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Abstract: Let u be an inner function and K2
u be the model space. For inner function v, the space vH2 is the invariant

subspace of the unilateral shift operator on H2. In this article, the relationship between model spaces K2
u and invariant

subspaces vH2 of the unilateral shift operator is discussed from perspectives of the Toeplitz kernels kerTuv (v 6= u), the
spectrum of u and v, the left invertible property of Tuv, the minimal isometric dilation and the completeness problem. We

obtain that the Toeplitz operator Tu on H2 is a minimal isometric dilation of Av
u defined on the model space K2

v if and only

if K2
u ∩ vH2 = {0}. Moreover, K2

u ∩ vH2 = {0} when (σ(u)∩T)⊂ (σ(v)∩T).
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1. Introduction

Let D= {λ ∈ C: |λ |< 1} denote the open unit disk in the complex plane C and T denote the unit circle. Ues L2 to

denote the Hilbert space with the inner product

‖h‖2 =
∫
T
|h(t)|2dm(t), h ∈ L2,

and it is finite, where dm is the Lebesgue measure on T. The Banach space of all functions in L2 essentially bounded on T
is denoted L∞. Hardy spaces H2 consist of all analytic functions f on D having square-summable Taylor coefficients at 0.
The space H∞ consists of all bounded holomorphic functions in D with the norm

‖h‖∞ = sup
z∈D

|h(z)|.

Copyright ©2024 Xiaoyuan Yang
DOI: https://doi.org/10.37256/cm.5220243835
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 5 Issue 2|2024| 1273 Contemporary Mathematics

http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0002-4471-5193
https://doi.org/10.37256/cm.5220243835
https://creativecommons.org/licenses/by/4.0/


An analytic function u is called an inner function if |u| = 1 a.e. on T. Hilbert spaces of the form K2
u = H2 	uH2

called mode spaces, which are proper nontrivial invariant subspaces of the backward shift S∗, given by

(S∗g)(z) =
g(z)−g(0)

z
,

on H2.

Toeplitz operators are compressions to H2 of multiplication operators on L2. For f ∈ L∞, a Toeplitz operator Tf is

defined on H2 by

Tf h = P( f h), h ∈ H2,

where P denotes the orthogonal projection from L2 onto H2. The function f called the symbol of Tf .

Truncated Toeplitz operators Au
f are compressions of Toeplitz operators Tf to K2

u . For f ∈ L∞, Au
f induced by f and u

is defined by

Au
f φ = Pu( f φ), φ ∈ K2

u ,

where Pu denotes the orthogonal projection from L2 onto K2
u . Clearly, (A

u
f )

∗ = Au
f
. More additional detail of truncated

Toeplitz operators can be found in the paper initiated by Sarason [1].

Based on the view of operator theory, truncated Toeplitz operators represent the scalar version of the Sz.-Nagy and

Foias general theory of contractions in a Hilbert space [2]. In paper [3], authors proved that I− (Au
ϕ)

∗Au
ϕ has a finite rank n

if and only if the symbol ϕ is a finite Blaschke product Bn of degree n, where u is a nontrivial inner function and K2
u is

an infinite dimension model space, and ϕ ∈ K2
u ∩L∞ with ‖ϕ‖∞ ≤ 1 such that I − (Au

ϕ)
∗Au

ϕ 6= 0 and the symbol of Au
ϕ is

unique. From the proof of this conclusion, we find that if I −Au
ϕ(A

u
ϕ)

∗ has a finite rank on K2
u , then

K2
ϕ ∩uK2

ϕ = {0}.

Since

H2 = K2
ϕ ⊕ϕH2 and K2

ϕ ⊥ uϕH2,

we get that

K2
ϕ ∩uH2 = K2

ϕ ∩u(K2
ϕ ⊕ϕH2) = K2

ϕ ∩ (uK2
ϕ ⊕uϕH2) = {0}.

It follows that K2
ϕ ∩uH2 = {0} when I −Au

ϕ(A
u
ϕ)

∗ has a finite rank on K2
u . Therefore, we find that the relationship

between model spaces K2
u and invariant subspaces vH2 of the unilateral shift operator is a very interesting problem.

Although K2
u ⊥ uH2, but the relationship between K2

u and vH2 (v 6= u) is complicated. The relationship between K2
u

and vH2 is related to invariant subspaces of truncated Toeplitz operators (see Remark 1 in the Subsection 2.1), kernels

spaces of Toeplitz operators on Hardy space (see Lemma 1 in the Subsection 2.1), the minimum isometric dilation of
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truncated Toeplitz operators (see Theorem 2 in the Subsection 2.4) and the completeness problem which means that a

sequence {kλ}λ∈∧ of kernel functions for Hardy spaces forms a Riesz basis for K2
u (see Lemma 7 in the Subsection 2.5).

From the above related perspectives, we are devoted to using properties and the structure of inner functions to describe the

intersection of K2
u and vH2, and discuss which properties of inner functions affect the intersection of K2

u and vH2.

For inner functions u, v with v 6= u, in our paper, we discuss the relationship between K2
u and vH2 by kernels spaces

of Toeplitz operators, the minimum isometric dilation of Toeplitz operators and the completeness problem. That is, use the

following equivalence relations to discuss the relationship between K2
u and vH2.

1. K2
u ∩ vH2 = {0}.

2. kerTuv = {0}.
3. K∧ = K2

u , where ∧ ⊂ D means a Blaschke sequence and a infinite Blaschke product v with the zero set ∧. Use K∧
to denote the space spanned by

{
kλ =

1

1−λ z
, λ ∈ ∧

}
.

4. ranTvu = H2. In fact, (kerTuv)
⊥ = ranTvu.

5. The minimal isometric dilation of Av
u defined on K2

v is a Toeplitz operator Tu defined on H2.

Combining the above research ideas, this paper is organized as follows. In Section 2, we study the relationship between

K2
u and vH2 and consider the intersection of K2

u and vH2 in particular. In Subsection 2.1, we obtain that K2
u ∩vH2 = vkerTuv;

In Subsection 2.2, we know that K2
u ∩ vH2 = {0} when (σ(u)∩T)⊂ (σ(v)∩T); In Subsection 2.3, use the left invertible

property of Tuv to discuss the relationship between K2
u and vH2; In Subsection 2.4, the Toeplitz operator Tu on H2 is a

minimal isometric dilation of Av
u defined on K2

v if and only if K2
u ∩ vH2 = {0}; In Subsection 2.5, use the completeness

problem to study the relationship between K2
u and vH2.

2. The relationship between Ku
2 and vH2

For kernel spaces of Toeplitz operators, Coburn’s Theorem (see Proposition 7.24 in [4]) claimed that either kerTg = {0}
or kerTg

∗ = {0} for g ∈ L∞. Whenever kerTg 6= {0}, it will switch to some description about kernel spaces of Toeplitz 
operators. For the structure of Toeplitz kernels, consider a special case of Toeplitz operators Tf with symbols of the form 
f = θ , where θ is some inner function. Then clearly, kerT

θ = K
θ
2. Does there exist some analogous characterization for 

the kernels of Toeplitz operators with general symbols? Hayashi’s results [5] play a crucial role. Whenever kerTg 6= {0}, 
then kerTg = ϕ K2

η , where ϕ is an outer function and η is an inner function with η (0) = 0, and further, multiplication by ϕ 
acts isometrically on kerTg. Not hard to get that the Toeplitz kernel is nearly S∗-invariant by S∗TgS = Tg. Hitt [6] showed 
some description about nearly S∗-invariant subspaces. Later, Sarason [7] gave some new proof of Hitt’s theorem by the de 
Branges-Rovnyak spaces. More research details of Toeplitz kernels can refer to [8].

As we have seen, the class of kernel spaces of Toeplitz operators, which includes the class of model spaces, can 
itself be described in terms of model spaces. Moreover, model spaces and Toeplitz kernels have a number of important 
connections. Some classical results about the connection between Toeplitz kernels and model spaces are given in [8].

Above introductions, we can discuss the relationship between Ku
2 and vH2 with the help of the Toeplitz kernel kerTuv, 

and what kind of information on the relationship between Ku
2 and vH2 can be deduced from the kernels of Toeplitz operators.

2.1 In terms of the Toeplitz kernel kerTuv

As is known to all that K2
u has a natural conjugation C, antiunitary, involution operator, defined by

Cg = zgu, g ∈ K2
u .
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Using the conjugation, model spaces have a very important property and it is frequently used in subsequent proofs,

that is,

K2
u = H2 ∩uzH2.

For the sake of completeness of the article, we give the following proof of possible well-known conclusion.

Lemma 1 Let u, v be inner functions, then

kerTuv = {g ∈ K2
u : vg ∈ K2

u}. (1)

Moreover, kerTuv 6= {0} if and only if vH2 ∩K2
u 6= {0}.

Proof. Setting G = {g ∈ K2
u : vg ∈ K2

u}. For a nonzero function ϕ ∈ G ⊂ K2
u , because K2

u has a conjugation C, there
is ψ ∈ K2

u such that

vϕ = uzψ.

Then

Tuvϕ = P(uvϕ) = P(uuzψ) = P(zψ) = 0.

It follows that

ϕ ∈ kerTuv and G ⊆ kerTuv.

For a nonzero function g ∈ ker Tuv, we have that Tuvg = P(uvg) = 0. There is h ∈ H2 such that

uvg = zh. (2)

From this, we can obtain that vg = uzh ∈ H2. In terms of

K2
u = uzH2 ∩H2, (3)

we know that vg ∈ K2
u . By the equality (2), we get that g = uzhv ∈ H2. Then, by the equality (3), g ∈ K2

u and g ∈ G . Thus

kerTuv ⊆ G .

Suppose that vH2 ∩K2
u 6= {0}. There is 0 6= φ ∈ H2 such that

vφ ∈ K2
u .
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Because K2
u carries a conjugation, we can find a nonzero function f ∈ K2

u such that

vφ = uz f ,

and

Tuvφ = P(uvφ) = P(uuz f ) = 0.

Therefore,

φ ∈ kerTuv and kerTuv 6= {0}.

By the equatity (1), we can easy to get that vH2 ∩K2
u 6= {0} when kerTuv 6= {0}. The proof is completed. �

Proposition 1 Let u, v be inner functions satisfied kerTuv 6= 0, then

K2
u ∩ vH2 = vkerTuv.

Proof. For any nonzero f ∈ K2
u ∩ vH2, there exists a function g ∈ H2 such that f = vg. This implies that v f ∈ H2.

Since K2
u =CK2

u = uzK2
u and f ∈ K2

u , we can find a function η ∈ K2
u such that f = uzη . Then

Tuv(v f ) = P(uvv f ) = P(u f ) = P(uuzη) = 0.

Thus

K2
u ∩ vH2 ⊆ vkerTuv.

For any nonzero h ∈ kerTuv, by the Lemma 1, we know that vh = ψ ∈ K2
u . It follows that

ψ ∈ K2
u ∩ vH2 and h = vψ ∈ v(K2

u ∩ vH2).

Thus

vkerTuv ⊆ K2
u ∩ vH2.

The proof is completed. �
The greatest common divisor of inner functions θ1 and θ2 is denoted by GCD(θ1, θ2), it’s unique if it’s different by a

constant multiple.
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Lemma 2 [Lemma 3.6 in [9]] Let u, θ be non-constant inner functions having a nontrivial greatest common divisor,

denoted by GCD(u, θ) = v and u = vu1, then

K2
u ∩θH2 ⊆ vK2

u1
,

where v, u1 are inner functions.

Remark 1 When GCD(u, θ) = θ , it is not difficult to find that u = θu1 and

K2
u ∩θH2 = θK2

u1
.

It is an invariant subspace of the truncated Toeplitz operator Au
z defined on K2

u .

Corollary 1 If u, θ are nontrivial inner functions with GCD(u, θ) = η and u = ηu1, where η is a nontrivial inner

function, then

kerTuθ ⊆ θηK2
u1
. (4)

Proof. By Proposition 1 and Lemma 2, we know that kerTuθ 6= 0 and

kerTuθ = θ (Ku
2 ∩θ H2) ⊆ θ η Ku

2
1 
.

�
Remark 2 When GCD(u, θ ) = θ , the equal sign of formula (4) holds. In fact, by GCD(u, θ ) = θ and u = u1θ , we 

get that kerTu1 = kerTuθ . Since kerTu1 = Ku
2
1 
, we have that

kerTu1 = kerTuθ = Ku
2
1 
= θ θ Ku

2
1 
.

2.2 In terms of the spectrum of inner functions u and v
For a inner function u = B∧Sµ , where B∧ is a Blaschke product having the zero set ∧ and Sµ is a singular inner 

function with corresponding singular measure µ , then the spectrum of u is the set

σ (u) = ∧− ∪ supp µ .

Use ∧− to denote the closure of the zero set of u and supp µ to denote the support set of singular measure µ about Sµ . 
More details reference section 6.2 in [10].

Lemma 3 [Proposition 6.9 in [10]] Each φ in K2
u has an analytic continuation across Ĉ \ { 1

w : w ∈ σ(u)}, where
Ĉ= C∪{∞}.

Lemma 4 [Theorem 6.1 and 6.2 in [11]] The inner function u can be analytically continued to T\σ(u).
Proposition 2 Let v and u be inner functions with v 6= u. If K2

u ∩ vH2 6= 0, then
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(σ(v)∩T)⊂ (σ(u)∩T).

Proof. Since K2
u ∩ vH2 6= 0, by Lemma 1, we know that kerTuv 6= 0. There is 0 6= h ∈ kerTuv such that

Tuvh = 0.

Then P(uvh) = 0. There is a nonzero function g ∈ H2 such that uvh = zg and

vh = uzg.

Since K2
u = H2⋂uzH2, we obtain that vh ∈ K2

u . By Lemma 3, we have that vh has an analytic continuation across

Ĉ\{ 1
z : z ∈ σ(u)}. The Lemma 4 implies that v can be analytically continued to T\σ(v). Thus, (σ(v)∩T)⊂ (σ(u)∩T).

�

Corollary 2 Let v and u be inner functions with v 6= u. If (σ(u)∩T)⊂ (σ(v)∩T), then K2
u ∩ vH2 = {0}.

Proof. Suppose that K2
u ∩ vH2 6= {0}. By Lemma 1,we know that kerTuv 6= 0, and

kerTuv = { f ∈ K2
u : v f ∈ K2

u}.

Then v f has the same analytic continuation across T\σ(u). Since v has the analytic continuation across T\σ(v), we
get that (σ(v)∩T)⊂ (σ(u)∩T). It is the contradiction. Thus we prove that K2

u ∩ vH2 = {0} if (σ(u)∩T)⊂ (σ(v)∩T).
�

2.3 In terms of the left invertible property of Tuv

We use dist(ϕ, H∞) to denote the distance between the function ϕ and the set H∞. That is,

dist(ϕ, H∞) = inf
φ∈H∞

‖ϕ −φ‖∞.

Lemma 5 [Theorem 7.30 in [4]] If ϕ is a unimodular in L∞, then the operator Tϕ is left invertible if and only if

dist(ϕ, H∞)< 1.
Theorem 1 Let v, u be inner functions with v 6= u. If K2

u ∩ vH2 6= {0}, then

1
2
≤ sup

z∈D
|Imu(z)|< 1,

1
2
≤ sup

z∈D
|Reu(z)|< 1 and

√
3

2
≤ sup

z∈D
|Reu(z)−1| ≤ 2,

where Reu(z) denotes the real part of u(z) and Imu(z) denotes the imaginary part of u(z).
Proof. Since K2

u ∩vH2 6= 0, by Lemma 1, we get that kerTuv 6= 0, and Tuv must be not left invertible. Then, by Lemma

5,
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dist(uv, H∞)≥ 1.

That is,

inf
h∈H∞

‖uv−h‖∞ ≥ 1.

It follows that

‖uv−h‖∞ ≥ 1 for any h ∈ H∞. (5)

So ‖uv−uv‖∞ ≥ 1. That is,

sup
z∈D

|(uv)(z)− (uv)(z)| ≥ 1. (6)

Since B is an inner function and |v(z)|< 1, by (6), we have that

sup
z∈D

|u(z)−u(z)| ≥ 1. (7)

Setting u(z) = Reu(z)+ iImu(z). The inequality (7) follows that sup
z∈D

|Imu(z)| ≥ 1
2 . Since |Imu(z)|< 1, we prove that

1
2 ≤ sup

z∈D
|Imu(z)|< 1.

By (5), we also obtain that

1 ≤ ‖uv+uv‖∞ = sup
z∈D

|(uv)(z)+(uv)(z)|= sup
z∈D

|v(z)||u(z)+u(z)|.

Since v is an inner function and |v(z)|< 1, we get that sup
z∈D

|u(z)+u(z)| ≥ 1. Then

1 ≤ sup
z∈D

|u(z)+u(z)|= sup
z∈D

|Reu(z)− iImu(z)+Reu(z)+ iImu(z)|.

Thus sup
z∈D

|Reu(z)| ≥ 1
2 . Since |Reu(z)|< 1, we prove that 1

2 ≤ sup
z∈D

|Reu(z)|< 1.

By (5), we know that

1 ≤ ‖uv− v‖∞ = sup
z∈D

|(uv)(z)− v(z)|= sup
z∈D

|v(z)||u(z)−1|.
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Since v is an inner function and |v(z)|< 1, we have that sup
z∈D

|u(z)−1| ≥ 1. Then

sup
z∈D

|u(z)−1|2 ≥ 1.

That is,

1 ≤ sup
z∈D

|u(z)−1|2 = sup
z∈D

|Reu(z)− iImu(z)−1|2

= sup
z∈D

[(Reu(z)−1)2 +(Imu(z))2]

= sup
z∈D

(Reu(z)−1)2 + sup
z∈D

(Imu(z))2.

By sup
z∈D

|Imu(z)| ≥ 1
2 , we know that

sup
z∈D

(Reu(z)−1)2 ≥ 3
4
.

Thus
√

3
2 ≤ sup

z∈D
|Reu(z)−1| ≤ 2. The proof is completed. �

2.4 In terms of the minimal isometric dilation

Let H be a Hilbert space. The set of all bounded linear operators on H is denoted L (H ). Use PH to represent

the orthogonal projection onto H . For an operator A ∈ L (H ), an isometric dilation of A is an isometric operator

T ∈ L (K ), with K ⊃ H , such that

PH T n|H = An

for any n ∈ N. If

A = PH T |H and TH ⊥ ⊂ H ⊥,

then T is a dilation. Aminimal isometric dilation T ∈ L (K ) means that

K =
∞∨

n=0

T nH .

It’s uniquely defined that modulo a unitary isomorphism commuting with the dilations. More details can refer to the

book [2].
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Lemma 6 [Proposition 3.18 in [10]] When {uk}k≥1 may be a finite sequence of inner function such that u = ∏
k≥1

uk

exists, then

K2
u = K2

u1
⊕
⊕
n≥2

(
n−1

∏
k=1

uk

)
K2

un .

Moreover, if u, θ are inner functions, then

K2
uθ = K2

u ⊕uK2
θ .

Theorem 2 Let v, u be two inner functions. Then the following are equivalent.

1. The operator Tu on H2 is a minimal isometric dilation of Av
u defined on the model space K2

v .

2. K2
u ∩ vH2 = {0}.

3. kerTuv = {0}.
Proof. (2)⇔ (3) See Lemma 1.

(1)⇒ (3). Suppose that kerTuv 6= {0}. There exists 0 6= f ∈ H2 such that Tuv f = 0. Then we can find 0 6= η ∈ H2

such that

v f = uzη .

By K2
u = H2 ∩uzH2, we know that v f = uzη ∈ K2

u . Then

v f = uzη ∈ K2
u ∩ vH2.

It follows that

〈v f , ukg〉= 0, for g ∈ K2
v , k = 0, 1, 2, · · · ,

which implies

H2 6=
∞∨

k=0

Tuk K2
v

and hence Tu on H2 is not a minimal isometric dilation of Av
u. It is the contradiction. Thus kerTuv = {0}.

(3)⇒ (1) (see [12] [Theorem 4.1]). For the sake of completeness, we provide a proof.

Claim: For each positive integer n,

K2
v +uK2

v + · · ·+unK2
v = K2

unv. (8)
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For n = 0, equality (8) is right. Suppose that it is right up to n−1, it is left then to prove that

K2
un−1v +unK2

v = K2
unv. (9)

For any g+unh ∈ K2
un−1v +unK2

v , where g ∈ K2
un−1v and h ∈ K2

v , for any φ ∈ H2, we get that

〈g+unh, unvφ〉= 〈g, unvφ〉+ 〈h, vφ〉= 0.

Thus

K2
un−1v +unK2

v ⊆ K2
unv.

On the other hand, by Lemma 6, we have

K2
unv = K2

un−1v ⊕un−1vK2
u = unK2

v ⊕K2
un .

Suppose that f ∈ K2
unv orthogonal with K2

un−1v as well as to unK2
v . It obtains that

f ∈ (vun−1K2
u )∩K2

un .

Thus, there is g ∈ K2
u such that f = vun−1g, and also f ⊥ unH2, which means

vg ⊥ uH2 or vg ∈ K2
u .

It follows that

0 = Tu(vg) = Tvug.

By kerTuv = {0}, we know that g = 0. Thus f = 0 and we prove the equality (9).

Since

(∨
n

K2
unv

)⊥

=
⋂
n

unvH2 = {0},

it follows that
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H2 =
∨
n

T n
u K2

v .

Therefore Tu is a minimal isometric dilation of Av
u defined on K2

v . �

2.5 In terms of the completeness problem

Let {zn}n≥1 be a sequence made up of elements of D\{0}, repeated based on multiplicity, and satisfies

∞

∑
n=1

(1−|zn|)< ∞,

then we call it a Blaschke sequence. If ∧ ⊂ D is a sequence, use K∧ to denote the space spanned by {kλ = 1
1−λ z

, λ ∈ ∧}.
Lemma 7 [Proposition 9.1 in [10]] Let ∧ ⊂ D be a Blaschke sequence and B be a Blaschke product with the zero set

∧, then, for any inner function u, K∧ 6= K2
u if and only if

kerTuB 6= 0.

Proposition 3 For inner function u and Blaschke sequence ∧ ⊂ D, if B is a Blaschke product with the zero set ∧
having a cluster point in T\ σ(u), then

K2
u ∩BH2 = {0}.

Proof.

When ∧ has a cluster point in T\ σ(u), we claim that K∧ = K2
u . Suppose that K∧ 6= K2

u . There exists 0 6= ψ ∈ K2
u

such that ψ ⊥ K∧. Then

〈ψ, kλ 〉= ψ(λ ) = 0 for any λ ∈ ∧.

That is, the function ψ vanishes on ∧. Since ψ ∈ K2
u , we can obtain that ψ can be analytically continued to T\ σ(u).

Since ψ vanishes on ∧ which has a cluster point in T\ σ(u), the analytic continuation of the nonzero function ψ vanishes

on ∧ having a cluster point in T \ σ(u). It is a contradiction. Thus K∧ = K2
u . By Lemmas 1 and 7, we prove that

K2
u ∩BH2 = {0}. �

Remark 3 If K2
u does not contain nonzero functions that vanish on a zero set of the Blaschke product B, then K2

u ∩BH2

must be trivial.
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