

1
3

)
, Γ = ln

(
1
2

)
,

p(t) = tb, ℓ(t) =
t1−b

1−b
, ℓ(1) =

1
1−b

, ℓ′(1) =
1

p(1)
.

Exact solution is

v(t) = ln
(

1
t +2

)
.
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We provided estimated solution by CCM, estimated solution by BCM and the analytic solution of Example 7 in Table
11, while error analysis is given in Table 12. We observe from the data in Tables 11 and Table 12 that the CCM performs
more accurately than the BCM.

Table 11. Exact and estimated solutions of Example 7 for b = 0.25

x CCM n = 5 BCM n = 5 Exact sol.

0.1 -0.741937344 -0.741936031 -0.741937345

0.2 -0.788457360 -0.788456236 -0.788457360

0.3 -0.832909121 -0.832908230 -0.832909123

0.4 -0.875468736 -0.875467976 -0.875468737

0.5 -0.916290732 -0.916290088 -0.916290732

0.6 -0.955511444 -0.955510943 -0.955511445

0.7 -0.993251772 -0.993251406 -0.993251773

0.8 -1.029619417 -1.029619152 -1.029619417

0.9 -1.064710737 -1.064710574 -1.064710737

Table 12. Errors analysis of Example 7

L∞ L2

n CCM BCM CCM BCM

3 2.85E-05 8.89E-05 4.30E-05 1.67E-04

4 2.61E-06 1.02E-05 3.21E-06 1.83E-05

5 2.02E-07 1.31E-06 2.42E-07 2.29E-06

6 1.20E-08 1.66E-07 1.85E-08 2.79E-07

7 1.11E-09 2.16E-08 1.39E-09 3.70E-08

8 8.51E-11 2.79E-09 1.27E-10 4.72E-09

9 1.21E-11 3.70E-10 1.39E-11 6.43E-10

Example 8

(
tbv′

)′
= tb+m−2((m−bm)ev −4m2e2v), v

′
(0) = 0, v(1) = ln

(
1
5

)
, t ∈ (0, 1).

Equivalently,

v(t) =
γ3

γ1
+

1∫
0

κ(t, ζ ) q(ζ )
(
(l −bm)ev(ζ )−4m2e2v(ζ ))dζ ,
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where

κ(t, ζ ) =


l(1)− l(ζ ), t ≤ ζ ,

l(1)− l(t), ζ ≤ t

γ1 = 1, γ2 = 0, γ3 = ln
(1

5
)
, Γ = 0, p(t) = tb, l(t) =

t(1−b)

1−b
, l(1) =

1
1−b

and l′(1) =
1

p(1)
.

Exact solution is

v(t) = ln
(

1
tm +4

)
.

We have compared estimated solution of CCM with the estimated solution of the BCM and the analytic solution of
Example 8 in Table 13, while error analysis is given in Table 14. We can observe from the data in Tables 13 and Table 14
that the CCM performs more accurately than the BCM.

Table 13. Exact and estimated solutions of Example 8 for b = 0.25 and m = 1.25

t CCM BCM Exact sol.

0.1 -1.400231277 -1.399003503 -1.400254990

0.2 -1.419163423 -1.418078681 -1.419184516

0.3 -1.440296721 -1.439353928 -1.440314833

0.4 -1.462801962 -1.462000686 -1.462817411

0.5 -1.486228255 -1.485567112 -1.486241095

0.6 -1.510285017 -1.509761697 -1.510295147

0.7 -1.534768071 -1.534379929 -1.534775540

0.8 -1.559526775 -1.559271039 -1.559531716

0.9 -1.584446497 -1.584320188 -1.584448947
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Table 14. Errors analysis of Example 8

L∞ L2

n CCM BCM CCM BCM

3 2.85E-04 5.53E-03 5.36E-04 1.02E-02

4 1.23E-04 2.34E-03 2.35E-04 4.33E-03

5 6.49E-05 1.25E-03 1.22E-04 2.31E-03

6 3.77E-05 7.85E-04 7.05E-05 1.45E-03

7 2.37E-05 5.40E-04 4.39E-05 1.00E-03

8 1.56E-05 3.94E-04 2.89E-05 7.29E-04

9 1.08E-05 3.00E-04 1.99E-05 5.50E-04

Figure 5. Comparison of estimate and exact solution of example 8

6. Conclusion
The estimated solution of the Lane-Emden-Fowler BVPs with various BCs has been carried out using the collocation

technique based on Chebyshev polynomial. The Fredholm integral form of non-linear singular and doubly SBVPs have
been taken into consideration to get the approximate solutions numerically. The primary advantage of the current technique
is to reach the requisite level of accuracy compared to other established techniques, such as the BCM [35]. The error
analysis of the method for various numerical examples using L∞ and L2 norms establishes the fact that the estimated
solutions are quite near to the exact solutions rather than the BCM. Additionally, the graph is drawn to compare estimated
solutions with exact solutions for some of the examples which show that the accuracy of the current technique is quite
high.
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