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Abstract: The present paper is a sequel to the paper on the topic with Kerr law nonlinearity. For power-law nonlinearity, 
it was derived through balancing principle that the solitons would exist for two values of the power-law parameter, 
namely n = 1 or n = 2. The current paper derives dark and singular solitons for the latter value of n since the first case 
was already covered in a previous report that was dedicated to address the model with Kerr law.
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1. Introduction
An interesting governing model to study the propagation of solitons through optical fibers was proposed a 

decade ago in 2014 [1, 2]. This is a concatenation of the well-known nonlinear Schrödinger’s equation (NLSE), the 
Lakshmanan-Porsezian-Daniel (LPD) model and the Sasa-Satsuma equation. This model is now well-studied and well-
understood. However, the following year, in 2015, a dispersive version of the concatenation model was proposed and 
reported [3-5]. This one is a combination of the Schrödinger-Hirota equation (SHE), the LPD and the dispersive fifth-
order NLSE. The presence of third-order dispersion and fifth-order dispersion terms in the SHE and the fifth-order 
NLSE components make it truly a dispersive concatenation model. Later, this model started gaining attention too [6-20]. 
This is the model that is going to be the focus of the current work.

Several features of the concatenation model and dispersive concatenation model were disseminated with time. 
They are the study of the concatenation model in magneto-optic waveguides, the retrieval of the quiescent optical 
solitons for nonlinear chromatic dispersion (CD) by the usage of Lie symmetry and otherwise, extension of the model to 
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power-law nonlinearity, locating the conservation laws and also analyzing the model with the spatio-temporal dispersion 
in addition to CD to reduce the Internet bottleneck effect are now known. The numerical simulations of the model using 
the Laplace-Adomian decomposition scheme are also recovered [6-20].

The dispersive concatenation model, with Kerr law of self-phase modulation (SPM) effect, has been earlier studied 
by the complete discriminant approach [18]. The current paper is a sequel to its previous counterpart and considers 
power-law of SPM. This paper will therefore focus on the retrieval of optical soliton solutions to the dispersive 
concatenation model with power-law SPM by the aid of complete discriminant approach. It will be observed that the 
power-law nonlinearity parameter values, for which the solitons would exist, are n = 1 and n = 2 only where n represents 
the power-law parameter. Therefore, it is just necessary to focus on the later value of n for this paper since the former 
value represents Kerr law of SPM whose results are recently reported [18]. The detailed analysis of the retrieval of the 
solitons and other solutions are exhibited in the rest of the paper after a quick and succinct introduction to the model.

Our paper extends previous research on Kerr law nonlinearity to power-law nonlinearity (n = 2). Validation 
involves comparing our results for power-law (n = 2) with our earlier work on Kerr law (n = 1) and verifying theoretical 
predictions through numerical simulations. This approach ensures the uniqueness of our contributions and their 
alignment with established principles.

This research is established through key steps: We reviewed existing work on Kerr law nonlinearity to understand 
soliton behavior. Recognizing a gap, we focused on power-law nonlinearity (n = 2) and formulated our research 
question. We rigorously derived solutions for power-law nonlinearity using the balancing principle, emphasizing n = 
2. Results were compared with Kerr law nonlinearity (n = 1) from our previous work to showcase novel contributions. 
Findings were validated through numerical simulations, ensuring stability of dark and singular solitons. Results were 
discussed in the context of existing knowledge, highlighting implications in nonlinear optics.

The motivation behind this paper lies in addressing a crucial gap in understanding soliton dynamics by extending 
our analysis from Kerr law to power-law nonlinearity (n = 2). Motivated by the ubiquity of power-law phenomena in 
various scientific domains, our research contributes to nonlinear optics, opening new avenues for applications. The 
exploration of soliton solutions for the unique power-law parameter of n = 2 enriches our understanding and offers 
practical insights for fields such as signal processing and communication.

1.1 Governing model

The dimensionless form of the dispersive concatenation model with power-law nonlinearity reads [20]:

2 2
1 1 2

n n
t xx xxx xiq aq b q q i q q qδ σ σ + + − + 

22 2 2 2 * * 2
2 3 4 5 6 7 8

n n
xxxx xx x x xxq q q q q q q q q q qδ σ σ σ σ σ σ+ + + + + + + 

2 2 2 * * * 2 *
3 9 10 11 12 13 14 15 0.n n

xxxxx xxx x x xx x xx x xx x xi q q q q q qq q q q q qq q q qδ σ σ σ σ σ σ σ+ − + + + + + + = 

In equation (1), the dependent variable is q(x, t) that is a complex-valued function and represents the wave 
amplitude with x and t being the independent variables that stand for the spatial and temporal coordinates respectively. 
The first term is the linear temporal evolution with its coefficient being i = 1− , while the second and third terms 
account for CD and SPM whose coefficients are a and b respectively. The coefficient of δ1 represents the extension of 
NLSE to formulate the SHE. Then, the coefficients of δ2 and δ3 stand for the LPD components and the fifth-order NLSE 
that brings in the dispersive effect from the fifth-order dispersion term in it.

2. Mathematical analysis 
In order to integrate Eq. (1), the following traveling wave transformation is assumed:

(1)
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( , )( , ) ( ) ,i x tq x t Q e φξ=

where

( ),  ( , ) .k x vt x t hx tξ φ ω ι= − = − + +

Here, v, h, ω, ι correspond to the velocity, frequency, wave number and phase constant respectively. Inserting Eqs. (2) 
and (3) into Eq. (1), the real and imaginary parts are respectively expressed as

3 4 5 2 2 3 3
1 1 2 3 3 9 6 7 8 2 12 13 14 15 3( ) ( ( ) ( ) )h h h ah Q h h Qω δ σ δ σ δ σ σ σ σ δ σ σ σ σ δ− + + − − + − + + + + − −

2 3 2 1 2 3 2 2 2
1 2 2 4 3 10 2 5 3 11 1 1 2 3( ) ( ) ( 3 6n nb h h h Q h Q k h k hδ σ δ σ δ σ δ σ δ σ δ σ δ σ+ ++ − + + + − + − −

2 3 2 2 2 2 2 2 2
3 9 2 8 12 13 14 3 2 4 3 1010 ) ( ( ) ) ( 3 ) nk h ak Q k k h Q Q k k h Q Qδ σ δ σ σ σ σ δ δ σ δ σ′′ ′′ ′′+ + + + − − + + −

2 2 2 4 4
6 7 2 12 13 14 15 3 2 3 3 9(( ) (2 2 2 ) ) ( ) ( 5 ) 0,k k h Q Q k k h Qσ σ δ σ σ σ σ δ δ σ δ σ′ ′′′′+ + + − − − + − =

and

2 3 4 2
1 1 2 3 3 9 1 2 2 4 8 6 7 2( 3 4 2 5 ) ( ) (2( )nkv kh kh ahk kh Q k kh Q Q khδ σ δ σ δ σ δ σ δ σ σ σ σ δ′ ′− + + − − − + + − −

2 2 2 2 2 2 3 3
12 13 14 15 3 3 10 3 11 1 1 2 3( 3 ) ) 3 ( 4n nkh Q Q kh Q Q kQ Q k k hσ σ σ σ δ δ σ δ σ δ σ δ σ+′ ′ ′− − + + + − + − −

3 2 3 2 5 ( ) 3 3 3
3 9 3 10 3 9 12 13 14 3 3 1510 ) ( ) ( ) 0.n vk h Q k Q Q k Q k QQ Q k Qδ σ δ σ δ σ σ σ σ δ δ σ′′′ ′′′ ′ ′′ ′+ − − − + + − =

From Eq. (5), we obtain the velocity

2 3 4
1 1 2 3 3 93 4 2 5

,
kh kh ahk kh

v
k

δ σ δ σ δ σ+ − −
=

along with the constraint conditions

1 2 2 4 ,hδ σ δ σ= −

8 6 7 2 12 13 14 15 32( ) ( 3 ) ,hσ σ σ δ σ σ σ σ δ− − = − + +

2
3 10 0,khδ σ =

3 11 0,kδ σ =

2
1 1 2 3 3 94 10 0,h hδ σ δ σ δ σ− − + =

3
3 10 0,kδ σ =

(2)

(3)

(4)

(5)

(6)
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5
3 9 0,kδ σ =

3
12 13 14 3( ) 0,kσ σ σ δ+ + =

3
3 15 0.kδ σ =

Simplify the real part (4) as

3 2 1 3 1 2 2 2
1 2 3 4 5 6 7 8 9( ) 0,n n nA Q A Q A Q A Q A Q A Q Q A Q Q A Q Q A Q+ + ′′ ′′ ′′ ′ ′′′′+ + + + + + + + =

where

3 4 5 2
1 1 1 2 3 3 9 ,A h h h ahω δ σ δ σ δ σ= − + + − −

2 3
2 6 7 8 2 12 13 14 15 3( ) ( ) ,A h hσ σ σ δ σ σ σ σ δ= − + + + + − −

2 3
3 1 2 2 4 3 10 ,A b h h hδ σ δ σ δ σ= − + +

4 2 5 3 11 ,A hδ σ δ σ= −

2 2 2 2 3 2
5 1 1 2 3 3 93 6 10 ,A k h k h k h akδ σ δ σ δ σ= − − + +

2 2
6 2 8 12 13 14 3( ) ,A k k hδ σ σ σ σ δ= + − − +

2 2
7 2 4 3 103 ,A k k hδ σ δ σ= −

2 2
8 6 7 2 12 13 14 15 3( ) (2 2 2 ) ,A k k hσ σ δ σ σ σ σ δ= + + − − −

4 4
9 2 3 3 95 .A k k hδ σ δ σ= −

Setting

1

,nQ U=

Eq. (8) is transformed into

2 2 2
4 4 4 4 4 6 4 6 3 3 2 3 2 2 2

1 2 3 4 5 6 8( ( ) ) ( )n n nA n U A n U U A n U A n U U A n U U A n n A n U U U′′ ′+ + + + + − +

2
3 3 2 3 2 2 2 3 4 2 3 5 2 3 2

6 5 7 7 9( ) ( ) ( ) ( ) (6 18 12 ) ( )nA n U U U A n n U U A n n U U A n U U n n n A U U U′′ ′ ′ ′′ ′ ′′+ + − + − + + − +

(7)

(8)

(9)

(10)
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2 3 2 2 2 3 2 2 3 4 3 3
9 9 9 9(3 ( )) ( ) 4 ( ) (1 11 6 6 )( ) 0.A n n U U A n n U U U A n n n U A n U U′′ ′ ′′′ ′ ′′′′+ − + − + + − − + =

Take the trial equation as follows

2

0
( ) ( ),

j
i

i
i

U a U ξ
=

′ = ∑

where j is a positive integer, which can be obtained by balancing the highest order derivative term with the highest order 
nonlinear term. For n in Eq. (11), we only consider it as 1 or 2 in order to effectively combine the trial equation method 
with the complete discriminant system for a polynomial for better solving. In this paper, we take n to be equal to 2, and 
Eq. (11) becomes

4 5 6 7 3 2 2 3 2 4
1 2 3 4 5 5 6 8 616 16 16 16 8 4 ( ) ( 4 4 ) ( ) 8AU A U A U A U A U U A U U A A U U A U U′′ ′ ′ ′′+ + + + − + − + +

4 2 5 2 2 2 2 4 3
7 7 9 9 9 9 94 ( ) 8 36 ( ) 12 ( ) 16 15 ( ) 8 0.A U U A U U A U U U A U U A U U U A U A U U′ ′′ ′ ′′ ′′ ′ ′′′ ′ ′′′′− + + − − − + =

Substituting Eq. (12) into Eq. (13), and balancing U 5U ′′ with U 7 yields j = 3. Thus, Eq. (12) turns into

2 3 2
3 2 1 0( ) ,U a U a U a U a′ = + + +

where

4 7
3

7

4 3
,

A A
a

A
+

=

2 2 2 2
3 7 4 9 4 6 7 4 7 8 4 7 9 7 8 7 9

2 3
7

4 156 4 4 144 3 27
,

A A A A A A A A A A A A A A A A A
a

A
− − + − + −

= −

( )
6 2 4 2 2 2 3
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1 (16 16 1248 32
4 24 9

a A A A A A A A A A A A A A A
A A A A A A A

= + − −
− +

3 3 2 5 4 4 2 4 3
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0 0,a =

(11)

(12)

(13)

(14)

(15)
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and a2 and a3 satisfy the restriction

2 5 5 3 6 8 2 6 2 9 2 9 3 2 9 2 3 2
316 12 4 ( 4 4 ) 8 18 58 8 6 0.
2

A A A a A A a A a A a A a a A a a a + − + − + + + − + + = 
 

Simplify Eq. (14) to the integral form

3 0 ,
( )

dUa
F U

ξ ξ± − = ∫

where

2 2 1

3 3

( ) .a aF U U U U
a a

 
= + + 

 

According the second order polynomial discriminant system

2
2 1

3 3

4 ,a a
a a

 
∆ = − 

 

we divide the roots of F(U) by the discriminant system and solve the integral (17).

3. Exact solutions
The wide spectrum of solutions that emerge from the scheme depending on the sign of the discriminant, are now 

enlisted and classified:
Case 1 ∆ = 0. For U > 0, if a2a3 < 0, the dark and singular solitons evolve as

1
2

2 ( )2 2
1 3 0

3 3

1tanh ( ) ,
2 2 2

i hx ta aq a e
a a

ω ιξ ξ − + +
   = − − −  

    

and

1
2

2 ( )2 2
2 3 0

3 3

1coth ( ) ,
2 2 2

i hx ta aq a e
a a

ω ιξ ξ − + +
  

= − − −      

if a2a3 > 0, the singular periodic wave is recovered as

1
2

2 ( )2 2
3 3 0

3 3

1tan ( ) ,
2 2 2

i hx ta aq a e
a a

ω ιξ ξ − + +
   = −  

    

if a2 = 0, the rational wave emerges:

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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1
2

( )
4 2

3 0

4 .
( )

i hx tq e
a

ω ι

ξ ξ
− + +

 
=  

−  

Case 2 ∆ > 0 and a1 = 0. For 2

3

aU
a

> − , if a2a3 > 0, the dark and singular solitons stick out as

1
2

2 ( )2 2 2
5 3 0

3 3 3

1tanh ( ) ,
2 2 2

i hx ta a aq a e
a a a

ω ιξ ξ − + +
   = − −  

    

and

1
2

2 ( )2 2 2
6 3 0

3 3 3

1coth ( ) ,
2 2 2

i hx ta a aq a e
a a a

ω ιξ ξ − + +
   = − −  

    

if a2a3 < 0, the singular periodic wave shapes up as

1
2

2 ( )2 2 2
7 3 0

3 3 3

1tan ( ) .
2 2 2

i hx ta a aq a e
a a a

ω ιξ ξ − + +
   = − − − −  

    

Case 3 ∆ > 0 and 1

3

0a
a

≠ . Suppose that r1 < r2 < r3, one of them is zero, and others two are roots of 2 2 1

3 3

a aU U
a a

+ + . 

For r1 < U < r2, the snoidal wave is introduced as below

1
2

3 12 ( )
8 1 2 1 3 0( )sn ( ), ,

2
i hx tr r

q r r r a m e ω ιξ ξ − + +
  −  = + − − 
    

and for U > r3, the combo snoidal-cnoidal wave comes out as

1
2

3 12
3 2 3 0

( )
9

3 12
3 0

sn ( ),
2

,

cn ( ),
2

i hx t

r r
r r a m

q e
r r

a m

ω ι

ξ ξ

ξ ξ

− + +

  − − −  
   =   −  −  

   

where

2 2 1

3 1

.r rm
r r
−

=
−

Case 4 ∆ < 0, for U > 0, the cnoidal wave is recovered as

(23)

(24)

(25)

(26)

(27)

(28)
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1
2

1

3 ( )1
10 1

34
1

3 0
3

2
,

1 cn ( ),

i hx t

a
a aq e

a
a a m
a

ω ι

ξ ξ

− + +

 
 
 
 

= − 
     + −        

where a1a3 > 0 and

2 2

1 3

1 .
2 4

am
a a

= −

Figure 1 represents the surface plot, contour plot and 2D plot of a dark soliton (20). The parameter values that have 
been chosen are a = 1, b = 1, δ1 = 1, δ2 = 1, δ3 = 1, σ1 = 1, σ2 = 1, σ3 = 1, σ4 = 1, σ5 = 1, σ6 = 1, σ7 = 1, σ8 = 1, σ9 = 1, σ10 = 1, 
σ11 = 1, σ12 = 1, σ13 = 1, σ14 = 1, σ15 = 1, h = 1, k = 1, and ξ0 = 1.

Figure 1. Profile of a dark soliton solution (20)
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4. Conclusions
The current paper studied the dispersive concatenation model with power-law of SPM by the aid of the complete 

discriminant approach. The integration scheme yielded dark and singular solitons for two values of the power-law 
parameter n. The special case n = 1 that falls back to Kerr law was addressed earlier [18]. Thus the current work 
considered the other permissible value of n namely n = 2 and the dark and singular soliton solutions have emerged using 
this integration scheme. As a byproduct, the scheme also yielded plane waves, singular periodic waves, cnoidal and 
snoidal waves and these are enlisted. The existence criteria for all such waves are listed as parameter constraints. The 
results are indeed promising and the future holds strong for this model.

Later, the model will be extended and studied with differential group delay and eventually extended to dispersion-
flattened fibers. The results would subsequently be revealed and reported. Additionally, the dispersive concatenation 
model would be studied in magneto-optic waveguides, the element of stochasticity would be included. The 
corresponding quiescent optical solitons and gap solitons would also be considered using techniques apart from Lie 
symmetry. The consideration of the model with additional forms of waveguide such as optical metamaterials is also on 
the table. The plethora of results are soon to be reported and will be made visible all over after aligning them with the 
pre-existing works [21-39].
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