
Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

A Certain q-Sălăgean Differential Operator and Its Applications to 
Subclasses of Analytic and Bi-Univalent Functions Involving (p, q)-
Chebyshev Polynomial

Musthafa Ibrahim1 , Bilal Khan2,3* , A. Manickam4

1 College of Engineering, University of Buraimi, Al Buraimi, Sultanate of Oman
2 School of Mathematical Sciences, Tongji University, Shanghai, China
3 School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
4 School of Advanced Sciences and Languages, VITBhopal University, MadhyaPradesh, India
E-mail: bilalmaths789@gmail.com

Received: 1 November 2023; Revised: 26 December 2023; Accepted: 28 December 2023

Abstract: In the present investigation, we make use of the q-analogue of the Sălăgean differential operator and introduce 
a new subclass of analytic and bi-univalent functions S∑

η , µ involving the (P, Q)-Chebyshev polynomials. Furthermore, 
we derive coefficient inequalities and obtain the Fekete-Szegö problem for this new function class f ∈ S∑

η , µ of functions.
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1. Introduction and motivation
Let A denote the class of functions of the form

f (z) = z+
∞

∑
n=2

an zn, (1)

analytic in the open unit disk U . Also we let S denote the class of all functions in A which are univalent in U . The
well known example in this class is the Koebe function k(z), defined by

k(z) =
z

(z−1)2 = z+
∞

∑
n=2

nzn.

The Bieberbach conjecture about the coefficient of the univalent functions in the unit disk was formulated by
Bieberbach [1] in the year 1916. The conjecture states that for every function f ∈ S given by (1), we have |an| ≤ n,
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for every n. Strictly inequality holds for all n unless f is the Koebe function or one of its rotation. For many years, this
conjecture remained as a challenge to mathematicians. After the proof of |a3| ≤ 3 by Lowner in 1923, Fekete-Szegö [2]
surprised the mathematicians with the complicated inequality

|a3 −µ a2
2| ≤ 1 + 2exp

(
−2µ
1−µ

)
,

which holds good for all values 0 ≤ µ ≤ 1. Note that this inequality region was thoroughly investigated by Schaefer and
Spencer [3].

For a class functions in A and a real (or more generally complex) number µ , the Fekete-Szegö problem is all about
finding the best possible constant C(µ) so that

∣∣a3 −µ a2
2

∣∣≤ C(µ) for every function inA .
It is well known that every function f ∈ S has a function f−1, defined by

f−1[ f (z)] = z ; (z ∈ U ),

and

f [ f−1(w)] = w ; ( |w|< r0( f ) ; r0 f ≥ 1
4
).

In fact, the inverse function f−1 is given by

f−1(w) = w−a2w2 +(2a2
2 −a3)w3 − (5a3

2 −5a2a3 +a4) w4 + · · · . (2)

Several authors worked on Chebyshev polynomial expansion to find coefficient estimates for bi-univalent functions
defined in the open unit disk. Still it attracts more attention on researches in this field. Most recent studies of Altınkaya
and S. Yalçın [4] motivated us to define the new class of Sakaguchi type function subordinate to (P, Q)-Chebyshev
polynomials.

Let f and g be analytic in the open unit desk U . The function f is subordinate to g written as f ≺ g in U , if there
exist a function w analytic in U with w(0) = 0 and |w(z)|< 1; (z ∈ U ) such that f (z) = g(w(z)), (z ∈ U ).

For any integer n ≥ 2 and 0 < Q < P ≤ 1, the (P, Q)−Chebyshev polynomials of the second kind is defined by
the following recurrence relations:

Un(x, s, P, Q) = (Pn +Qn)xUn−1(x, s, P, Q)+(PQ)n−1sUn−2(x, s, P, Q),

with the initial values U0(x, s, P, Q) = 1 and U1(x, s, P, Q) = (PQ)x and s is a variable. In slight view of this
recurrence relation, A list of some special cases of the (P, Q)-Chebyshev polynomials of second kind can be defined
see [4]. These polynomials defined recursively over the integers share numerous interesting properties and have been
extensively studied. They have been also found to be topics of interest in many different areas of pure and applied science.
The generating function of the (P, Q)-Chebyshev polynomials of the second kind is as follows:

GP, Q(z) =
1

1− xPzη − xQzηQ − sPQz2ηP, Q
=

∞

∑
n=1

Un(x, s, P, Q)zn,
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where ηQ f (z) = f (Qz) are known as Fibonacci operator introduced and studied by [5]. Similarly, the operator
ηP, Q f (z) = f (PQz) was defined in [6].

Now let’s review some basic definitions and concepts of the q -calculus, that are helpful in our research. Throughout
the paper, we asume that 0 < q < 1 and

N := {1, 2, 3, ...}= N0\{0} , N0 := {0, 1, 2, 3, ...} .

Definition (See [7, 8]) Let q ∈ (0, 1) and define the q-number [λ ]q by

[λ ]q =


1−qλ

1−q , λ ∈ C,

∑n−1
k=0 qk = 1+q+q2 + ...+qn−1, λ = n ∈ N.

Definition (See [7, 8]) Let q ∈ (0,1) and define the q-factorial [n]q! by

[n]q! =


1, n = 0,

n−1

∏
k=1

[k]q , n ∈ N.

Definition (See [7, 8]) In terms of q-numbers, the Jackson q-exponential function eω
q is defined by

eω
q =

∞

∑
n=0

ωn

[n]q!
.

Definition (See [7, 8]) The q-difference operator denoted as Dq f (z) is defined by

Dq f (z) =
f (z)− f (qz)

z(1−q)
, ( f ∈ A , z ∈ U −{0}),

and Dq f (0) = f ′(0), where q ∈ (0, 1). It can be easily seen that Dq f (z)→ f ′(z) as q → 1−. If f (z) is of the form (1), a
simple computation yields

Dq f (z) = 1+
∞

∑
n=2

1−qn

1−q
an zn, (z ∈ U ). (3)

Definition The q-analogue of Sălăgean differential operator (see [9]) Rm
q f (z) : A → A for m ∈ N, is formed as

follows.
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lR0
q f (z) = f (z)

R1
q f (z) = z(Dq f (z))

...

Rm
q f (z) = R1

q
(
Rm−1

q f (z)
)
.

The so-called q-polynomials are a significant and fascinating group of special functions, specifically orthogonal
polynomials. They can be found in various disciplines of the natural sciences, such as coding theory, discrete mathematics
(graph theory and combinatorics), Eulerian series, elliptic functions, theta functions, continuous fractions, and so on (see
[10, 11]), and algebras and quantum groups (see [12–14]). In Srivastava’s recently-published survey-cum-expository
review article [15], one can find an introductory overview of some important and potential useful developments concerning
the Bessel polynomials and the q-Bessel polynomials, as well as a number of other orthogonal polynomials, orthogonal
q-polynomials, hypergeometric polynomials, the q-hypergeometric polynomials, and so on.

2. Coefficient bounds and fekete-szegö inequality
In this section, we define the bi-univalent function class Sη , µ

∑ associated with the (P, Q)-Chebyshev polynomials.
Then we will derive the (P, Q)-Chebyshev polynomial bounds for the initial coefficients and determine Fekete-Szegö
functional for f ∈ Sη , µ

∑ .
Definition A function f (z) ∈ A is said to be in the class Sη , µ

∑ satisfies the differential inequality if and only if

[
(1−λ )z(Rm

q f (z))(q)+λ z(Rm+k
q f (z))(q)

(1−λ )Rm
q f (z)+λRm+k

q f (z)

]
≺ GP, Q(z), (4)

and

[
(1−λ )z(Rm

q g(z))(q)+λ z(Rm+k
q g(z))(q)

(1−λ )Rm
q g(z)+λRm+k

q g(z)

]
≺ GP, Q(w), (5)

(z ∈ U ; m, k ∈ M0; λ ≥ 0)

where (q) denotes the q-derivative of f as defined in (3) and g = f−1.
Theorem Let the function f given by (1) be in the class Sη , µ

∑ , then
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|a2| ≤
(P +Q)x

√
((P +Q)x)

D(P +Q)2x2 −2qC ((P2 +Q2)(P +Q)2x2 +PQs)
, (6)

|a3| ≤
(P +Q)x

B

(
1+

(
C +D

C

)
(P +Q)x

)
, (7)

where

B = q(1+q)(1+q+q2)m(1−λ +λ (1+q+q2)k),

C = q(1+q)2m(1−λ +λ (1+q)k)2,

D = (1+q)2mq(1+q)(1−λ +λ (1+q+q2)).

Proof. Suppose that f ∈ Sη , µ
∑ . Thus from (4) and (5), we can write

[
(1−λ )z(Rm

q f (z))(q)+λ z(Rm+k
q f (z))(q)

(1−λ )Rm
q f (z)+λRm+k

q f (z)

]
= GP, Q(z), (8)

and for the inverse map

[
(1−λ )z(Rm

q g(z))(q)+λ z(Rm+k
q g(z))(q)

(1−λ )Rm
q g(z)+λRm+k

q g(z)

]
= GP, Q(w), (9)

for some analytic functions ϕ , φ such that ϕ(0) = φ(0) = 0 and |ϕ(z)|< 1, |φ(w)|< 1 for all z, w ∈ U . It is fairly well
known that if

|ϕ(z)|=
∣∣c1z+ c2z2 + c3z3 + · · ·

∣∣< 1, (z ∈ U ),

|φ(z)|=
∣∣d1w+d2w2 +d3w3 + · · ·

∣∣< 1, (w ∈ U ),

and it is well known that

|cn| ≤ 1, |dn| ≤ 1, n ∈ N . (10)

From the equalities (8) and (9), we obtain that
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[
(1−λ )z(Rm

q f (z))(q)+λ z(Rm+k
q f (z))(q)

(1−λ )Rm
q f (z)+λRm+k

q f (z)

]
= U0(x, s, P, Q)+U1(x, s, P, Q)ϕ(z)

+U2(x, s, P, Q)ϕ 2(z)+ · · · ,

(11)

and for the inverse map

[
(1−λ )z(Rm

q g(z))(q)+λ z(Rm+k
q g(z))(q)

(1−λ )Rm
q g(z)+λRm+k

q g(z)

]
= U0(x, s, P, Q)+U1(x, s, P, Q)ϕ(w)

+U2(x, s, P, Q)ϕ 2(w)+ · · · .

(12)

Thus we write,

[
(1−λ )z(Rm

q f (z))(q)+λ z(Rm+k
q f (z))(q)

(1−λ )Rm
q f (z)+λRm+k

q f (z)

]
= 1+U1(x, s, P, Q)c1z

+[U1(x, s, P, Q)c2 +U2(x, s, P, Q)c2
1]z

2 + · · · ,

(13)

and for the inverse map

[
(1−λ )z(Rm

q g(z))(q)+λ z(Rm+k
q g(z))(q)

(1−λ )Rm
q g(z)+λRm+k

q g(z)

]
= 1+U1(x, s, P, Q)d1w

+[U1(x, s, P, Q)d2 +U2(x, s, P, Q)d2
1 ] w2 + · · · .

(14)

Now, equating the coefficients in (13) and (14), we obtain

q(1+q)m(1−λ +λ (1+q)k)a2 =U1(x, s, P, Q)c1, (15)

(1+q)(1+q+q2)m(1−λ +λ (1+q+q2)k)a3 −q(1+q)2m

(1−λ +λ (1+q)k)2a2
2 =U1(x, s, P, Q)c2 +U2(x, s, P, Q)c2

1, (16)

and

−q(1+q)m(1−λ +λ (1+q)k)a2 =U1(x, s, P, Q)d1, (17)
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2(1+q)2mq(1+q)(1−λ +λ (1+q+q2))a2
2 −q(1+q)(1+q+q2)m

(1−λ +λ (1+q+q2)k)a3 +q(1+q)2m(1−λ +λ (1+q)k)2a2
2

=U1(x, s, P, Q)d2 +U2(x, s, P, Q)d2
1 .

(18)

From (15) and (17), it is clear that

c1 =−d1. (19)

Also squaring and adding of (15) and (17),

2q2(1+q)2m(1−λ +λ (1+q)k)2

U2
1 (x, s, P, Q)

a2
2 = c2

1 +d2
1 . (20)

Now, by adding (16) and (18), we get

2(1+q)2mq(1+q)(1−λ +λ (1+q+q2))a2
2 = U1(x, s, P, Q)(c2 +d2)+

U2(x, s, P, Q)(c2
1 +d2

1).

(21)

Making use of (20) in (21)

a2
2 =

U3
1 (x, s, P, Q)(c2 +d2)

Aq,1
, (22)

where

Aq,1 = 2(1+q)2mq(1+q)(1−λ +λ (1+q+q2))U2
1 (x, s, P, Q)

−2q2(1+q)2m(1−λ +λ (1+q)k)2U2(x, s, P, Q).

From (19) and (21) together with (10), we obtained that

|a2| ≤
(P +Q)x

√
((P +Q)x)

Aq, 2
(23)

Contemporary Mathematics 2130 | Bilal Khan, et al.



where

Aq, 2 = 2(1+q)2mq(1+q)(1−λ +λ (1+q+q2))(P +Q)2x2

−2q2(1+q)2m(1−λ +λ (1+q)k)2 ((P2 +Q2)(P +Q)2x2 +PQs
)

In order to estimates the bound on |a3|, we subtract (18) from (16) and we get

2q(1+q)(1+q+q2)m(1−λ +λ (1+q+q2)k)a3

−
(

2q(1+q)2m(1−λ +λ (1+q)k)2 +2(1+q)2mq(1+q)(1−λ +λ (1+q+q2))
)

a2
2

=U1(x, s, P, Q)(c2 −d2)+U2(x, s, P, Q)(c2
1 −d2

1).

(24)

Then Eqs. (19), (20) and (22), become

a3 =
U1(x, s, P, Q)(c2 −d2)

2B
+

(
C +D

2BC

)
(c2

1 +d2
1)U

2
1 (x, s, P, Q), (25)

where

B = q(1+q)(1+q+q2)m(1−λ +λ (1+q+q2)k),

C = q(1+q)2m(1−λ +λ (1+q)k)2,

D = (1+q)2mq(1+q)(1−λ +λ (1+q+q2)).

(26)

Therefore, from (10), we find that

|a3| ≤
(P +Q)x

B

(
1+

(
C +D

C

)
(P +Q)x

)
. (27)

This completes the proof of the Theorem.
In the next theorem, we present the Fekete-Szegö inequality for the family Sη ,µ

∑ .
Theorem For 0 ≤ λ ≤ 1 and x,µ ∈ R, let f ∈ A be in the family Sη ,µ

∑ . Then

∣∣a3 −µa2
2
∣∣≤


(P +Q)x

B
, 0 ≤ |y(µ)| ≤ 1

B

(P +Q)x |y(µ)| , |y(µ)| ≤ 1
B

.

Volume 5 Issue 2|2024| 2131 Contemporary Mathematics



Proof. For any real µ ,

a3 −µa2
2 = (1−µ)a2

2 +a3 −a2
2

= (1−µ)
U3

1 (x, s, P, Q)(c2 +d2)

Aq,1
+

U1(x, s, P, Q)(c2 −d2)

2B

=
U1(x, s, P, Q)

2

[(
y(µ)+

1
2B

)
c2 +

(
y(µ)− 1

2B

)
d2

]
,

(28)

where

y(µ) =
U1(x, s, P,Q)2(1−µ)

DU1(x, s, P, Q)2 +qCU2(x, s, P, Q)
, (29)

B = q(1+q)(1+q+q2)m(1−λ +λ (1+q+q2)k),

Aq,1 = 2(1+q)2mq(1+q)(1−λ +λ (1+q+q2))U2
1 (x, s, P, Q)

−2q2(1+q)2m(1−λ +λ (1+q)k)2U2(x, s, P, Q).

Hence, we have reached the desired assertion of the Theorem (6),

∣∣a3 −µa2
2
∣∣≤


c
(P +Q)x

B
, 0 ≤ |y(µ)| ≤ 1

B

(P +Q)x |y(µ)| , |y(µ)| ≤ 1
B

.

This completes the proof of the Theorem.

3. Conclusion
In this paper, we introduced and analysed the bi-univalent function class Sη ,µ

∑ associated with the (P, Q)-Chebyshev
polynomials using Sălăgean differential operator. As a result, we obtained the second and third Taylor-Maclaurin
coefficients of this class of functions. These results improve the previous estimates, according to the recent studies.
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