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1. Introduction
In 1978, Iséki and Tanaka [1] introduced the concept of BCK-algebras as a generalization of I-algebras proposed by

Imai and Iséki [2]. After that time, many researchers introduced and studied some proper subclasses of BCK-algebras, for
example, BCI-algebras [3], BCH-algebras [4, 5], BH-algebras [6], QS-algebras [7] and Q-algebras [8]. In particular, Iséki
[9] andMeng [10] investigated properties of ideals inBCK-algebras. Meng [11, 12] introduced the notions of commutative
ideals and dual ideals in BCK-algebras and dealt with some of their properties respectively. Moreover, Jun and Roh [13],
Lee and Ryu [14], and Roudabri and Torkzadeh [15] applied BCK-algebras to topology respectively. Mohammed et al.
[16] studied topological structures on BCK-algebras. Also, Jun et al. [17] and Hasankhani et al. [18] and Ahn and Kwon
[19] dealt with topological structures on BCI-algebras.

Recently, Saeid et al. [20] introduced the concept of Γ-BCK-algebras and investigated some of its properties. By
modifying a Γ-BCK-algebra proposed by Saeid et al., Shi et al. [21] redefined a Γ-BCK-algebra and discussed its various
properties. We think it is necessary to study Γ-BCK-algebras from the perspective of a topological group.

The purpose of our research is to study topological structures on Γ-BCK-algebras and the quotient Γ-BCK-algebras
as a preliminary step to research on topological groups. The layout of this paper is as follows. In section 2, we recall some
definitions need in next section. In section 3, we define a topological Γ-BCK-algebra and obtain some of its examples and
properties. In section 4, we define a quotient Γ-BCK-algebra by ideals of a Γ-BCK-algebra and study some of topological
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properties on a quotient Γ-BCK-algebra. Finally, we introduce the notion of quotient Γ-BCK-algebras by dual ideals of a
Γ-BCK-algebra and give uniform structures on quotient Γ-BCK-algebras.

2. Preliminaries
We recall some definitions needed in next sections.
Definition 2.1 [1, 3] Let X be a nonempty set with a constant 0 and a binary operation ∗. Consider the following

axioms: for any x, y, z ∈ X ,
(A1) [(x∗ y)∗ (x∗ z)]∗ (z∗ y) = 0,
(A2) [x∗ (x∗ y)]∗ y = 0,
(A3) x∗ x = 0,
(A4) x∗ y = 0 and y∗ x = 0 imply x = y,
(A5) 0∗ x = 0.
Then X is called a:
(i) BCI-algebra, if it satisfies axioms (A1)-(A4),
(ii) BCK-algebra, if it satisfies axioms (A1)-(A5).
In BCI-algebra or BCK-algebra X , we define a binary operation ≤ on X as follows: for any x, y ∈ X ,

x ≤ y if and only if x∗ y = 0.

Definition 2.2 [22] Let X and Γ be two nonempty sets. Then X is called a Γ-semigroup, if there is a mapping
f : X ×Γ×X → X , denoted by f (x, α, y) = xαy for each (x, α, y) ∈ X ×Γ×X , such that it satisfies the following
condition: for any x, y, z ∈ X and any α, β ∈ Γ,

xα(yβ z) = (xαy)β z. (1)

Definition 2.3 [21] Let X be a set with a constant 0 and let Γ be a nonempty set. Then X is called a Γ-BCK-algebra,
if there is a mapping f : X ×Γ×X → X , denoted by f (x, α, y) = xαy for each (x, α, y) ∈ X ×Γ×X , satisfying the
following axioms: for any x, y, z ∈ X and α, β ∈ Γ,

(ΓA1) [(xαy)β (xαz)]β (zαy) = 0,
(ΓA2) [xα(xβy)]αy = 0,
(ΓA3) if xαy = 0 = yαx, then x = y,
(ΓA4) xαx = 0,
(ΓA5) 0αx = 0.
For a Γ-BCK-algebra X and a fixed α ∈ Γ, we define the operation ∗ : X ×X → X as follows: for any x, y ∈ X ,

x∗ y = xαy.

Then it is clear (X , ∗, 0) is a BCK-algebra and is denoted by Xα .
Definition 2.4 [21] A Γ-BCK-algebra X is said to be positive implicative, if it satisfies the following axiom: for any

x, y, z ∈ X and any α, β ∈ Γ,
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(xαz)β (yαz) = (xαy)β z. (2)

Definition 2.5 [20] A Γ-BCK-algebra X is said to be commutative, if it satisfies the following axiom: for any x, y ∈ X
and any α, β ∈ Γ,

yα(yβx) = xα(xβy). (3)

Definition 2.6 [21] Let X be a Γ-BCK-algebra. Then X is said to be implicative, if it satisfies the following condition:

x = xα(yβx) for any x, y ∈ X and any α, β ∈ Γ. (4)

Definition 2.7 [20] Let X be a Γ-BCK-algebra and let A be a nonempty subset of X . Then A is called a Γ-BCK-
subalgebra of X , if it satisfies the following condition:

xαy ∈ A for any x, y ∈ A and for each α ∈ Γ. (5)

Definition 2.8 [20] Let X be Γ-BCK-algebra and let I be a nonempty set of X . Then I is called a Γ-ideal of X , if it
satisfies the following conditions: for any x, y ∈ X and each α ∈ Γ,

(ΓI1) 0 ∈ I,
(ΓI2) if xαy ∈ I and y ∈ I, then x ∈ I.
An ideal I is said to be proper, if I ̸= X . It is obvious that X and {0} are ideals of X . In particular, X is called a trivial

Γ-ideal of X .

3. Topological structures on Γ-BCK-algebras
We first recall some terms and notations related to a general topology (see [23, 24]). For a subset A of a topological

space (X , τ), we denote the closure and the interior of A as clτ(A), cl(A) or Ā and intτ(A), int(A) or A◦. A subfamily B

of τ is called a base for τ , if for eachU ∈ τ eitherU = /0 or there is B
′ ⊂B such thatU =

∪
B

′ . A subset A of X is called
a neighborhood of x ∈ X , denoted by N(x), if there isU ∈ τ such that x ∈U ⊂ A. We denote the set of all neighborhoods
of x as Nτ(x) or N (x) and N (x) is called the neighborhood filter of x ∈ X . See [23, 24] for the definitions of a discrete
space and a Hausdorff space.

We next introduce a definition of topological BCK-algebra (briefly, T BCK-algebra) and some examples of T BCK-
algebras .

Definition 3.1 [21] Let X be a set with a constant 0 and let Γ be a nonempty set. Then X is called a Γ-BCK-algebra,
if there is a mapping f : X ×Γ×X → X , denoted by f (x, α, y) = xαy for each (x, α, y) ∈ X ×Γ×X , satisfying the
following axioms: for any x, y, z ∈ X and α, β ∈ Γ,

(ΓA1) [(xαy)β (xαz)]β (zαy) = 0,
(ΓA2) [xα(xβy)]αy = 0,
(ΓA3) if xαy = 0 = yαx, then x = y,
(ΓA4) xαx = 0,
(ΓA5) 0αx = 0.
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For a Γ-BCK-algebra X and a fixed α ∈ Γ, we define the operation ∗ : X ×X → X as follows: for any x, y ∈ X ,

x∗ y = xαy.

Then it is clear (X , ∗, 0) is a BCK-algebra and is denoted by Xα .
Definition 3.2 [14] Let X be a BCK-algebra and let τ be a topology on X . Then X is called a topological BCK-algebra

(briefly, T BCK-algebra), if ∗ : (X ×X , τ × τ)→ (X , τ) is continuous, i.e., for any x, y ∈ X and each W ∈ N(x∗ y) there
are U ∈ N(x) and V ∈ N(y) such that U ∗V ⊂W , where U ∗V = {x∗ y ∈ X : x ∈U, y ∈V}.

Definition 3.3 Let X be a Γ-BCK-algebra and let τ be a topology on X . Then X is called a topological Γ-BCK-algebra
(briefly, T Γ-BCK-algebra), if the mapping f : (X , τ)×Γ× (X , τ)→ (X , τ) is continuous at each (x, α, y) ∈ X ×Γ×X ,
i.e., for each α ∈ Γ, any x, y ∈ X and each W ∈ N(xαy) there are U ∈ N(x) and V ∈ N(y) such that UαV ⊂ W , where
UαV ⊂W = {xαy : x ∈U, y ∈V}.

The above definition, it is obvious that if X is a T Γ-BCK-algebra, then Xα is a T BCK-algebra for each α ∈ Γ.
However, the converse is not true in general (see Example 3.4 (3)).

Example 3.4 (1) Let Γ = {α, β} and let X = {0, 1, 2, 3, 4} · · · be the Γ-BCK-algebra given in Example 3.20 (3)
in [21], having the the ternary operation be defined as the following Table 1:

Table 1. The ternary operation 1

α β

0 1 2 3 4 0 1 2 3 4

0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 1 0 0
2 2 2 0 0 0 2 0 0 1 0
3 3 1 0 0 0 3 1 0 0 0
4 4 4 4 4 0 4 4 4 4 0

Consider the topology τ on X given by:

τ = { /0, {4}, {0, 1, 2, 3}, X}.

Then we can easily see that (X , τ) is a T Γ-BCK-algebra. Moreover, Xα and Xβ are T BCK-algebras.
(2) For a set Γ = {α, β , γ}, let X = {0, 1, 2, 3} be the Γ-BCK-algebra given in Example 3.2 (3) in [21] with the

ternary operation defined by the Table 2:

Table 2. The ternary operation 2

α β γ

0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 1
2 2 2 0 0 2 2 0 0 2 3 0 2
3 3 2 0 0 3 3 0 0 3 3 0 0
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Consider a topology τ on X given by:

τ = { /0, {0}, {0, 1}, {0, 2, 3}, X}.

Then we can check that (X , τ) is a T Γ-BCK-algebra.
(3) Let X = {0, 1, 2, 3} and let ∗ and ∗′ be the binary operations on X given by the following Table 3:

Table 3. The binary operation 3

∗ ∗′

0 1 2 3 0 1 2 3

0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1
2 2 2 0 2 2 1 0 2
3 3 3 3 0 3 3 3 0

Then clearly, (X , ∗, 0) and (X , ∗′ , 0) are BCK-algebras. Consider the topology τ on X given by:

τ = { /0, {2}, {3}, {0, 1}, {2, 3}, {0, 1, 2}, {0, 1, 3}, X}.

Then we can easily see that (X , ∗, τ) and (X , ∗′ , τ) are T BCK-algebras. Now let α = ∗ and β = ∗′ and consider
the following ternary operation defined by the Table 4:

Table 4. The ternary operation 3

α β

0 1 2 3 0 1 2 3

0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1
2 2 2 0 2 2 1 0 2
3 3 3 3 0 3 3 3 0

Then [2α(2β1)]α1 = 2 ̸= 0. Thus X is not a Γ-BCK-algebra.
Proposition 3.5 Let X be a T Γ-BCK-algebra. If {0} is open in X , then X is discrete.
Proof. Let x ∈ X and let α ∈ Γ. Then clearly, xαx = 0 ∈ {0} ∈ N(0). Thus there are U, V ∈ N(x) such that

UαV = {0}. LetW =U ∩V . ThenWαW ⊂UαV = {0}. ThusWαW = {0}. Since x ∈U ∩V , x ∈W . SoW = {x} and
W is open in X . Hence X is discrete.

The following is an immediate consequence of Proposition 3.5.
Corollary 3.6 (See Proposition 2.2, [14]) Let X be a T Γ-BCK-algebra. If {0} is open in Xα for each α ∈ Γ, then Xα

is discrete.
Theorem 3.7 Let X be a T Γ-BCK-algebra. Then {0} is closed in X if and only if X is Hausdorff.
Proof. Suppose {0} is closed in X , let x, y ∈ X such that x ̸= y and let α ∈ Γ. Then xαy ̸= 0 or yαx ̸= 0, say

xαy ̸= 0. Since {0} is closed in X and xαy ̸= 0, {0}c is open in X and xαy ∈ {0}c. Thus {0}c ∈ N(xαy). Since X be a
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T Γ-BCK-algebra, by Definition 3.3, there areU ∈ N(x) and V ∈ N(y) such thatUαV ⊂ {0}c. SoU ∩V = /0. Hence X is
Hausdorff.

Conversely, suppose X is Haousdorff and let x ∈ {0}c. Then x ̸= 0. By the hypothesis, there are U ∈ N(x) and
V ∈ N(0) such that U ∩V = /0. Thus 0 ̸∈U. So U ⊂ {0}c. Hence {0}c is open in X . Therefore {0} is closed in X .

The following is an immediate consequence of Theorem 3.7.
Corollary 3.8 (See Proposition 2.3, [14]) Let X be a T Γ-BCK-algebra. If {0} is closed in Xα for each α ∈ Γ, then

Xα is Hausdorff.
Proposition 3.9 Let X be a T Γ-BCK-algebra and let A be open in X . If A is a Γ-BCK-subalgebra of X , then A is a

T Γ-BCK-algebra.
Proof. Let τ be the topology on X and let τA be the subspace topology on A with respect to τ . Let x, y ∈ A and let

α ∈ Γ. Since A is a Γ-BCK-subalgebra of X , xαy ∈ A. LetWA ∈ NτA
(xαy), where NτA

(xαy) denotes the neighborhood of
xαy in the subspace (A, τA of (X , τ). Then there is W ∈ N(xαy) such that WA = A∩W . Since X is a T Γ-BCK-algebra,
there are U ∈ N(x) and V ∈ N(y) such that UαV ⊂ W . Thus UA = A∩U ∈ NτA

(x) and VA = A∩V ∈ NτA
(x). It is clear

that

UAαVA = (A∩U)α(A∩V )⊂W and UAαVA ⊂ A.

So UAαVA ⊂ A∩W =WA. Hence A is a T Γ-BCK-algebra.
Proposition 3.10 Let X be a T Γ-BCK-algebra and let I be open in X . If I is a Γ-ideal of X , then I is closed in X .
Proof. Let x ∈ Ic and let α ∈ Γ. Since xαx = 0 ∈ I and I is open, I ∈ N(0). Since X is a T Γ-BCK-algebra, there

is U ∈ N(x) such that UαU ⊂ I. Assume that U ̸⊂ Ic. Then there is y ∈ X such that y ∈ U ∩ I. It is obvious that
zαy ∈UαU ⊂ I for each z ∈U . Since I is a Γ-ideal of X and y ∈ I, z ∈ I. ThusU ⊂ I. This is a contradiction. SoU ⊂ Ic,
i.e., Ic is open in X . Hence I is closed in X .

Proposition 3.11 Let X be a T Γ-BCK-algebra and let I be a Γ-ideal of X . If 0 ∈ int(I), then I is open in X .
Proof. Let x ∈ I and let α ∈ Γ. Since 0 ∈ int(I) and xαx = 0 ∈ I, there isW ∈ N(0) = N(xαx) such thatW ⊂ I. Since

X is a T Γ-BCK-algebra, by Definition 3.3, there areU, V ∈ N(x) such thatUαV ⊂W ⊂ I. It is clear that yαx ∈UαV ⊂ I
for each y ∈U. Since I is a Γ-ideal of X and x ∈ I, y ∈ I. Then y ∈ I. Thus U ⊂ I. So I is open in X .

In Proposition 3.11, when 0 ̸= x ∈ int(I), I need not open in X (see Example 3.12).
Example 3.12 For a set Γ = {α, β}, let X = {0, 1, 2, 3} be a Γ-BCK-algebra with the ternary operation be defined

by the Table 5:

Table 5. The ternary operation 4

α β

0 1 2 3 0 1 2 3

0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 2
2 2 2 0 2 2 2 0 2
3 3 3 0 0 3 3 0 0

Then I = {0, 3} is a Γ-ideal of X . Consider a topology τ on X given by:

τ = { /0, {2}, {3}, {0, 1}, {2, 3}, {0, 1, 3}, X}.
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Then clearly, 3 ∈ int(I). But I /∈ τ . Now consider another topology τ ′ on X given by:

τ
′
= { /0, {1}, {2}, {3}, {0, 3}, {1, 2}, {0, 1, 3}, X}.

Then we can easily check that I is closed in X . Thus we can see that Proposition 3.10 holds.
Proposition 3.13 Let X be a T Γ-BCK-algebra. Then

∩
N(0) = {0} and thus

∩
N (0) = {0}.

Proof. Assume that 0 ̸= x /∈
∩

N(0). Then clearly, there is U ∈ N(0) such that o ∈ U but x /∈ U. Thus x /∈
∩

N(0).
This is a contradiction. So

∩
N(0) = {0}.

Proposition 3.14 Let (X , τ) be a T Γ-BCK-algebra and let B1, B2 be the families of subsets of X given by:

B1 = {xαU : x ∈ X , α ∈ Γ, U ∈ N (0)}, B2 = {Uαx : x ∈ X , α ∈ Γ, U ∈ N (0)},

where xαU = {xαu : u ∈U} and Uαx = {uαx : u ∈U}. Then B1 and B2 are bases for τ .
Proof. Let x∈ X . Since 0∈U ∈N (0), xα0= x. Then

∪
B1 = X . Suppose B1, B2 ∈B1 and z∈ B1∩B2. Then there

areU1, U2 ∈N (0) such that B1 = xαU1, B2 = xαU2 and B1 ∩B2 = xα(U1 ∩U2). Since z ∈ B1 ∩B2, there is y ∈U1 ∩U2.

Since U1, U2 ∈ N(0), U1 ∩U2 ∈ N(0). So there is V ∈ N (0) such that y ∈ V ⊂ U1 ∩U2. Hence z = xαy ∈ xαV ∈ B1.

Therefore B1 is a base for τ . Similarly, we can prove that B2 is a base for τ .
To give a filter base on X generating a topology on a Γ-BCK-algebra, let us define a subset U(a) of X generated by

each a ∈ X and each U ∈ P(X) as follows:

U(a) = {x ∈ X : xαa ∈U, aαx ∈U, α ∈ Γ}.

Proposition 3.15 Let X be a Γ-BCK-algebra. Suppose B is a filter base on X satisfying the following condition:
(1) for each u ∈U ∈ B there is B ∈ B such that B(u)⊂U ,
(2) for each u ∈U ∈ B and each α ∈ Γ if xαu = 0, then x ∈U ,
(3) for each U ∈ B there is B ∈ B such that B(b)⊂U for each b ∈ B.
Then there is a unique topology τ on X such that B = Nτ(0) and (X , τ) is a T Γ-BCK-algebra.
Proof. Let τ = {O ∈ P(X) : for each a ∈ O there is B ∈ B such that B(a)⊂ O}.
Claim 1: τ is a topology on X . By the definition of τ , it is clear that X , /0 ∈ τ . Suppose {Oα}α ∈ Λ ⊂ τ and let

a ∈
∪

α∈Λ Oα , where Λ is a index set. Then there is α ∈ Λ such that a ∈ Oα . Thus there is B ∈ B such that B(a) ⊂
Oα ⊂

∪
α∈Λ Oα . So

∪
α∈Λ Oα ∈ τ. Now suppose O1, O2 ∈ τ and let a ∈ O1 ∩O2. Then there are B1, B2 ∈ B such that

B1(a)⊂ O1 and B2(a)⊂ O2. Since B is a filter base on X , there is B ∈ B such that B ⊂ B1 ∩B2. On the other hand, we
get

B(a)⊂ (B1 ∩B2)(a)⊂ B1(a)∩B2(a)⊂ O1 ∩O2.

Thus O1 ∩O2 ∈ τ. So τ is a topology on X .
Claim 2: B(a)∈ τ. Let x ∈ B(a). Then xαa, aαx ∈ B for each α ∈ Γ. Thus by the condition (1), there are B1, B2 ∈B

such that B1(xαa) ⊂ B and B2(aαx) ⊂ B. Since B is a filter base on X , there is U ∈ B such that U ∈ B1 ∩B2. Let
xαy, yαx ∈U , i.e., y ∈U(x). By Proposition 3.6 (2) in [21] , we have

(xαa)β (yαa)≤ xαy, (yαa)β (xαy)≤ yαx.
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Then [(xαa)β (yαa)]β (xαy) = 0, [(yαa)β (xαy)]β (yαx) = 0. By the condition (2), xαy, yαx ∈U. Thus we get

yαa ∈U(xαa)⊂ B1(xαa)⊂ B.

So yαa ∈ B. Similarly, we can show that aαy ∈U. Hence y ∈U(a), i.e., U(x)⊂ B(a). Therefore B(a) ∈ τ.
Claim 3: B = Nτ(0). Let A ∈ B and let x ∈ A. Since X is a Γ-BCK-algebra, by the axiom (ΓA5), 0αx = 0. By the

condition (2), 0 ∈ A. By the condition (1), there is B ∈B such that B(0)⊂ A. Then by Claim 2, B(0) ∈ τ. Thus A ∈ Nτ(0).
So B ⊂ Nτ(0). Hence by the condition (3), B ⊂ Nτ(0). It can be easily proved that Nτ(0)⊂ B. Therefore B = Nτ(0).

Claim 4: A mapping f : (X , τ)×Γ× (X , τ)→ (X , τ) is continuous at each (x, α, y) ∈ X ×Γ×X . Let x, y ∈ X , let
α ∈ Γ and letW ∈ Nτ(xαy). Since xαy ∈W , by the condition (1), there isW

′ ∈B such thatW ′
(xαy)⊂W . SinceW

′ ∈B,
by the condition (3), there is B ∈ B such that B(b)⊂W

′ for each b ∈W
′ . Let U = B(x), V = B(y) and let u ∈U, v ∈V .

Then we have

[(xαy)β (uαv)]β (xαu) =[(xαu)β (xαu)]β (uαv) [By Proposition 3.5, [21]]

=[xα(xαu)βy]β (uαv)

≤(uαy)β (uαv)

[By Proposition 3.3 and Proposition 3.6, [21]]

≤vαy. [By Proposition 3.3, [21]]

Thus ([(xαy)β (uαv)]β (xαu))β (vαy) = 0. Since vαy ∈ B, by the condition (2), [(xαy)β (uαv)]β (xαu) ∈ B.
Similarly, we have (xαu)β [(xαy)β (uαv)] ∈ B. So we get

(xαy)β (uαv) ∈ B(xαu)⊂W
′
, i.e., (xαy)β (uαv) ∈W

′
.

Similarly, (uαv)β (xαy) ∈W
′ . Hence we have

uαv ∈W
′
(xαy), i.e., UαV = B(x)αB(y)⊂W

′
(xαy)⊂W.

Therefore f is continuous. The proof of uniqueness for τ is easy. This completes the proof.
Example 3.16 (1) Let X be the Γ-BCK-algebra and let I be the collection of all ideals of X . Let x ∈ I ∈ I . Then

clearly, I(x) ⊂ I. Thus I satisfies the conditions (1) and (3) in Proposition 3.15. Let y ∈ I ∈ I and suppose xαy = 0.
Then xαy = 0 ∈ I. Thus x ∈ I. So I satisfies the condition (2) in Proposition 3.5. SoI forms a filter base of X satisfying
all the conditions in Proposition 3.15. Hence (X , τ) is a (X , τ) is a T Γ-BCK-algebra, where τ is the topology on X
generated by I .

(2) (See Example 3.14 (2), [21]) Let Γ = {α, β} and let X = {0, 1, 2, 3} be the Γ-BCK-algebra with the the ternary
operation be defined as the following Table 6:
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Table 6. The ternary operation 5

α β

0 1 2 3 0 1 2 3

0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 1 1
2 2 2 0 0 2 3 0 0
3 3 3 3 0 3 3 3 0

Consider the family B of subsets of X given by:

B = {{0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}}.

Then we can easily check that B is a filter base on X . Moreover, we have

{0, 1}(0) = {0, 1}(1) = {0, 1}, {0, 1}(2) = {2}, {0, 1}(3) = {3},

{0, 2}(0) = {0, 2}(2) = {0, 2}, {0, 2}(1) = {1}, {0, 2}(3) = {3},

{0, 3}(0) = {0, 3}(3) = {0, 3}, {0, 3}(1) = {1}, {0, 3}(2) = {2},

{0, 1, 2}(0) = {0, 1, 2}(1) = {0, 1, 2}(2) = {0, 1, 2}, {0, 1, 2}= {3},

{0, 1, 3}(0) = {0, 1, 3}(1) = {0, 1, 3}(3) = {0, 1, 3}, {0, 1, 3}(2) = {2},

{0, 2, 3}(0) = {0, 2, 3}(2) = {0, 2, 3}(3) = {0, 2, 3}, {0, 2, 3}(1) = {1}.

Thus B is a filter base on X satisfying al the conditions in Proposition 3.15. So the topology τ on X generated by B

is given as follows:

τ = { /0, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, X}.

Hence (X , τ) is a T Γ-BCK-algebra.
Lemma 3.17 Let X be a Γ-BCK-algebra and let τ be the topology on X generated by B, where B is a filter base on

satisfying all the conditions in Proposition 3.15. Then for each B ∈ B and each a ∈ X ,
(1) B(a) ∈ Nτ(a),
(2) B(A) =

∪
a∈A B(a) ∈ Nτ(A) for each A ∈ P(X) .

Proof. The proof is straightforward.
Proposition 3.18 Let X be a Γ-BCK-algebra and let τ be the topology on X generated by B, where B is a filter base

on X satisfying all the conditions in Proposition 3.15. Then for each B ∈ B, clτ(A) =
∩

B∈B B(A).

Contemporary Mathematics 1586 | J. I. Baek, et al.



Proof. Let x ∈ clτ(A) and let B ∈B. By Lemma 3.17 (1), B(x)∈ Nτ(x). Then B(x)∩A ̸= /0. Thus there is a ∈ A such
that aαx, xαa ∈ B for each α ∈ Γ. So x ∈ B(a) ⊂ B(A), i.e., x ∈

∩
B∈B B(A). Hence clτ(A) ⊂

∩
B∈B B(A). Conversely,

let x ∈
∩

B∈B B(A). Then x ∈U(A) for each U ∈ B. Thus there is a ∈ A such that x ∈ B(a), i.e., xαa, aαx ∈ B for each
α ∈ Γ. So a ∈ B(x), i.e., B(x)∩A ̸= /0. Hence x ∈ clτ(A), i.e.,

∩
B∈B B(A)⊂ clτ(A). Therefore clτ(A) =

∩
B∈B B(A).

4. Quotient Γ-BCK-algebras by ideals
We introduce the concept of quotient Γ-BCK-algebras by ideals of Γ-BCK-algebra and study some of its properties.

Next, we deal with topological structures on quotient Γ-BCK-algebras.
Proposition 4.1 Let X be a Γ-BCK-algebra and let I ∈ I (X), where I (X) is the set of all Γ-ideals of X . Define a

relation ∽I on X as follows: for any x, y ∈ X and each α ∈ Γ,

x ∽I y if and only if xαy, yαx ∈ I.

Then ∽I is a congruence relation on X , i.e., it satisfies the following conditions: for any x, y, z ∈ X and each α ∈ Γ,
(1) x ∽I x, i.e., ∽I is reflexive,
(2) if x ∽I y, then y ∽I x, i.e., ∽I is symmetric,
(3) if x ∽I y and y ∽I z, then x ∽I z, i.e., ∽I is transitive,
(4) if x ∽I u and y ∽I v, then xαy ∽I uαv.
Proof. (1) Since 0 ∈ I, by the axiom (ΓA4), xαx = 0 ∈ I for each x ∈ X and each α ∈ Γ. Then x ∽I x. Thus ∽I is

reflexive.
(2) The proof is easy.
(3) Suppose x ∽I y and y ∽I z, and let α, β ∈ Γ. Then xαy, yαz ∈ I. Moreover, by the axiom (ΓA1),

[(xαz)β (xαy)]β (yαz) = 0.

Thus by Corollary 4.9 in [21], xαz ∈ I. Similarly, we get zαx ∈ I. So x ∽I z. Hence ∽I is transitive.
(4) Suppose x ∽I u and y ∽I v, and let α, β ∈ Γ. Then clearly, we get

xαu, uαx, yαv, vαy ∈ I.

Furthermore, by Theorem 3.3 in [21], we have

(xαy)β (xαv)≤ vαy and (xαv)β (xαy)≤ yαv ∈ I.

By Proposition 4.5 in [21], we get

(xαy)β (xαv), (xαv)β (xαy) ∈ I.

Thus xαy ∽I xαv. On the other hand, by Proposition 3.6 in [21],
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(xαv)β (uαv)≤ xαu ∈ I and (uαv)β (xαv)≤ uαx ∈ I.

So xαv ∽I uαv. Hence by the condition (3), xαy ∽I uαv.
For a congruence relation ∽I on a Γ-BCK-algebra X and each x ∈ X , a subset I[x] of X defined by

I[x] = {y ∈ X : x ∽I y}= {y ∈ X : xαy, yαx ∈ I for each α ∈ Γ}

is called the congruence class in X determined by x with respect to ∽I . The set of all congruence classes in X is denoted
by X/I.

Proposition 4.2 Let X be a Γ-BCK-algebra, I ∈I (X) and let∽I be a congruence relation on X . We define a mapping
f : X/I ×Γ×X/I → X/I as follows: for each (I[x], α, I[y]) ∈ X/I ×Γ×X/I,

f (I[x], α, I[y]) = I[x]αI[y] = I[xαy].

Then X/I is a Γ-BCK-algebra such that I[0] = I. In this case, X/I is called the quotient Γ-BCK-algebra of X by I.
Proof. It is obvious that f is well-defined.
Let x ∈ I and let α ∈ Γ. By the axiom (ΓA5) and Proposition 3.6 in [21], 0αx ∈ I and xα0 = x ∈ I. Then x ∽I 0, i.e.,

x ∈ I[0]. Thus I ⊂ I[0]. Conversely, let x ∈ I[0] and let α ∈ Γ. Then x = xα0 ∈ I. Thus I[0]⊂ I. So I = I[0].
Let x, y, z ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA1), we get

[(xαy)β (xαz)]β (zαy) = 0

Thus we have

[(I[x]αI[y])β I[x]αI[z])]β (I[z]αI[y]) = I[[(xαy)β (xαz)]β (zαy)] = I[0].

So the axiom (ΓA1) holds.
Let x, y ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA2), [xα(xβy)]αy = 0. Thus we have

[I[x]α(I[x]β I[y])]αI[y] = I[[xα(xβy)]αy] = I[0].

So the axiom (ΓA2) holds.
It can be easily proved that the axioms (ΓA3) and (ΓA5).
Now suppose I[x]αI[y] = I[y]αI[x] = I[0] for any x, y ∈ X and each α ∈ Γ. Then clearly, xαy ∽I 0 and yαx ∽I 0.

Thus xαy, yαx ∈ I. So I[x] = I[y]. Hence the axiom (ΓA4) holds. Therefore X/I is a Γ-BCK-algebra with the zero element
I[0] = I. This completes the proof.

Consider the Γ-BCK-algebra X and the Γ-ideal I = {0, 3} of X in Example 3.12. Then we can easily obtain the
quotient Γ-BCK-algebra X/I with the following ternary operation (Table 7):
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Table 7. The ternary operation on the quotient set

α β

I[0] I[1] I[2] I[0] I[1] I[2]

I[0] I[0] I[0] I[0] I[0] I[0] I[0]

I[1] I[1] I[0] I[1] I[1] I[0] I[1]

I[2] I[2] I[2] I[0] I[2] I[2] I[0]

We can define a partial ordering ≤ on X/I as follows: for any x, y ∈ X and each α ∈ Γ,

I[x]≤ I[y] if and only if I[x]αI[y] = I[0] = I.

Then from the proof process of Proposition 4.2, we have the following.
Proposition 4.3 Let X be a Γ-BCK-algebra and let X/I be the quotient Γ-BCK-algebra of X by I ∈ I (X). Then the

followings hold: for any x, y, z ∈ X and any α, β ∈ Γ,
(1) (I[x]αI[y])β (I[x]αI[z])≤ I[z]αI[y],
(2) I[x]α(I[x]β I[y])≤ I[y],
(3) if I[x]leqI[y] and I[y]≤ I[x], then I[x] = I[y],
(4) I[x]≤ I[x],
(5) I ≤ I[x].
Lemma 4.4 Let X be a Γ-BCK-algebra and let I, J ∈ I (X) such that I ⊂ J. Then
(1) I is an ideal of the subalgebra J,
(2) J/I is the quotient algebra of J by I and J/I is an ideal of X/I.
Proof. (1) The proof is straightforward from Proposition 4.10 in [21] and Definition 2.8.
(2) From (1) and Proposition 4.3, it is obvious that J/I is the quotient algebra of J by I. Let J/I = {IJ [x] : x ∈ J} and

let y ∈ IJ [x] for each x ∈ J and each y ∈ X . Then y ∽I x. Thus yαx ∈ I for each α ∈ Γ. So yαx ∈ J for each α ∈ Γ. Since
J is an ideal of X and x ∈ J, y ∈ J. Hence IJ [x] ∈ X/I. Therefore J/I ⊂ X/I.

Since I ⊂ J, I[0] = I ∈ J/I. For any I[x], I[y] ∈ X/I and each α ∈ Γ, suppose I[x]αI[y] ∈ J/I and I[y] ∈ J/I. Then
I[xαy] = I[x]αI[y] ∈ J/I. Thus xαy ∈ J and y ∈ J. Since J is an ideal of X , x ∈ J. So I[x] ∈ J/I. Hence J/I is an ideal of
X/I.

Lemma 4.5 If J∗ is an ideal of X/I, then J =
∪

x∈J∗ I[x] is an ideal of X and I ⊂ J.
Proof. It is clear that I = I[0] ∈ J∗. Then 0 ∈ J and I ⊂ J. For any x, y ∈ X and each α ∈ Γ, suppose xαy ∈ J and

y ∈ J. Then I[x]αI[y] = I[xαy] ∈ J∗ and I[y] ∈ J∗. Since J∗ is an ideal of X/I, I[x] ∈ J∗. Thus x ∈ J. So J is an ideal of X .

Proposition 4.6 If I is an ideal of a Γ-BCK-algebra X , then there is a bijection from I (X , I) to I (X/I) where
I (X , I) is the set of all ideals containing I of X .

Proof. We define the mapping f : I (X , I)→ I (X/I) as follows:

f (J) = J/I for each J ∈ I (X , I).

From Lemmas 4.4 and 4.5, f is well-defined and surjective. Let A, B ∈ I (X , I) such that A ̸= B. Then there is
x ∈ X such that x ∈ A−B or x ∈ B−A, say x ∈ B−A. Assume that f (A) = f (B). Then I[x] ∈ f (A)∩ f (B). Thus there is
y ∈ A such that I[x] = I[y]. So x ∽I y, i.e., xαy, yαx ∈ I. Since I ⊂ A, xαy ∈ A. Since A is an ideal of X and y ∈ A, x ∈ A.
This is a contradiction to x /∈ A. Hence A = B, i.e., f is injective. Therefore f is bijective.

Remark 4.7We define the mapping π : X → X/I as follows:
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π(x) = I[x] for each x ∈ X .

Then we can easily check that π is a surjective homomorphism. In this case, π is called the natural homomorphism.
From Remark 4.7, Lemma 4.5 can be restated as follows.
Proposition 4.8 Let X be a Γ-BCK-algebra and let π : X → X/I be the natural homomorphism, where I is an ideal

of X . If A is an ideal of X/I, then π−1(A) is an ideal of X and I ⊂ π−1(A).
Now we deal with characterizations of quotient Γ-BCK-algebra by commutative [resp. positive implicative and

implicative] ideals.
Theorem 4.9 Let X be a Γ-BCK-algebra and let I ∈I (X). Then I is commutative if and only if X/I is a commutative

Γ-BCK-algebra.
Proof. Suppose I is commutative. To prove that X/I is commutative, the following identity holds: for any x, y ∈ X

and any α, β ∈ Γ,

I[y]α(I[y]β I[x]) = I[x]α(I[x]β (I[y]α(I[y]β I[x]))). (6)

Let x, y ∈ X and let α, β ∈ Γ and let u = yα(yβx). Since I ∈ I (X), by the axiom (ΓA2), uβx = 0 ∈ I. Since I is
commutative, by Theorem 4.31 in [21], uβ (xα(xβu)) ∈ I. Then I[u]β (I[x]α(I[x]β I[u])) = I[uβ (xα(xβu))] = I = I[0],
i.e.,

I[u]≤ I[x]α(I[x]β I[u]).

Thus we have

I[y]α(I[y]β I[x]) = I[yα(yβx)] = I[u]≤ I[x]α(I[x]β I[u]).

It is clear that I[x]α(I[x]β I[y])≤ I[u]. So we get

I[y]α(I[y]β I[x]) = I[x]α(I[x]β I[u]) = I[x]α(I[x]β (I[y]α(I[y]β I[x]))).

Hence (6) holds. Therefore by Theorem 3.18 in [21], X/I is commutative.
Conversely, suppose X/I is commutative. By Theorem 4.18 in [21], {I[0]} is commutative. Suppose xαy ∈ I for any

x, y ∈ X and each α ∈ Γ. Then we have

I[x]αI[y] = I[xαy] = I[0] ∈ {I[0]}.

Since {I[0]} is commutative, by Theorem 4.31 in [21], we get

I[xα(yβ (yαx))] = I[x]α(I[y]β (I[y]αI[x])) ∈ {I[0]} for each β ∈ Γ.
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Thus I[xα(yβ (yαx))] = I[0]. So xα(yβ (yαx)) ∈ I. Hence by Theorem 4.31 in [21], I is commutative.
Theorem 4.10 Let X be a Γ-BCK-algebra and let I ∈ I (X). Then I is positive implicative if and only if X/I is a

positive implicative Γ-BCK-algebra.
Proof. Suppose I is positive implicative and for any c, y, z ∈ X and any α, β ∈ Γ, let u = (xβy)αz. Then by

Proposition 3.5 in [21] and the axiom (ΓA3), we get

((xβu)αy)β z = ((xβy)αz)βu = 0 ∈ I.

By Theorem 4.16 in [21], we have

((xβu)αz)β (yβ z) ∈ I.

On the other hand, by Proposition 3.5 in [21], we get

(((xβu)αz)β (yβ z)) = (xβ z)α(yβ z))β ((xβy)αz).

Thus ((xβ z)α(yβ z))β ((xβy)αz) ∈ I. So we have

((I[x]β I[z])α(I[y]β I[z]))β ((I[x]β I[y])αI[z]) = I[((xβ z)α(yβ z))β ((xβy)αz)] = I[0].

It can be easily see that the following identity holds:

((I[x]β I[y])αI[z])β ((I[x]β I[z])α(I[y]β I[z])) = I[0].

By the axiom (ΓA3), we get

(I[x]β I[z])α(I[y]β I[z]) = (I[x]β I[y])αI[z].

Hence X/I is positive implicative.
Conversely, suppose X/I is positive implicative. By Theorem 4.18 in [21], {I[0]} is a positive implicative ideal of

X/I. Suppose (xαy)β z ∈ I for any x, y, z ∈ X and any α, β ∈ Γ. Then we have

(I[x]αI[y])β I[z] = I[(xαy)β z] = I[0] ∈ {I[0]}.

Then by Theorem 4.16 in [21], we get

(I[x]αI[z])β (I[y]αI[z]) ∈ {I[0]}.
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Thus I[(xαz)β (yαz)] = (I[x]αI[z])β (I[y]αI[z]) = I[0]. So (xαz)β (yαz) ∈ I. Hence I is positive implicative.
Theorem 4.11 Let X be a Γ-BCK-algebra and let I ∈I (X). Then I is implicative if and only if X/I is an implicative

Γ-BCK-algebra.
Proof. The proof follows from Theorem 3.21, Proposition 4.26 in [21] and Theorems 4.9, 4.10.
See section 5 for the definition of a bounded Γ-BCK-algebra.
Proposition 4.12 Let X be a bounded Γ-BCK-algebra with the greatest element 1 and let I ∈ I (X). Then X/I is

bounded with the greatest element I[1].
Proof. Let x ∈ X and let α ∈ Γ. Then I[x]αI[1] = I[xα1] = I[0]. Thus I[x] ≤ I[1]. So I[1] is the greatest element of

X/I.
Now we will discuss topological structures on quotient Γ-BCK-algebras. We denote subsets of X/I as Ȧ, Ḃ, Ċ, etc.

and /̇0 = /0, Ẋ = X/I.
Proposition 4.13 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.

We define a collection τπ of subsets of X/I as follows:

τπ = {Ȧ ∈ P(X/I) : π−1(Ȧ) ∈ τ},

where Ȧ = {I[a] : a ∈ A} for some A ⊂ X . Then
(1) τπ is a topology on X/I,
(2) π : (X , τ)→ (X/I, τπ) is continuous, open and closed,
(3) τπ is the finest topology on X/I with respect to which π is continuous,
(4) (X/I, τπ) is a T Γ-BCK-algebra.
In this case, τπ is called the quotient topology onX/I induced by π and (X/I, τπ) is called a quotient T Γ-BCK-algebra

and π is called a quotient mapping.
Proof. (1) It is clear that π−1( /̇0) = π−1( /0) = /0, π−1( /̇0) = π−1(X/I) = X ∈ τ . Then /0 ∈ τπ . Suppose Ȧ, Ḃ ∈ τπ .

Then π−1(Ȧ), π−1(Ḃ)∈ τ . Thus π−1(Ȧ∩ Ḃ) = π−1(Ȧ)∩π−1(Ḃ)∈ τ. So Ȧ∩ Ḃ ∈ τπ . Now suppose (Ȧ j) j∈J ⊂ τπ , where J
denotes an index set. Then clearly, (π−1(Ȧ j)) j∈J ⊂ τ. Thus π−1(

∪
j∈J Ȧ j) = (

∪
j∈J π−1(Ȧ j) ∈ τ . So

∪
j∈J Ȧ j ∈ τπ . Hence

τπ is a topology on X/I.
(2) The proof is straightforward.
(3) Let δ be any topology on X/I such that π : (X , τ)→ (X/I, δ ) is continuous and let V̇ ∈ δ . Then π−1(V̇ ) ∈ τ .

Thus V̇ ∈ τπ . So δ ⊂ τπ . Hence τπ is the finest topology on X/I which π is continuous.
(4) We prove that a mapping f : (X/I, τπ)×Γ× (X/I, τπ) → (X/I, τπ) is continuous at each (I[a], α, I[b]) ∈

X/I ×Γ×X/I. Let a, b ∈ X , let α ∈ Γ and let Ẇ ∈ Nτπ (I[a]αI[b]) = Nτπ (I[aαb]). Then there is Ẇ ′ ∈ τπ such that
I[aαb] ∈ Ẇ ′ ⊂ Ẇ . Thus aαb = π−1(I[aαb]) ∈ π−1(Ẇ ′

) ⊂ π−1(Ẇ ). Since π−1(Ẇ ′
) ∈ τ , π−1(Ẇ ) ∈ Nτ(aαb). Since

(X , τ) is a T Γ-BCK-algebra, by Definition 3.3, there are U
′ ∈ Nτ(a) and V

′ ∈ Nτ(b) such that U
′αV

′ ⊂ π−1(Ẇ ). Since
π is surjective, U̇ = π(U ′

) ∈ π(N(a)) and V̇ = π(V ′
) ∈ π(N(b)) such that U̇αV̇ ⊂ Ẇ . By (2), U̇ , V̇ ∈ τπ . Note that

Nτπ (I[a]) = π(Nτ(a)) and Nτπ (I[b]) = π(Nτ(b)). Thus U̇ ∈ Nτπ (I[a]), V̇ ∈ Nτπ (I[b]) and U̇αV̇ ⊂ Ẇ . So f is continuous.
Hence (X/I, τπ) is a T Γ-BCK-algebra.

Proposition 4.14 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.
If {I} is open in (X/I, τπ), then X/I is discrete.

Proof. Suppose {I} is open in (X/I, τπ), let a ∈ X and let α ∈ Γ. Then clearly, I[a]αI[a] = I[aαa] = I[0] = I.
Thus by the hypothesis, {I} ∈ Nτπ (I[a]αI[a]). So there are U̇ , V̇ ∈ Nτπ (I[a]) such that U̇αV̇ ⊂ {I}, i.e., U̇αV̇ = {I}. Let
Ẇ = U̇ ∩V̇ . Then ẆαẆ = {I}. Thus Ẇ = {I[a]}, i.e., {I[a]} is open in X/I. So X/I is discrete.

The following is an immediate consequence of Propositions 4.13 and 4.14.
Corollary 4.15 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism. If

{0} is open in X , then X/I is discrete.
Proposition 4.16 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.

If (X/I, τπ) is a T1-space, then {0} is closed in X .
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Proof. Suppose X/I is a T1-space and let a ∈ X . Then clearly, {I[a]} is closed in X/I. In particular, {I[0]} is closed
in X/I. Since π : (X , τ)→ (X/I, τπ) is continuous, {0}= {π−1(I[0])} is closed in X .

Theorem 4.17 Let (X , τ) be a T Γ-BCK-algebra, I ∈I (X) and let π : X → X/I be the natural homomorphism. Then
{I} is closed in (X/I, τπ) if and only if X/I is Hausdorff.

Proof. Suppose {I} is closed in (X/I, τπ), let a, b ∈ X such that a ̸= b and let α ∈ Γ. Then clearly, I[a] ̸= I[b], i.e.,
I[a]αI[b] ̸= I or I[b]αI[a] ̸= I, say I[a]αI[b] ̸= I. By the hypothesis, {I}c ∈ τπ , i.e., {I}c ∈ Nτπ (I[a]αI[b]). Thus there are
U̇ ∈ Nτπ (I[a]) and V̇ ∈ Nτπ (I[b]) such that U̇αV̇ ⊂ {I}c. So U̇ ∩V̇ = /̇0. Hence X/I is Hausdorff.

Suppose X/I is Hausdorff and let a ∈ {I}c. Then I[a] ̸= I. By the hypothesis, there are U̇ ∈ Nτπ (I[a]) and V̇ ∈ Nτπ (I)
such that U̇ ∩V̇ = /̇0. Thus I /∈ U̇ . So U̇ ⊂ {I}c, i.e., {I}c is open in X/I. Hence {I} is closed in X/I.

The following is an immediate consequence of Proposition 4.13 and Theorem 4.17.
Corollary 4.18 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.

Then {0} is closed in X if and only if X/I is Hausdorff.
Proposition 4.19 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.

If Ȧ is an ideal of X/I and I ∈ intτπ (Ȧ), then Ȧ is open in X/I.
Proof. Let I[a] ∈ Ȧ and let α ∈ Γ. Then I[a]αI[a] = I. Since I ∈ intτπ (Ȧ), there is Ẇ ∈ Nτπ (I) = Nτπ (I[a]αI[a]) such

that Ẇ ⊂ Ȧ. Since τπ is a topology on X/I, by Definition 3.3, there are U̇ , V̇ ∈ Nτπ (I[a]) such that U̇αV̇ ⊂ Ẇ ⊂ Ȧ. On
the other hand, I[b]αI[a] ∈ U̇αV̇ ⊂ Ȧ for each I[b] ∈ U̇ . Since Ȧ is an ideal of X/I, I[b] ∈ Ȧ. So I[a] ∈U ⊂ Ȧ. Hence Ȧ is
open in X/I.

Lemma 4.20 Let X be a Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism. If A is an
ideal of X , then π(A) is an ideal of X/I.

Proof. Suppose I[a]αI[b] ∈ π(A) and I[b] ∈ π(A) for any a ∈ X and each α ∈ Γ. Then there are c, d ∈ A such that
[I(aαb] = I[a]αI[b] = I[c] and I[b] = I[d]. Since c ∼I aαb and d ∼I b, aαb ∈ A and b ∈ A. Thus by the hypothesis, a ∈ A.
So I[a] = π(a) ∈ π(A). Hence π(A) is an ideal of X/I.

The following is an immediate consequence of Propositions 4.13, 4.19 and Lemma 4.20.
Corollary 4.21 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism. If

A is an ideal of X and I ∈ intτ(π(A)), then π(A) is open in X/I.
Proposition 4.22 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.

If Ȧ is an ideal of X/I and is open in X/I, then Ȧ is closed in X/I.
Proof. Suppose Ȧ is an ideal of X/I and is open in X/I and let I[x] ∈ Ȧc, α ∈ Γ. Since I[x]αI[x] = I and Ȧ is open in

X/I, Ȧ ∈ Nτπ (I) = Nτπ (I[xαx]). Since (X/I,τπ) is a T Γ-BCK-algebra, there is U̇ ∈ Nτπ (I[x]) such that U̇αU̇ ⊂ Ȧ.Assume
that U̇ ̸⊂ Ȧc. Then there is I[y]∈ X/I such that I[y]∈ U̇ ∩ Ȧ. It is clear that I[zαy] = I[z]αI[y]∈ U̇αU̇ ⊂ Ȧ for each I[z]∈ U̇ .
Since I[y] ∈ Ȧ and Ȧ is an ideal of X/I, I[z] ∈ Ȧ. Thus U̇ ⊂ Ȧ. This is a contradiction. So U̇ ⊂ Ȧc. Hence Ȧc is open in
X/I, i.e., Ȧ is closed in X/I.

The following is an immediate consequence of Propositions 4.13 and 4.22.
Corollary 4.23 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism. If

A is an ideal of X and is open in X , then π(A) is closed in X/I.
Proposition 4.24 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.

If (X/I, τπ) is Hausdorff, then
∩

U̇∈Nτπ (I)
U̇ = {I}.Moreover,

∩
U̇∈Nτπ (I)

U̇ = {I}.
Proof. Assume that I ̸= I[x] ∈

∩
U̇∈Nτπ (I)

U̇ . Then there is V̇ ∈ Nτπ (I) such that I[x] /∈ V̇ . Thus I[x] /∈
∩

U̇∈Nτπ (I)
U̇ .

This is a contradiction. So
∩

U̇∈Nτπ (I)
U̇ = {I}.

Lemma 4.25 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism. Then
π(Nτ(0) = Nτπ (I).

Proof. From Proposition 4.13, it is obvious that π(Nτ(0)) = Nτπ (I). Let V̇ ∈ Nτπ (I). Then clearly, π−1(V̇ ) ∈ Nτ(0).
Thus there is U ∈ Nτ(0) such that U ⊂ π−1(V̇ ). So π(U)⊂ π(π−1(V̇ )) = V̇ . This completes the proof.

Lemma 4.26 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism. Then
If X is Hausdorff, then (X/I, τπ) is Hausdorff.

Proof. The proof is straightforward.
The following is an immediate consequence of Propositions 4.13, 4.24 and Lemmas 4.25, 4.26.
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Proposition 4.27 Let (X , τ) be a T Γ-BCK-algebra, I ∈ I (X) and let π : X → X/I be the natural homomorphism.
If X is Hausdorff, then

∩
U̇∈Nτπ (I)

U̇ = {I}.

5. Quotient Γ-BCK-algebras by dual Γ-ideals
First of all, we introduce the concepts of dual ideals of a Γ-BCK-algebra X and quotient Γ-BCK-algebras by dual

Γ-ideals, and study some of their properties. Next, we discuss uniform structures on a quotient Γ-BCK-algebra.
Definition 5.1 A Γ-BCK-algebra X is said to be bounded, if there is 1 ∈ X (called the unit of X) such that xα1 = 0,

i.e., x ≤ 1 for each x ∈ X and each α ∈ Γ. In a bounded Γ-BCK-algebra X , we denote 1αx for each x ∈ X and each α ∈ Γ
by Nx.

Example 5.2 Let Γ = {α, β} and let X = {0, a, b, c, d, 1} be the Γ-BCK-algebra with the ternary operation be
defined by the following Table 8:

Table 8. The ternary operation 6

α β

0 a b c d 1 0 a b c d 1

0 0 0 0 0 0 0 0 0 0 0 0 0
a a 0 a a 0 0 a 0 a a 0 0
b b b 0 0 0 0 b b 0 0 0 0
c c c b 0 b 0 c c 0 0 b 0
d d b a a 0 0 d c a a 0 0
1 1 c d a b 0 1 c d a b 0

Then we can easily check that X is bounded with the unit 1.
Proposition 5.3 In a bounded Γ-BCK-algebra X with the unit 1, the followings hold: for any x, y ∈ X and each

α, β ∈ Γ,
(1) N1 = 0, N0 = 1,
(2) NNx ≤ x,
(3) NxαNy ≤ yβx,
(4) if y ≤ x, then Nx ≤ Ny,
(5) Nxαy = Nyαx,
(6) NNNx = Nx.
Proof. (1) The proofs are obvious.
(2) By Proposition 3.7 in [21] and the axiom (ΓA4), we have

NNxβx = N(1αx)βx = [1α(1αx)]βx = (1αx)β (1αx) = 0.

Then NNx ≤ x.
(3) The proof follows from Theorem 3.3, Proposition 3.6 in [21], and axiom (ΓA4).
(4) The proof follows from Proposition 3.4 in [21].
(5) We can easily prove that (Nxαy)β (Nyαx) = 0, (Nyαx)β (Nxαy) = 0. Then by the axiom (ΓA3), Nxαy = Nyαx.
(6) The proof is easy.
For a Γ-BCK-algebra X and any x, y ∈ X , let us x∧ y define as follows:
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x∧ y = yα(yβx), for each α, β ∈ Γ.

Then we obtain the following.
Proposition 5.4 In a bounded Γ-BCK-algebra X with the unit 1, the followings hold: for any x ∈ X ,
(1) 1∧ x = x,
(2) x∧1 = NNx.
Definition 5.5 Let X be a bounded Γ-BCK-algebra. Then x ∈ X is called an involution, if NNx = x.
We denote the set of all involutions of X by IV (X). Then clearly, 0, 1 ∈ IV (X). Thus IV (X) ̸= /0.
The following is an immediate consequence of Definition 5.5.
Proposition 5.6 Let X be a bounded Γ-BCK-algebra. Then for any x, y ∈ IV (X) and each α ∈ Γ,

xαNy = yαNx.

Definition 5.7 Let X be a bounded Γ-BCK-algebra and let D be a nonempty subset of X . Then D is called a dual
Γ-ideal of X , if it satisfies the following conditions: for any x, y ∈ X and any α ∈ Γ,

(ΓD1) 1 ∈ D,
(ΓD2) if N(NxαNy) ∈ D and y ∈ D, then x ∈ D.
We denote the set of all dual Γ-ideals of X by DI (X). Then it is clear that {1}, X ∈ DI (X). Furthermore, if

D1, D2 ∈ DI (X), then D1 ∩D2 ∈ DI (X).
Proposition 5.8 Let X be a bounded Γ-BCK-algebra, let D ∈ DI (X) and let x, y ∈ X . If y ∈ D and Nx ≤ Ny, then

x ∈ D.
Proof. The proof follows from hypothesis , Proposition 5.3, and condition (ΓD2) of Definition 5.7.
The following is an immediate consequence of Propositions 5.8 and 5.3.
Corollary 5.9 Let X be a bounded Γ-BCK-algebra, let D ∈ DI (X) and let x, y ∈ X . If y ≤ x and y ∈ D, then x ∈ D.
Theorem 5.10 Let X be a bounded commutative Γ-BCK-algebra and let /0 ̸= D ⊂ X . Then D ∈ DI (X) if and only

if ND ∈ I (X), where ND = {Nd : d ∈ D}.
Proof. Suppose D ∈ DI (X). Then clearly, 1 ∈ D. Thus by Proposition 5.3 (1), 0 = N1 ∈ ND. Now suppose

uαv ∈ ND and v ∈ ND for each α ∈ Γ. Then there are x, y ∈ D such that uαv = Ny and v = Nx. By commutativity of X
and Lemma 3.16 in [21], we get

N(NNuαNx) = N(uαNx) = NNy = y ∈ D.

Note that Nu ∈ D. Thus Lemma 3.16 in [21], u = NNu ∈ ND. So ND ∈ I (X).
Conversely, suppose I ∈ I (X). Then we can prove similarly that NI ∈ DI (X).
Note that if X is not commutative, then Theorem 5.10 need not hold (see Example 5.11).
Example 5.11 Let Γ = {α, β} and let X = {0, a, b, c, 1} be the Γ-BCK-algebra with the ternary operation be

defined by the following Table 9:
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Table 9. The ternary operation 7

α β

0 a b c 1 0 a b c 1

0 0 0 0 0 0 0 0 0 0 0
a a 0 0 0 0 a 0 0 0 0
b b a 0 a 0 b a 0 0 0
c c c c 0 0 c c c 0 0
1 1 c c a 0 1 c c a 0

Then clearly, X is non-commutative bounded with the unit 1. Consider the subset D = {c, 1} of X . Then we can
easily see that D is a dual ideal of X but ND = {Nc, N1}= {0, a} is not an ideal of X .

Definition 5.12 (See [12]) Let X be a bounded Γ-BCK-algebra and let A be a nonempty subset of X . Then the
intersection of all dual ideals containing A is called the dual Γ-ideal of X generated by A and denoted by [A).

It is obvious that [ /0) = {1}. Moreover, if A∈DI (X), then [A) = A. In fact, [A) is the least dual ideal of X containing
A.

Lemma 5.13 Let X be a bounded Γ-BCK-algebra and let A be a nonempty subset of X . Then for each α ∈ Γ,

[A) = {x ∈ X : ∃ a1, a2, · · · , an ∈ A such that (· · ·(NxαNa1)α · · ·)αNan = 0}.

Proof. The proof is almost same the proof of Theorem 4.2 in [25].
Definition 5.14 (See [26]) Let X be a lower Γ-BCK-semilattice and let F be a nonempty subset of X . Then F is

called a Γ-BCK-filter of X , if it satisfies the following conditions: for any x, y ∈ X ,
(ΓF1) if x ∈ F and x ≤ y, then y ∈ F ,
(ΓF2) if x, y ∈ F , then x∧ y ∈ F , where x∧ y = max{x, y}.
Example 5.15 In Example 5.11, D is a Γ-BCK-filter of X .
In a a bounded commutative Γ-BCK-algebra X , it is obvious that N(NxαNy) = N(yαx) for any x, y ∈ X and each

α ∈ Γ. Then we obtain the following characterization of dual ideals.
Theorem 5.16 Let X be a bounded commutative Γ-BCK-algebra and let /0 ̸= D ⊂ X . Then D ∈ DI (X) if and only

if it satisfies the conditions (ΓF1) and for any x, y ∈ X and each α ∈ Γ,

N(yαx) ∈ D and y ∈ D imply x ∈ D. (7)

Proof. The proof is straightforward.
Lemma 5.17 Let X be a bounded Γ-BCK-algebra and let D ∈ DI (X). Define a relation ∽D on X as follows: for

any x, y ∈ X and each α ∈ Γ,

x ∽D y if and only if Nxαy, Nyαx ∈ D.

Then∽D is a congruence relation on X , i.e., it satisfies the following conditions: for any x, y, z ∈ X and each α ∈ Γ,
(1) x ∽D x, i.e., ∽D is reflexive,
(2) if x ∽D y, then y ∽D x, i.e., ∽D is symmetric,
(3) if x ∽D y and y ∽D z, then x ∽D z, i.e., ∽D is transitive,
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(4) if x ∽D u and y ∽D v, then xαy ∽D uαv.
Proof. (1) From the axiom (ΓA4) and Proposition 5.3, N(xαx) ∈ D. Then x ∽D x.
(2) The proof follows from the definition of ∽D.
(3) Suppose x ∽D y and y ∽D z, and let α, β ∈ Γ. Then clearly, we have

Nxαy, Nyαx, Nyαz, Nzαy ∈ D.

On the other hand, by Theorem 3.3 (1) in [21] and Proposition 5.3 (4), we get

Nzαy ≤N(xαy)β (xαz)

≤N[(Nxαz)β (Nxαy)].

SinceNzαy∈D, by Corollary 5.9,N[(Nxαz)β (Nxαy)]∈D. SinceD∈DI (X) andNxαy∈D,Nxαz∈D. Similarly,
we have Nzαx ∈ D. Thus x ∽D z. So ∽D is transitive.

(4) Suppose x ∽D u and y ∽D v and let α, β ∈ Γ. Then we have

Nxαu, Nuαx, Nyαv, Nvαy ∈ D.

By calculations, we easily obtain the following inequalities:

Nvαy ≤ N(xαy)β (xαv), Nyαv ≤ N(xαv)β (xαy).

Since Nvαy, Nyαv ∈ D, by Corollary 5.9, we get

N(xαy)β (xαv), N(xαv)β (xαy) ∈ D.

Thus xαy ∽D xαv. Also, we obtain the following inequalities:

Nxαu ≤ N(xαv)β (uαv), Nuαx ≤ N(uαv)β (xαv).

Since Nxαu, Nuαx ∈ D, by Corollary 5.9,

N(xαv)β (uαv), N(uαv)β (xαv) ∈ D.

So xαv ∽D uαv. Hence by the transitivity, xαy ∽D uαv. Therefore ∽D is a congruence relation on X .
For a congruence relation ∽D on a bounded Γ-BCK-algebra X and each x ∈ X , a subset D[x] of X defined by
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D[x] = {y ∈ X : x ∽D y}

is called the congruence class in X determined by x. The set of all congruence classes in X denoted by X/D.

Proposition 5.18 Let X be a bounded Γ-BCK-algebra, D ∈ DI (X) and let ∽D be a congruence relation on X . We
define a mapping f : X/D×Γ×X/D → X/D as follows: for each (D[x], α, D[y]) ∈ X/D×Γ×X/D,

f (D[x], α, D[y]) = D[x]αD[y] = D[xαy].

Then X/D is a bounded Γ-BCK-algebra with D[0] and D[1] as the zero element and the unit respectively. In this case,
X/D is called the Γ-BCK-algebra by D.

Proof. It is obvious that f is well-defined.
Let x, y, z ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA1), we get

((xαy)β (xαz))β (zαy) = 0.

Thus we have

[(D[x]αD[y])βD[x]αD[z])]β (D[z]αD[y]) = D[((xαy)β (xαz))β (zαy)] = D[0].

So the axiom (ΓA1) holds.
Let x, y ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA2), (xα(xβy))αy = 0. Thus we have

(D[x]α(D[x]βD[y]))αD[y] = D[(xα(xβy))αy] = D[0].

So the axiom (ΓA2) holds.
It can be easily proved that the axioms (ΓA3) and (ΓA5).
Now supposeD[x]αD[y] =D[y]αD[x] =D[0] for any x, y∈ X and each α ∈ Γ. Then clearly, xαy∽D 0 and yαx ∽D 0.

Thus Nxαy, Nyαx ∈ D. So D[x] = D[y]. Hence the axiom (ΓA4) holds. Therefore X/D is a Γ-BCK-algebra.
Finally, we prove that D[1] is the unit of X/D. Since 1 is the unit of X , xα1 = 0 for each x ∈ X and each α ∈ Γ. Then

we get

D[x]αD[1] = D[xα1] = D[0].

Thus D[1] is the unit of X/D. This completes the proof.
We can define a partial ordering ≤ on X/D as follows: for any x, y ∈ X and each α ∈ Γ,

D[x]≤ D[y] if and only if D[x]αD[y] = D[0].
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Then it is obvious that D[x]≤ D[1] for each x ∈ X .

Proposition 5.19 Let X be a bounded Γ-BCK-algebra, D ∈ DI (X) and let ∽D be a congruence relation on X . If X
is commutative [resp. positive implicative, implicative], then so is X/D.

Proof. The proof is straightforward.
In order to discuss a relationship between DI (X) and DI (X/D), we first deal with some properties.
Lemma 5.20 Let X be a bounded commutative Γ-BCK-algebra, D ∈ DI (X) and let ∽D be a congruence relation

on X . Then D[1] = D.
Proof. Let x ∈ D[1]. Then clearly, x ∽D 1, i.e., N1αx ∈ D for each α ∈ Γ. Since X is commutative and x ≤ 1, by

Theorem 3.17 in [21], x= 1β (1αx) =N1αx. Thus x∈D. SoD[1]⊂D. Conversely, let x∈D. Then clearly,N1αx= x∈D
and Dxα1 ∈ D for each α ∈ Γ. Thus x ∽D 1. So x ∈ D[1], i.e., D ⊂ D[1]. Hence D[1] = D.

Lemma 5.21 Let X be a bounded commutative Γ-BCK-algebra, D, D∗ ∈DI (X) and let D ⊂ D∗. Then D∗∗ = {D[x] :
x ∈ D∗} ∈ DI (X/D).

Proof. It is clear that 1 ∈ D∗. Then by the definition of D∗∗, D[1] ∈ D∗∗. Suppose the followings hold: for any
x, y ∈ X and any α, β ∈ Γ,

D[1]β (D[y]αD[x]), D[y] ∈ D∗∗.

It is obvious that D[1]β (D[y]αD[x]) = D[1β (yαx)] = D[Nyαx]. Since D[1]β (D[y]αD[x]) ∈ D∗∗, D[Nyαx] ∈ D∗∗.

Then Nyαx ∈ D∗. By the hypothesis and the definition of D∗∗, y ∈ D∗. Thus by Theorem 5.16, x ∈ D∗. So D[x] ∈ D∗∗.

Hence D∗∗ ∈ DI (X).
Proposition 5.22 Let X be a bounded commutative Γ-BCK-algebra, D, D∗ ∈DI (X), letD⊂D∗ and letD[x]∈X/D.

If D[x]∩D∗ ̸= /0, then D[x]⊂ D∗.
Proof. Suppose D[x]∩D∗ ̸= /0. Then there is y ∈ D[x]∩D∗. Thus D[x] = D[y] and y ∈ D∗. Moreover, N(yαz) ∈ D

for each z ∈ D[x] = D[y] and each α ∈ Γ. Since D ⊂ D∗, N(yαz) ∈ D∗. So by Theorem 5.16, z ∈ D∗. Hence D[x]⊂ D∗.
From Proposition 5.22, we obtain the subset D∗/D of X/D defined by

D∗/D = {D[x] ∈ X/D : x ∈ D∗}.

Lemma 5.23 Let X be a bounded commutative Γ-BCK-algebra, D ∈ DI (X) and let D∗∗ ∈ DI (X/D). Then the
followings hold:

D∗ =
∪
{D[x] ∈ X/D : D[x] ∈ D∗∗} ∈ DI (X) and D ⊂ D∗.

Proof. Since D∗∗ ∈ DI (X/D), by Lemma 5.21, D = D[1] ∈ D∗∗. Then by the definition of D∗, it is obvious that
D ⊂ D∗ and 1 ∈ D∗. Now suppose Nyαx ∈ D∗ and y ∈ D∗ for any x, y ∈ X and each α ∈ Γ. Then by the definition of D∗,

D[Nyαx] = D[1β (yαx)] = D[1]β (D[y]αD[x]) ∈ D∗∗ for each β ∈ Γ and D[y] ∈ D∗∗.

Thus by Theorem 5.16, D[x] ∈ D∗∗. So x ∈ D∗. Hence D∗ ∈ DI (X).
Let DI (X , D) denote the set of all dual ideals of X containing D. Then we have the following.
Proposition 5.24 Let X be a bounded commutative Γ-BCK-algebra and let D ∈ DI (X). Then there is a bijection

from DI (X , D) to DI (X/D).
Proof. Let h : DI (X , D)→ DI (X/D) be the mapping defined as follows:
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h(D∗) = D∗/D for each D∗ ∈ DI (X , D).

From Lemmas 5.20, 5.21 and 5.23, h is surjective. Assume that there are A ̸= B ∈DI (X , D) such that h(A) = h(B).
Then there is x ∈ A−B or x ∈ B−A, say x ∈ B−A. Thus D[x] ∈ h(B). Since h(A) = h(B), D[x] ∈ h(A). So there is y ∈ A
such that D[y] = D[x], i.e., x ∽D y. Hence for each α ∈ Γ, we have

Nxαy, Nyαx ∈ D.

Since D ⊂ A, we get

Nxαy, Nyαx ∈ A.

Since y ⊂ A and A is an dual ideal of X , x ∈ A. This contradicts to x /∈ A. Therefore h is injective. This completes the
proof.

Now we will deal with uniform structures on a Γ-BCK-algebra. First of all, let us consider the following notations:
for a nonempty set X and any subsets U, V of X ×X ,

(i) U ◦V = {(x, y) ∈ X ×X : there is z ∈ X such that (x, z) ∈U, (z, y) ∈V},
(ii) U−1 = {(x, y) ∈ X ×X : (y, x) ∈U},
(iii)△= {(x, x) ∈ X ×X : x ∈ X}.
Definition 5.25 [23] Let X be a nonempty set and let U be a set of subsets of X ×X . Then U is called a uniform

structure or uniformity on X , if it satisfies the following conditions:
(U1) if U ∈ U and U ⊂V ⊂ X ×X , then V ∈ U ,
(U2) if U, V ∈ U , then U ∩V ∈ U ,
(U3)△⊂U for each U ∈ U ,
(U4) if U ∈ U , then U−1 ∈ U ,
(U5) for each U ∈ U there is V ∈ U such that V ◦V ⊂U .
In this case, each member of U is called an entourage of the uniformity on X by U and (X , U ) is called a uniform

space.
Proposition 5.26 Let X be a bounded Γ-BCK-algebra and for each D ∈ DI (X), let UD be the subset of X ×X

defined as follows: for each α ∈ Γ,

UD = {(x, y) ∈ X ×X : Nxαy, Nyαx ∈ D}= {(x, y) ∈ X ×X : x ∽D y}.

Then U ∗ = {UD : D ∈ DI (X)} satisfies the conditions (U2)-(U5).
Proof. Suppose UD, UE ∈ U ∗, where D, E ∈ DI (X). Let (x, y) ∈ UD ∩UE . Then clearly, (x, y) ∈ UD and

(x, y) ∈UE . By the definitions of UD and UE , we have the followings: for each α ∈ Γ,

Nxαy, Nyαx ∈ D and Nxαy, Nyαx ∈ E.
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Thus Nxαy, Nyαx ∈ D∩E. Since D∩E ∈ DI (X), (x, y) ∈ UD∩E . So UD ∩UE ⊂ UD∩E . Similarly, we can prove
that UD∩E ⊂UD ∩UE . Hence UD ∩UE =UD∩E . Therefore U ∗ satisfies the condition (U2).

Let UD ∈ U ∗ and let (x, y) ∈△, where D ∈ DI (X). It is obvious that Nxαx = N0 = 1 ∈ D for each α ∈ Γ. Then
(x, y) ∈UD. Thus U ∗ satisfies the condition (U3).

SupposeUD ∈U ∗ and let (x, y)∈UD, where D∈DI (X). By the definition ofUD, x ∽D y. By Lemma 5.17, y∽D x.
Then (y, x) ∈UD. Thus (x, y) ∈U−1

D . SoUD ⊂U−1
D . Similarly,U−1

D ⊂UD. HenceUD =U−1
D , i.e.,U−1

D ∈U ∗. Therefore
U ∗ satisfies the condition (U4).

LetUD ∈U ∗ and let A = (D j) j∈J be a family of dual ideals of X contained in D, where J denotes an index set. Then
clearly, A ̸= /0, i.e.,

∪
j∈J D j ̸= /0. Let I = [

∪
j∈J D j). Since I ∈ DI (X), UI ∈ U ∗. Now let (x, y) ∈UI ◦UI . Then there is

z ∈ X such that (x, z), (z, y) ∈UI . By Lemma 5.17, (x, y) ∈UI , i.e., for each α ∈ Γ,

Nxαy, Nyαx ∈ I.

Since
∪

j∈J D j ⊂D and I is the least dual ideal ofX containing
∪

j∈J D j, I ⊂D. ThusNxαy, Nyαx∈D. So (x, y)∈UD.

Hence UI ◦UI ⊂UD. Therefore U ∗ satisfies the condition (U5). This completes the proof.
Proposition 5.27 Let X be a bounded Γ-BCK-algebra and let U ∗ be the class given in Proposition 5.26. Then

U = {U ⊂ X ×X : ∃ UD ∈ U ∗ such that U ⊃UD} is a uniform structure on X and thus (X , U ) is uniform space.
Proof. From Proposition 5.26, we can obtain our result.
For each x ∈ X and each U ∈ U , let us a subset U [x] of X and a set B(x) of subsets of X defined as follows:

U [x] = {y ∈ X : (x, y) ∈U} and B(x) = {U [x] : U ∈ U }.

Then we have the following consequence.
Proposition 5.28 Let X be a bounded Γ-BCK-algebra and let U be the class given in Proposition 5.27. Then there

is a unique topology τ on X such that for each x ∈ X , B(x) is the neighborhood filter of x in (X , τ), i.e., B(x) = Nτ(x).
In fact, τ = {V ⊂ X : ∀x ∈V, ∃U ∈ U such that U [x]⊂V} and (X , τ) is a bounded T Γ-BCK-algebra.

In this case, τ is called the topology on X induced by U .
Proof. We prove B(x) satisfies the conditions (N1)-(N4) of the neighborhood filter of x ∈ X . The proofs of the

conditions (N1), (N2) and (N3) follow immediately from fact that U satisfies the conditions (U1), (U2) and (U3). Let
V ∈U . By (U5), there isW ∈U such thatW ◦W ⊂V. Let (x, z)∈ circW . Then there is y ∈ X such that (x, y), (y, x)∈W.

SinceW ◦W ⊂V , (x, z)∈V. ThusW [y]⊂V [x] for each y ∈W [x]. SoV [x]∈B(x) for each y ∈W [x].HenceB(x) satisfies
all the conditions of the neighborhood filter of x∈X . Moreover, it can be easily proved thatB(x) =Nτ(x). This completes
the proof.

6. Conclusions
We obtained some of topological properties on Γ-BCK-algebras. We proposed the concept of quotient Γ-BCK-

algebras by ideals and discussed topological structures on quotient Γ-BCK-algebras. Also, we defined a quotient Γ-BCK-
algebra by dual ideals of a bounded Γ-BCK-algebra and gave a uniform structure on quotient Γ-BCK-algebras by dual
ideals. In the future, We will study the definitions and properties of various types of Γ-algebras. Furthermore, we will
investigate the topological structures on Γ-algebras and the quotient Γ-algebra by ideals in the sense of Khalaf and Ahmed
[27].
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