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Abstract: In this article, a novel higher order iterative method for solving nonlinear equations is developed. The new
iterative method obtained from fifth order Newton-Ozban method attains eighth order of convergence by adding a single
step with only one additional function evaluation. The method is extended to Banach spaces and its local as well as
semi-local convergence analysis is done under generalized continuity conditions. The existence and uniqueness results
of solution are also provided along with radii of convergence balls. From the numerical experiments, it can be inferred
that the proposed method is more accurate and effective in high precision computations than existing eighth order
methods. The computation of error analysis and norm of functions demonstrate that proposed method takes a lead over
the considered methods.
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1. Introduction

In numerical analysis, higher order iterative methods have acquired foremost significance for solving nonlinear
equations that arise in numerous branches of science and technology [1, 2]. Various researchers have developed a
plethora of iterative methods [3-13] for solving nonlinear equations given in the form

S(x)=0, (M

where f: D < R — R is a continuously differentiable nonlinear function and D is an open interval. Most widely used
iterative method is quadratically convergent Newton’s method given by

_S)
f'(xk)’

k=0,12,.... )

X1 = X
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Numerous applications in fields of chemical speciation, transportation, chemical engineering, electron theory, the
geometric theory of relativistic string, queuing models etc. also give rise to innumerable such equations. But most of
the time the transformed nonlinear equations can not be solved using analytical approach. Thus, to find the numerical
solution of such equations, iterative methods are taken into consideration. To have an efficient approximation and
more accuracy in finding the solution of nonlinear equations of the form (1), current trend is to develop higher order
iterative methods. Such methods are of utmost importance as a number of applications in multidisciplinary areas need
faster convergence. But maintenance of an equilibrium between the convergence order and operational cost is another
important issue at the same time. In order to improve the convergence of Newton’s method, various higher-order
methods have been proposed by researchers worldwide.

Neta and Johnson [14] has developed eighth order iterative method (NJ8) which is given for k=0, 1, 2, ... as:

_ S (x)
JACHN

= Xk

J(x)
1, +1 , +2 , ’
gf (%) gf o) gf ()

Zy =X —

S S+ )= ()
Sf'(x0) 21"y - ')

) 3)

Xpr1 = Zg

where 77, =x, ——————-= .
R 8 )
An eighth order iterative method (Cordero Torregrosa Vassileva Method (CTVM)) has been developed by Cordero
etal. [15] given for k=0, 1, 2, ... as:

_ S ()
fe)

k k

EACA L CAIACH)
T -2 () £

=t_f<tk)(f(xk)—f<yk>+1 1) J
oSG =2f ) 2 f) -2 )

3 3B+ Bz — 1)
Bz, —t)+ B (v —x) + By (8, —x;) ’

“)

Xpr1 = 2k

where 8, € R(j =1, 2,3)and 8, + f;#0.
Dzuni¢ and Petkovi¢ [16] has developed Ostrowski’s type iterative method (Dzuni¢ Petkovi¢ Method (DPM))
given as:

S ()

T )

Volume 5 Issue 1/2024| 231 Contemporary Mathematics



S SO
fx) =21 () ['(x)

L =Y~

f @)
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A weighted Newton eighth order method (Sharma Sharma Kalra Method (SSKM)) has been developed by Sharma
etal. [17] given k=0, 1,2, ... as:

. )

Xy =4 —

_ _f(xk)
SEVEE)

L) H10/ () S () +16/7 (1) S ()
fz(xk)+8f(xk)f(yk)+f2(yk) f,(xk)’

k k

S@)
SO LS f) | S@)
=t —|1+2 4 . 6
R TS RATES R (V) P ©
J o)
Thukral proposed an eighth order iterative method [18] given for k=0, 1, 2, ... as:
L f(x)
ST
I A CALYAEN
k— Yk ] s
S e () =S ()
2
1441 2 AUY) R
=t —|| —£ | —2u; -6 4 , 7
o =l HH&J A0 o [ e 7
where 14, =§E—i}:;.

Motivated by ongoing research in this direction, the aim of the present work is to propose an eighth order iterative
methods to solve nonlinear equations. This is done by adding one step to fifth order iterative method developed by Grau-
Sanchez et al. [19]. The order of the proposed method is enhanced from five to eight by only one additional functional
evaluation which is the driving force behind the present work. Further, the motivation leads to extension of the proposed
method to Banach spaces where the technique of majorizing sequences is utilized to analyze its local and semi-local
convergence [20-26]. Various nonlinear equations are solved and comparison results are presented which indicate better
performance of the proposed method over the existing ones.

(0Q)) It is worth noticing that all the aforementioned methods (3)-(7) are defined on the real line. There are common
limitations in the aforementioned works related to the usage of Taylor series to show the convergence of these methods.
Moreover, this approach requires assumptions on the existence of higher order derivatives that do not appear on these
methods. Let us consider the motivational example. Define the function f: D :=[-1.4, 1.4] — R by
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f()=mt* logt +m,t° +myt*, if t #0, and
=0, if t=0, where m; e R—{0}, m,,m; e R

and satisfy m, + m; = 0. Then, clearly #. = 1 € D, and f{(#.) = 0. However, f"'(¢) is not continuous at . = 0 € D. Hence,
the results involving methods (3)-(7) cannot guarantee their convergence because all of them require existence of "
and even higher. However, these methods may converge. Furthermore, there are other limitations:

(Q,) There are no computable a priori estimates on ||x, — x.||. That is we do not know in advance how many iterates
should be computed to reach a predecided error tolerance.

(Q;) The choice of the initial point is hard (i.e. a “shot in dark™). This problem exists, since no radius of
convergence is found for these methods.

(Q,) No isolation of the solution results are given either.

In particular, these concerns exist for our method studied in Section 1. The limitations (Q,)-(Q,) restrict the usage
of these methods. The novelty of this method is that we address all these concerns positively in Section 3, where the
method of Section 2 is extended in the setting of Banach spaces. Notice also that the technique developed in Section
3 is very general. We simply use it on an eighth convergence order method. However, the same technique can be used
to extend the applicability of other methods using inverses of linear operators. Hence, this is the motivation and the
novelty of this paper. This is the direction of our future research.

The contents of the paper are summarized as under. Section 2 includes the establishment of the eighthorder method
and its convergence analysis is discussed. In section 3, the proposed method is extended to Banach spaces and its local
and semi-local convergence analysis is provided. In Section 4, numerical examples are figured out to ascertain the
theoretical postulates for comparing the proposed methods with the current methods. Section 5 contains the concluding
remarks.

2. Development of eighth order method

In this section, we propose a new iterative method for solving the nonlinear equation of the form (1) from fifth-
order Newton-Ozban composition given by Grau-Sanchez et al. [19]. This method is given as follows:

V=5 = S ),
=5 (1 0 ),
Ya =2 =0 )_lf(zk )- (8)

Extension of fifth order method (8) to obtain an eighth order iterative method is done by adding a step in the
following manner:

=% f'(% )_lf(xk ),
f=x - () 0 ),

we =2, = ') f (=),
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Xpr1 = Wi _%(1+f'(xk)f’(yk)_lf/(xk)f’(yk)_l)f,(xk)_lf(wk)' 9

where, k=0, 1, 2, ... and the initial approximation x, is suitably chosen. The foremost aim of our study is to develop a
novel and efficient eighth-order iterative method. The convergence analysis of the eighth-order method (9) is established
in the next theorem.

Theorem 2.1 Let f: D < R — R be a sufficiently differentiable function in an open interval D and x, is a close
approximation to its simple root x. € D. The iterative method (9) satisfies the following error equation:

€l :2(2a§a3—a§a32)e,f+0(ek9), (10)

S (x)
k1 f'(x)

Proof. Let e, = x, — x. be the error in " iterate. Applying Taylor expansion of f(x,) and f”(x,) about x., we get

where a, =( ], fork=2,3, ...

f(x) = f(x)e, +aye; +ase; +a,e; +ase; +azey +0(e]), (11)
F'(x) = f'(x)(1+2a,e, +3a.e; +4a,e; +5a5e; +6ae;, +0(e). (12)
Substituting (11) and (12) in first substep of (9), we get
Y, =X +a,e; +2(a, —a; Ve, +(4a; —Ta,a, +3a,)e} —2(3a; +4a; +5a,a, —10a;a; —2a;)e;
+(16a; +33a,a; —52aja, +28aza, —17a,a, —13a,a, +5a el +0(e]).
Again, using Taylor expansion about x. gives,
S0 =[] e ~(a; +2a0)e] +(a, +5a; ~Ta,a)ef
—(-24a;a, +124; +10a,a, +4a; + 64’ e,
+(28a; - 73aa, +34a;a, +37a,a; —17a,a, —13a,as +5a,)e} +O0(e] )], (13)
and
)= f'(x*)[l +2aye; —4a,(—a, +a; )e; +a,(8a; —11a,a, +6a,)e;
~4a, (44} +5a,a, —Taia; —2a5)e;
+2(30a3a, + 6a; —34dia, +16a; —8a,a,a, +5a,a, —13azas)e’ + O(e,j)]. (14)

Substituting (11), (12) and (14) in second substep of (9) renders
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1
Z, =X +E[a3e,§ +(2a; —3a,a, +2a,)e} +(-8a; +15a3a, —6a; —4a,a, +3a;)e;

+(20a; —55aja, +37a,a; +16aia, —17aa, —Sa,as +4ag e’ + O(e;)]. (15)

Expanding f{(z,) about x. using Taylor expansion, we get
1 1
f(z)= f’(x*){g%ei +(a; —%az% + a4je,f +(4a§ —755122513 +3a32 +2a,a, —%asje,f

55 75 17 5
+(10a; —7a§a3 +Ta2a;’ +8a§a4 —?a3a4 —Eaza5 +2a6je,f +O(e,3)}, (16)

Substituting (14) and (16) in the second last substep of (9), we obtain
W, =X, +asa.e; +%(8a§ -20a5a; + Ta,d; +8asa,)e!
+(=12a5 +26a;a, —16a;a; —8aya, +6a,aa, +3a,as)e;
+%(1 56a; —444aya, +369a,a; —36a,a; +128a5a, —200a;a,a,

+20a,a; —44aja; +34a,a,a; +16a5a,)e; +0(e)). (17)

Expanding f{w,) about x. using Taylor expansion, we get

fw)= fr(x*)[aj% +%a2 (8a; —20aia, +7a; +8a,a, el
+a,(—12a; +26a3a, —16a,a; —8a;a, + 6aa, +3a,a;)e]

+%a2 (1564 —444a3a, —36a; +128a5a, +20a; +a; (369a; —44a;)
+34a,a, 8a,(25asa, ~2a,))e; +O(e}) |, (18)
Substituting (12), (14) and (18) in the last substep of (9), we obtain
€ =2 (2a§a3 -a2’a3’ ) e +0(e).

Thus, the proof is completed. o
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3. An extension

There are certain limitations with the local convergence analysis of the previous section.

(L,) The analysis is provided only for nonlinear equations defined on the real line.

(L,) The Taylor series expansion technique requires the existence of derivatives such as /', j =2, 3, ..., 7 which
are not present on the method.

Let us consider the function f: [-2, 1.5] — R defined by f(t)=¢" Int++2¢° —2¢* for ¢ # 0 and f(¢) = 0 for
t = 0. It follows by this definition that /"’ is unbounded on the interval [-2, 1.5], since /" is not continuous at ¢ = 0.
Notice also that #. = 1 solves the equation f(¢) = 0. Therefore, the results of the previous section cannot guarantee the
convergence of the method to .. But the method converges to ¢ say for z, = 0.9.

(L5) There are no error estimates on the distances ||x, — x.|| which can be computed a priori. Hence, we do not know
in advance how many iterations should be carried out to obtain a desired error tolerance.

(L,) There are no results on uniqueness of the solution x..

(Ls) The more interesting semi-local convergence of the method is not given.

The limitations (L,)-(L;) constitute the motivation for writing this section. These problems are positively addressed
as follows:

(L,)' The convergence analysis is carried out for Banach space valued operators.

(L,)' The convergence conditions involve only /' which is the only derivative appearing on the method.

(Ls)" Upper bounds on the error distances |jx; — x.|| are provided which can be computed in advance. Therefore, we
do know the number of iterations required to achieve a certain error tolerance.

(L4)" A certain neighborhood of x. is determined with only one solution.

(L5)' The semi-local convergence the method is developed based on majorizing sequences [22]. Both type of
analyses rely on the concept of generalized continuity of the derivative [20, 22].

In order to achieve the extensions (L,)’-(Ls)" the method has to be rewritten in a Banach space as follows:

For ¢ : D © B, — B,, where the letters B, and B, denote Banach spaces, D an open and convex set, and ¢ a
continuously differentiable operator in the Fréchet sense. Then, we approximate a solution x. € D of the equation

P(x)=0 (19)

using the extension of the method for x, € D and each k=0, 1, 2, ... by

Ve =% —0'(x) " p(x,),

7 =% —%(co'(xk ) o) o),

W =2, =9’ )" @(z;)s
Ko == (TGP 0L PO () )0 ) ) 0)

Clearly, if B, = B, =R and ¢ = f,, the method (20) reduces to method (9) for solving the equation f{#) = 0.

Next, we first study the local convergence analysis of the method (20) based on conditions for 7= [0, +o0):

(H,) There exists a continuous as well as nondecreasing function (continuous and nondecreasing functions (CNF))
P, : T — R so that the equation Py(¢) — 1 = 0 has a smallest solution (SS) R, € T— {0}. Set 7, = [0, R,).

There exist CNF P : T, — R, ¢q, : T, — R so that the equation ¢,(¢) — 1 =0 has an SS r, € T, — {0}, with
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[ ; P((1-0))d0

q,() = -2

The equation Py(q,(£)f) — 1 =0hasa SS R, € T, — {0}. Set 7, = [0, R)).
Define the function

P((1+q,(0)))
P(t)={or
B @)+ F(q(00).

The equation ¢,(¢) — 1 =0 has an SS r, € T, — {0}, where ¢, : T} — R is defined by

[ Paa-6yas
g0 =2——
Y0
B(o)(1+ J'OIPO(Qt)dQ)
+ .
(1-F,®)1-EF(q,(0)0)

The equation Py(q,(#)t) —1=0hasan SS R, € T, — {0}. Set 7, = [0, R,).
Define the function

3 P((q, () +q,(0)))
P(t)=1or

F(q (t)t)+])()(‘I2(t)t)~

The equation ¢5(f) — 1 =0 has an SS r; € T, — {0}, where

[ P(1-0)g, (1 1)a0
1= B (g, ()

q;() =

P(o)1+ [ By (0g,(1)d0)
=R oi—hon |

The equation Py(q4(¢)f) — 1 =0hasan SS R; € T, — {0}. Set T; = [0, R;).
Define the function

I P ((RR())Y)
P(t)=1<or

K@)+ F(g;0)1).
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The equation ¢,(f) — 1 =0 has an SS r, € T; — {0}, where

[ P(1-0)g; ()0
1= B (g;(0))

q,() =

P00+ [, R (Og: 00)d0)
(1= B ()1~ By (g5 (00)

1 = P(t) |
2B @)1~ By (g, (00) Pm(h I-Rg, (t)t)j(1+jol%(0q3(t)t)d6 )}qs(”'

Define the parameter
rn=min{r}, i=12,3,4. 21)

The parameter r. is shown to be a radius of convergence for the method (20) in Theorem 3.1. However, some more

conditions are needed. Let S(x, p), S[x, p] denote respectively, the open and closed balls in B, with center x € B, and of
radius p > 0.

(H,) There exists an invertible linear operator M so that for each x € D

).

"M" (@'(x) —M)|| <P (Jx-x

Set S, = S(x., R)) N D.
(H;) Foreachx,y € S,

[M7 (@) - @' < P (- ).

and
(H,)

S[x.,r]c D.

The conditions (H,)-(H,) are sufficient for the local convergence analysis of the method (20).
Theorem 3.1 Suppose that the conditions (H,)-(H,) hold. Then, for x, € S(x., r.) — {x.}, the sequence {x,}
generated by the method (20) exists in S(x., r+), stays in S(x., .) and is convergent to x. so that for each k=0, 1, 2, ...

[y = x ] < q (| =) e =] < e = %] < 7. (22)
2 =)l < @ (o =)l — 0] < e =) 23)
[wic =] < s (e =) = < o =] 24)
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and
P P | P P P | 03

where the functions g; are as given previously, and the radius . is as defined in (21).
Proof. Mathematical induction is employed to validate the assertions (22)-(25). Let u € S(x., r.). Then, the
condition (H,) and (21) give

[t -] < By (=] < By <1. 0

The estimate (26) and the celebrated Banach Lemma on linear invertible operators imply the invertability of ¢'(u)
and

o1 1
'@ M"Sm. 7)

If u = x,, then by the first substep of the method (20) the iterate y, exists, since x, € S(x., r.) — {x.}. Then, we can
write

Yo =X = X = Xe _(0'(350)_1(0(350)
= L0000 (@' (x + 03, — %)~ 9'(x, ) Oz, — x.). (28)

It follows by (H,), (21), (27) (for u = x,)) and (28) that

[ P(1=0)]x, ~x.])d0]x, - x.
o =] <
1=F (% —x])
<gq, ("x0 — X ) |x0 —X| < ||x0 —X|| < A, (29)

showing (22) if k=0, y, € S(x-, r+), and (27) for u = y,. Hence, the iterate z, exists, and

2y =X = X =X, — (%) (%) —%(co’(yo)’1 =9'(x) e(x,)

=X, =% — (%) p(xy) —%co’(yo)'1 (@'(x) = @' (W)@ (x)) " p(x,). (30)
Then, as in (29), we get

jolp((l—e) I —x.[) @0
-5 (”xo X )

2o — .
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R (1 +j011>0(9||x0 - x. ||))d9
T ) e ]

<o (xo =l o =] < v —x.], (31)
where we also used
[M7 (')~ @' o) < P (| = 34 )
< P(lry =]+ 3o - x[) <
or
[M 7 (@' (x) =0 )| <[ M7 (0 () — M)
M @) - M) <R
and

o(xy) = 9(xy) —p(x:)

= 10!+ 0x, ~ 2 dO(x, ~ x.)

||M*1¢)(x0)|| < ||M*‘ (I;¢'(x* +0(x, —x.))d0 - M +M)||x0 —x*"

<(1+ . R (0l ~x) a6, ~ x|

Thus, the iterate z, € S(x., .), the assertion (23) holds if £ = 0, the iterate w, exists by the third substep of the
method (20), and

Wy =X = 2 =X = 9'(29) " 9(20) +(9'(20) " =9 (3) (2, (32)

leading similarly to (31) to

1
[ P(a=0)z-x.
1=F (2~

)do

[wo = x.

)
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B(1+], R (0] —x]))a0

))(I—PO ("ZO —x )) "Zo —x*"

-

("J’o N

<4 (fro = b = < x -\ (33)

Hence, the assertion (25) is valid if k£ = 0, the iterate w, € S(x., r+), x, exists by the fourth step of the method (20),

and
X =% =Wy =% = ' (W)™ p(w) + (@' (W)™ = 9'(x) ()
F2 (1= ) P 000 60 0 (0) 0 ) )
=Wy =% —0'() ™ p(wy) + 9 ()™ (9'(x5) = @' (W @' ()™ ()
—%(co(yo)co'(xo)'l —D)(21+(@' ()¢ (x0) " =) 9'(x0) ™ ' (), (34)
50

o I;P((1—9)||w0—x* )do
P =R ()
B (1+ ], R@]w, - xp)ae
+
(1=B (o =) (1= B (I = x.]))

B . B
2(1=B (|, =) (1B (| - xll)[2 1= B ([ —x. )]

)a0) -

(l—i-_[ 9||w0 x*

<43 (oo = [ Fxo =] < vy = (35)

So, the assertion (25) is valid for £ = 0, and the iterate x, € S(x., r.). The induction for the assertions (22)-(25)
holds for £ = 0, and the iterates y,, z,, w,, x; € S(x., 7). But the calculations can be repeated if x,, y,, z;, W, X;;, replace
respectively x,, v, z5, W, X;. Thus, the induction for the assertions (22)-(25) holds for each k=0, 1, 2, .... Then, from the

estimate
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<7 (36)

< Z"xk — X,

||xk+1 X

for A =q,(| x, —x ||) €[0,1), implies that klim x, = x. and the iterate x,,, € S(x., ). m
—>+0

Next, a region is determined inside which x. is the only solution of the equation ¢(x) = 0.
Proposition 3.2 Suppose:
The condition (H,) holds on S(x., r5) for some r5 > 0 and there exits 7, > r; so that

j; P,(60r,)d0<1. 37)

Set S, = S[x., rg] N D.
Then, the only solution of the equation (19) in the region S, is x..

1
Proof. X € S, with ¢(x) =0. Consider the linear operator Q = jo @'(x. +0(x —x.))dO. 1t follows by (H,) and (37)
in turn that

[p@-m)| <[ B (0]%-x.

1
0

)do

< j; P, (0r,)d0 <1,

which implies the invertability of the operator Q. Then, from the identity

X-x =Q(p(X) - (x.))=Q(0)=0,

we conclude X = x.. o
Next, the semilocal analysis of the method (20) is developed in an analogous way to the local case but the role of x.
and the “P” functions is exchanged by x, and the “/” functions as follows:
(4,) There exists a (CNF) y, : T'— R so that the equation y,(f) — 1 =0 has an SS p, € T— {0}. Set 7, = [0, p,).
There exists a function y : T, — R. Define the sequences {a,}, {b,}, {c;} and {d,} for a,= 0, some b, > 0 and each
k=0,1,2,..by

y(b, —a;)
W, =qor
Wola,)+y,(b),

¢, =b, +l//k(bk _ak)’
1-w,(b,)

A = (1+ j;z,/o(bk +0(c, —bk))dH)(ck ~b,)

W= 0)b, ~a,)dOb, - a,),
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A
t—,
1=w,(b,)

K = Ck

Hi :(l+I;Wo(Ck +0(d, _Ck))de)(dk —C )+ A,

2
25 _
a,., :dk+l 24 Vi +[ Vi J Hy i
2\ T vy mwB) ) [1=w(a)

1
€1 = Io w((1- 9)(ak+1 —a; ))da(ak-ﬂ —a)+ (I+ Vo (ak ))(ak+1 - bk ), (38)
and
e
b, = e
ot = e 1-w,(a;,,)

The sequence {a,} is shown to be majorizing for {x,} in Theorem 3.3. But first a convergence condition for it is
needed.
(4,) There exists p € [0, p.) so that foreach k=0, 1, 2, ...

wo(a,) <1, w,(b,) <], and a, < p.
The conditions and (38) imply that 0 < a, < b, < ¢, < d, < a;,, < p, and that there exists a. € [0, p] so that klim a, =

as.
(45) There exists invertible operator M so that for each x € D

”M’l (¢'(x) —M)" <y, ("x —X, ||)
It follows that || M ' (p'(x,) — M)|| < ¢,(0) < 1. Thus, ¢,(x,) " exists, and when we can choose b, > || '(x,) ' ¢(x,) |-
Set S, = S(xy, py) N D.
(4y)

[v7 (@' )~ ' D] < v (v -]

foreachx,y € S,.
(4s)

S[x,,a.] < D.
The semi-local convergence analysis of the method (20) is developed in next result.
Theorem 3.3 Suppose that the conditions (4,)-(45) hold. Then, the sequence {x,} produced by the method (20)

exists in S(x,, a.), stays in S(x,, a.) for each k=0, 1,2 ... and is convergent to some x. € S[x,, a-] solving the equation (19),
and so that
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||x* —xk"Sa* —ay.

(39

Proof. As in Theorem 3.1 mathematical induction shall establish the assertions for each k=0, 1, 2 ...

and

"yk _xk||5bk —
"Zk _yk"Sck —b,

||wk —Zk”S d,—c,

"xk+1 - Wk” <a,, —b.

(40)

(41)

(42)

(43)

The assertion (40) holds by the definition of a,, b, and the first substep of the method (20), since ||y, — x| =
llo'Cxo) ' p(xo)l| < by = by — @ < a.. We also have y, € S(x,, a.). Then, by subtracting the first from second substep of the
method (20), we get as in local case

SO

Contemporary Mathematics

Z ¥ = —%co’(yk ) @) =0 ()P (x) " e(x,)

- %w'(yk Y (')~ 0 s —),

1 ‘/7k||)’k_xk"
z, —y, || - — 2k Tk
e )

< v (b —a) —c, —b,,
1=y, (b;)

||zk —x0||£||zk —yk||+||yk —x0||Sck -b, +b, —a,=c¢, <a.,
P(z) = 9(z) = () + 9(z,)s

||M71(P(Zk)" < (1 + I; ¥ (”J’k —Xp " + 9"Zk Wk ||)d6’)||zk Wk "

[ (-0)y, ~x]) a0y, x|

<1+ v b, + 0, ~b3d0) e ~b)
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+H v (- 0)b, - a)dOb, ~a,) = 4.
w, =z, ==0' ()" 9(z,)
=—0'(v) " (@(z) = 9(¥) + P(¥)),
I =< Ml o]

A A
< u < k=4
1=y, (")’k ~% ") 1=y, (b;) ¢

—¢,,
e =xo] < [y =z |+ ]2 = x|
<d,—c,+c,—a,=d, <a.,
1 g
Xps1 — Wi :_5(21+2(§0'(J’k) l(ﬂ (x)-1)

He' () ' (x) =D (x) " 9(w,)-

But
o(w,) =p(w,)—9(z,) +9(z,),

M-t o] =(1+ [t + 00, e a6, ~e)+ 4 =

2
27 _
"xkﬂ_wk”:% 2+1 Vi +( Vi j Hy
—wo(b) \1-w(b) ) J1-w,(a)

—aq,, —d,,
[ =50l <l = we -+ i =
<ap,,—d, +d, —a,=a,,<a.,
(1) = P() = () = @' (6 )Xy = X ) + @' (X ) (X1 = Vi)

"M_l("(ka)

< I; ‘/’((1 - 9)||xk+1 X ")dH”xkﬂ % "
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U+, (o = xo ) i =i
< [ (1~ 0)a,., ~,)db(a,, ~a,)

+A+y (@) a,, —b) =€, (44)

”)’/m R " < ||¢’(xk+1)_IM"”M_](D(ka)

< €11

- 1-yy(a,,)

by —

and
"J’/m —X " < ”J’/m ~ X4 " + "x/m —X "
Shpy = Qg +a,, —ay =b, <a..
Hence, the induction for the assertions (40)-(43) is completed, and x,, y,, z;, w, € S(x., a.). Moreover, we have
||xk+l X " S~ (45)

Thus, the sequence {x,} is Cauchy in the Banach space B, and as such it is convergent to some x. € S[x,, a.]. By
letting k — +o0 in (44), we deduce ¢(x.) = 0.
Furthermore, by (45)

||xk+m - xk” Sym — (46)

foreachm=1,2, ....
By letting m — +oo in (46), we conclude that (39) holds. o
The uniqueness result result for a solution of the equation (19) follows.
Proposition 3.4 Suppose:
There exists a solution X € S(x,, p;) of the equation (19). The condition (4) holds in the ball S(x,, p;), and there
exists p, > p;, so that

jO] w(Gp, +(1-0)p,)dO <1. 47)

Set S; = S(xy, ps) N D.
Then, the only solution of the equation (19) in the region S; is X.

Proof. Let X € S, with ¢(x) = 0. Define the operator Q, = J()l @'(X+0(x —X))d0. Then, by (4;) and (47), we get

|7, M) < [ vy (0]~ 3o + 1= O) [~ x,] ) a0
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1
sjo%(ep3 +(1-0)p,)d6 <1.

Thus, we conclude again as in the local case that X =X. o
Remark 3.5 (i) If all conditions of Theorem 3.3 hold, then take p; = a. and x. = X.
(i1) A popular choice but not the most flexible is M = ¢'(x.) for the local, and M = ¢'(x,) for the semi-local case.

4. Numerical applications

This section comprises of several numerical examples to show the efficiency of our proposed method for
approximating the solution by comparing with existing methods. The comparison is made with eighth order methods
given by Neta and Johnson (NJ8), Cordero et al. (CVTM) (taking g, =0, p, = 1, f; = 0), Dzunic¢ and Petkovic (DPM),
Sharma et al. (SSKM), Thukral (TM) and existing fifth order method by Grau-Sanchez et al. (GSM) (8). In Table 1,
the considered test functions with initial approximation and the corresponding root are displayed. To compare the
computational performance, the number of iteration indexes (k), norms of the functions (| f(x,)|), error between two
consecutive iterates ||x,., — x;|| and computational order of convergence given by formula [27]:

p= ln”f(xk)/f(xk_l)"
Inf 0o )/ £ (x5

are mentioned. Further, the theoretical results proved in Section 3 are verified and numerical experiments are performed
in Banach spaces in Examples (4.2) and (4.3) but on the real line in Example (4.1).

Table 1. Test functions

Jx) Xy Root (a)

f(x)=sin’x —x*— 1 3 1.404491648215341

F) =0 33 3.000000000000000

fi) =x—e& —3x+2 3 0.257530285439861
fix) = e —cos(x+ 1) +x° + 1 2 ~1.000000000000000
fix) =x’¢" — sin(x) + x 2 ~1.499393096901409

fux) =log(@®+x+2)—x+1 2 4.152590736757158
fix) = ¢+ cosx 0.5 1.365230013414097

fox) = arcsin(x’ — 1) —x/2 + 1 1 0.5948109683983692

Example 4.1 Set D = B, = B, = R. Then, the method (9) is applied on the test functions given in Table 1.

The numerical experiments are stimulated by using Mathematica 8 on Intel(R) Core(TM) i5 - 8250U mCPU @
1.60 GHz 1.80 GHz with 8 GB of RAM running on the Windows 10 Pro version 2017. The comparison results for all
considered examples for |x,., — x,|, | f(x;)| and p are displayed in Tables 2-9 up to the third iteration. For every method,
the stopping criterion used is |x,., — x| + | f(x,)| < 107, It can be observed that proposed method has higher accuracy
in numerical values of approximations to the root than the existing methods in all the considered examples.
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Table 2. Comparison of the performances of methods for f;

Methods k [Xs1 — X [ £ p
1 1.61e - 000 2.62¢ - 004
M8 2 1.06¢ - 002 3.8le-017 7.9991981
3 1.54e - 017 7.39¢ - 136
1 1.60¢ - 005 1.0le - 002
NJ8 2 4.10¢ - 003 1.60e - 017 8.0005908
3 6.44¢ - 017 5.74e - 136
1 1.60e - 000 2.12¢ - 002
CVTM 2 8.61e - 003 2.57e-017 8.0013750
3 1.04e - 017 1.08¢ - 136
1 1.58e - 000 2.99¢ - 002
DPM 2 1.19¢ - 002 1.8le-016 7.9990926
3 7.30e - 017 3.64¢ - 130
1 1.57e - 000 5.20e - 002
SSKM 2 2.06¢ - 002 7.19¢ - 012 7.9686093
3 1.62¢ - 383 3.47e-384
1 1.57¢ - 000 6.84¢ - 002
™ 2 2.70e - 002 5.30e-012 7.9905882
3 2.13¢-012 1.0le - 092
1 1.63¢ - 000 9.27e - 002
GSM 2 3.85¢ - 002 8.87¢ - 009 4.9850176
3 3.57e - 009 7.80e - 044
Table 3. Comparison of the performances of methods for f,
Methods k X =X [/ (xi)| p
1 1.90e - 001 3.19¢ - 000
M8 2 1.07¢ - 001 3.17e - 002 6.49495
3 2.40¢ - 003 1.42¢- 014
1 1.78¢e - 001 3.89¢ - 000
NJ8 2 1.15¢ - 001 8.11e - 002 6.00338
3 5.99¢ - 003 5.67¢-011
1 2.20e - 001 1.81e - 000
CVTM 2 7.89¢ - 002 1.03¢ - 003 6.99268
3 7.94e - 005 7.10e - 014
1 2.40e - 001 1.17e - 000
DPM 2 5.93e - 002 8.13e - 006 6.99909
3 6.25¢ - 007 1.56¢ - 014
1 1.67¢ - 001 4.73e - 000
SSKM 2 1.12¢ - 001 1.86¢ - 001 6.96860
3 1.31e - 002 1.17e - 008
1 1.71e - 001 4.37¢ - 000
™ 2 1.18e - 001 1.37e - 001 5.20899
3 9.93¢ - 003 1.47¢ - 008
1 1.62¢ - 001 5.11e - 000
GSM 2 1.20e - 001 2.59¢ - 001 4.39737
3 1.77e - 002 2.77e - 005
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Table 4. Comparison of the performances of methods for f;

Methods k [Xsy — 2, [f G p

1 2.73¢ - 000 4.32¢ - 002

M8 2 1.14e - 002 4.07e - 021 7.9998647
3 1.08¢ - 021 2.51e-173
1 2.62e - 000 4.75e - 001

NJ8 2 1.27e - 001 5.06e - 013 8.0044300
3 1.34¢-013 6.73e - 109
1 2.67¢ - 000 2.82¢ - 001

CVTM 2 7.52e - 002 1.16e - 013 8.0009526
3 3.06e-014 8.46¢e - 113
1 2.48e - 000 9.80e - 001

DPM 2 2.65¢ - 001 7.79¢ - 010 7.9754496
3 2.06e - 010 1.77e - 082
1 2.54¢ - 000 7.65¢ - 001

SSKM 2 2.06e - 001 1.24e-010 8.0559699
3 3.27¢-011 1.43¢ - 089
1 2.62e - 000 4.69¢ - 001

™ 2 1.25¢ - 001 2.69¢ - 012 7.9921705
3 7.11e-013 3.52e-102
1 2.45¢ - 000 1.07e - 000

GSM 2 2.90e - 001 3.20e - 006 4.9852520
3 8.46¢ - 007 8.18¢- 034
Table 5. Comparison of the performances of methods for f;

Methods k [ X — Xl [yl P

1 1.00e - 000 2.12¢ - 003

M8 2 3.53e - 004 2.00e - 030 8.0000412
3 3.34¢ - 021 1.29¢ - 246
1 1.00e - 000 9.91e - 003

NJ8 2 1.65¢ - 003 2.20e - 030 7.9999631
3 3.66e - 034 1.28e - 245
1 9.96¢ - 001 2.40¢ - 002

CVTM 2 4.00e - 003 6.64e - 021 7.9996822
3 1.11e-021 2.31e-169
1 9.96¢ - 001 2.65¢e - 002

DPM 2 4.41e-003 3.39¢ - 021 7.9989672
3 5.65¢ - 022 2.55e-172
1 1.00e - 000 2.59¢ - 002

SSKM 2 4.31e-002 3.76e - 021 8.0005490
3 6.26¢ - 022 7.37e-172
1 1.00e - 000 1.61e - 002

™ 2 2.68¢ - 003 2.63¢ - 023 8.0033069
3 4.38e- 034 1.15¢ - 189
1 9.98¢ - 000 1.49¢ - 002

GSM 2 2.48e - 003 6.45¢ - 015 4.9852520
3 1.07e - 015 9.95¢ - 077
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Table 6. Comparison of the performances of methods for f;

Methods k [Xsy — 2, [f G p

1 5.0le - 001 7.71e - 005

M8 2 1.01e - 004 4.50e - 034 7.9998908
3 5.92¢ - 034 6.11e - 268
1 5.00e - 001 2.10e - 004

NJ8 2 2.76¢ - 004 6.41e - 029 7.9999626
3 8.43¢ - 029 4.8le-225
1 5.00e - 001 1.39¢ - 004

CVTM 2 1.82¢ - 004 1.36¢ - 030 7.9999744
3 1.78¢ - 030 1.13¢ - 238
1 5.00e - 001 1.59¢ - 004

DPM 2 2.09¢ - 004 2.94¢ - 030 7.9999787
3 3.87¢- 030 4.10e - 236
1 4.99¢ - 001 9.43¢ - 004

SSKM 2 1.24e - 003 2.12e - 022 7.9986387
3 2.78¢ - 022 1.47e - 171
1 4.99¢ - 001 9.27e - 004

™ 2 1.22¢ - 003 1.22¢ - 022 7.9996808
3 1.60e - 022 1.10e - 173
1 4.99¢ - 001 8.69¢ - 004

GSM 2 1.14e - 003 2.37e-017 4.9973865
3 3.11e-017 3.86e - 085
Table 7. Comparison of the performances of methods for f;

Methods k [ X — Xl [f(xpy)l P

1 2.15¢ - 000 3.34¢ - 004

M8 2 5.536e - 004 2.18e- 036 8.0000107
3 3.61e-036 7.03e - 283
1 2.15e - 000 1.99¢ - 004

NJ8 2 3.30e - 004 1.96¢ - 036 7.9999939
3 3.25¢- 036 1.73e - 282
1 2.15¢ - 000 1.00e - 003

CVTM 2 1.66e - 003 1.79¢ - 030 7.9999585
3 2.98¢ - 030 1.90¢ - 244
1 2.15e - 000 4.46e - 004

DPM 2 7.14e - 004 5.49¢ - 033 7.9999850
3 9.12e - 033 291e-264
1 1.47¢ - 000 3.92¢ - 001

SSKM 2 6.80e - 001 2.68e - 007 7.9999972
3 4.46¢ - 007 1.20e - 059
1 2.17e - 000 1.09¢ - 002

™ 2 1.80¢ - 002 5.23e - 021 7.9992396
3 8.69¢ - 021 1.60e - 167
1 2.16e - 000 4.68e - 003

GSM 2 7.78e - 003 4.08¢-016 4.9998024
3 6.78¢ - 016 2.07e- 081
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Table 8. Comparison of the performances of methods for f;

Methods k [Xsy — 2, [f G p

1 2.25¢ - 000 2.36e - 005

M8 2 2.04e - 005 4.45¢e - 042 7.9999989
3 3.84¢ - 042 7.02e - 336
1 2.25e - 000 2.07e - 004

NJ8 2 1.79¢ - 004 8.90¢ - 035 7.9999903
3 7.68e - 035 1.03e - 277
1 2.25¢ - 000 8.46¢ - 005

CVTM 2 7.30e - 005 1.76e - 037 8.0000003
3 1.51e - 037 6.02¢ - 299
1 2.25e - 000 1.53¢ - 004

DPM 2 1.32¢ - 004 2.65¢ - 035 8.0000097
3 2.29e - 035 2.10e - 281
1 2.25¢ - 000 1.43¢ - 004

SSKM 2 1.23¢ - 004 2.87e - 035 7.9999989
3 2.48¢ - 035 7.75¢ - 281
1 2.25e - 000 2.05¢e - 004

™ 2 1.77¢ - 004 2.15¢-033 8.0000172
3 1.86e - 033 3.14e - 265
1 2.25¢ - 000 1.05e - 003

GSM 2 9.08e - 004 1.89¢ - 018 4.9999421
3 1.63¢- 018 3.49¢ - 092
Table 9. Comparison of the performances of methods for f;

Methods k [ X — Xl [f(xpy)l P

1 4.05¢ - 001 2.42¢ - 006

M8 2 2.29¢ - 006 7.59¢ - 049 7.9999999
3 7.17e - 049 7.05e - 389
1 4.05e - 001 1.20e - 005

NJ8 2 1.13¢ - 005 3.50¢ - 043 8.0000008
3 3.31e-043 1.89¢ - 343
1 4.05¢ - 001 1.12¢ - 005

CVTM 2 1.06e - 005 4.72e - 043 8.0000004
3 4.46¢ - 043 4.68¢ - 342
1 4.05e - 001 6.44e - 006

DPM 2 6.08¢ - 006 1.44¢ - 045 8.0000003
3 1.36e - 045 8.83¢ - 363
1 4.05¢ - 001 1.85e - 005

SSKM 2 1.75e - 005 7.97e - 041 7.9999989
3 7.53¢ - 041 9.41e-324
1 4.05e - 001 5.22e - 006

™ 2 4.93¢ - 006 2.76¢ - 046 8.0000002
3 2.61e - 046 1.69¢ - 368
1 4.05e - 001 4.76e - 004

GSM 2 4.49¢ - 004 3.36e-019 5.0000229
3 3.17e-019 591e - 095
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The next two examples demonstrate the extension of proposed method in Banach spaces presented in Section 3.
Example 4.2 Let B, = B, =R’ and D = S(0, 1). Define the operator ¢ on D for s = (s,, s,, 53)" by

T
o(s) :(es1 —1,%%5 +s2,s3j . (48)
This definition implies that
e’ 0 0
P'()=] 0 (e-Ds,+1 0].
0 0 1

Clearly, s. = (0, 0, 0)" solves the equation ¢(s) = 0 and ¢'(s.) = I. Then, for M = ¢(s.) the conditions (H,)-(H,) hold,
1

if we take Py(f) = (e — 1)z, and P(¢) = e*'t. The radius of convergence r. for the method (20) using the formula (21) is
given by r. = 0.159254648631897 --- < 1. Hence, the condition (#,) also holds. Therefore, all the conditions of Theorem
3.1 hold.

Example 4.3 Let B, = B, =R’ and D = S(0, 1). Define the operator ¢ on D by

ou)(x) =u(x)— 8.[01 x0u(0)’ d6. (49)
By this definition, we calculate the derivative ¢’ to be
@' (u))(x)=1(x)— 24.[01 xO0u(0)*1(A)d A.

Clearly, x. = 0 solves the equation ¢(x) = 0, so ¢'(x.) = 1. Then, for M = ¢'(x.) the conditions (H,)-(H;) hold if we
take Py(f) = 12t and P(f) = 24¢. The radius of convergence for the method (20) using again formula (21) comes out to be
7. =0.022092906375511003 --- < 1. Therefore, all the conditions of Theorem 3.1 hold.

Thus, the novelty, applicability and theoretical results of the current work are corroborated by numerical
experiments.

5. Conclusion

The construction of higher order iterative methods is at topmost importance in numerical analysis now a days due
to its numerous applications in various fields. The present study consists of designing of a new eighth order method
which is obtained from a fifth order by method by adding one step for which only one additional function evaluation
is required. The method is extended to Banach spaces and is analyzed with local and semi-local convergence using
generalized conditions. Based on the numerical findings, it is clear that the proposed method performs the best in terms
of accuracy in error and norm of the function in all the considered examples as compared to other existing methods.
As already noted in the introduction the methodology developed in Section 3 is applicable on other methods. This
is the direction of our research which shall establish our approach further. We start with this paper. That will be an
improvement of our work.
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