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Abstract: Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) coinfection

models with simply an antibody response or a CTL response have been the subject of several recent investigations.

Nevertheless, no prior research has been done on the dynamics of HIV-1 and HTLV-1 coinfection under the influence of

both CTL and antibody responses. Thus, the primary objective of this paper is to formulate and examine a mathematical

framework for analyzing the intricate dynamics of coinfection between HIV-1 and HTLV-1 under the influence of both

CTL and antibody responses. While CTLs are thought to destroy HTLV-1-infected cells, antibodies neutralize free HIV-1

particles. We prove that the model is well-posed and it admits eight equilibria. The stability and existence of the equilibria

are precisely controlled by eight threshold parameters ℜi, i = 1,2, ...,8. By formulating suitable Lyapunov functions and

applying LaSalle’s invariance principle, we show the global asymptotic stability for all equilibria. To demonstrate the

theoretical results, we conduct numerical simulations. We look at how the antibody and CTL responses affect the dynamical

behavior of HIV-1/HTLV-1 coinfection. Although the parameters of antibody and CTL responses have no effect on the

basic reproduction ratio of HIV-1 single-infection (ℜ1) and HTLV-1 single-infection (ℜ2), it has been demonstrated that

viral coinfection can be inhibited by immunological activation of antibody and CTL responses. This could potentially

facilitate the advancement of therapeutic approaches for HIV-1 and HTLV-1, which have the capability to enhance the

HIV-1-specific antibody and HTLV-1-specific CTL reactions.
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1. Introduction

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are two retroviruses

that target CD4+T cells, which is vital component of the adaptive immune system. HIV-1 eventually results in the

development of acquired immunodeficiency syndrome (AIDS). HTLV-1-related illnesses comprise tropical spastic,

paraparesis/HTLV-1 associated myelopathy (TSP/HAM), adult T-cell leukemia/lymphoma (ATLL), uveitis and infective

dermatitis [1, 2]. The most significant means of HIV-1 and HTLV-1 transmissions are sharing needles, contaminated

body fluids, and sexual contact. Breastfeeding is another way that HTLV-1 may spread [2]. The coinfection of HIV-1 and
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HTLV-1 has been widely documented during the past ten years. Simultaneous infection by the two viruses has been found

to impact pathogenic development and determine the course of related chronic disorders [3].

The human body’s defensive mechanism is the immune system. This tool aids in the prevention of infections and

illnesses. The immune system’s function is to combat foreign objects, such as cancer cells and germs like bacteria,

viruses, fungus, and parasites. Traditionally, there have been two categories of immune responses identified: the innate

response, which is characterized by quick engagement but temporary and low specificity, and the adaptive response,

which is characterized by delayed but specificity and permits the formation of immunological memory. The two primary

components of the adaptive immune response are B cells and cytotoxic T lymphocytes (CTLs). Viral-infected cells are

eliminated by CTLs, and B cells produce antibodies to combat and eradicate the viruses.

Our knowledge of the dynamic interactions that take place between human viruses, target cells, and immune response

has improved thanks to mathematical models of within-host viral infection. The following biological parameters can be

estimated using analytical and numerical analysis of viral infection models: (i) the half-lives of the virus and infected cell,

as well as viral production; (ii) the efficacies of various antiviral drugs; (iii) the intensity of immune system responses; and

(iv) long-term disease progression prediction.

Nowak and Bangham [4] formulated the fundamental model of HIV-1 single-infection, which is now used to explain

the within-host dynamics of numerous other viruses. Three populations interact in this model, uninfected CD4+T cells,

infected CD4+T cells, and free HIV-1 particles. A multitude of mathematical models have been developed to include

several biological aspects, including latent reservoirs [5–7], time delay [8, 9], pharmacological treatments [9, 10], antibody

response [11], CTL response [4], and reaction-diffusion [12], into the fundamental HIV-1 model. Numerous studies

have modeled the dynamics of within-host HTLV-1 mono-infection while accounting for many factors, including: (i)

latently HTLV-1-infected cells and leukemia cells [13, 14], (ii) CTL response [15, 16], (iii) time delay [17, 18], and (iv)

reaction-diffusion [19].

There are people with coinfections with HIV-1 and HTLV-1 in a number of global geographic locations, including

South America, Brazil, Europe, Mozambique, Japan and the Caribbean [20]. Recently, mathematical model for within-host

HIV-1 and HTLV-1 coinfection with CTL response have been developed as [21, 22]:

Ẋ =

Production of uninfected CD4+T cells︷︸︸︷
λ −

Natural death︷︸︸︷
γX −

HIV-1 infectious transmission︷ ︸︸ ︷
φ1XV −

HTLV-1 infectious transmission︷ ︸︸ ︷
φ2XW , (1)

Ẏ =

HIV-1 infectious transmission︷ ︸︸ ︷
φ1XV −

Natural death︷︸︸︷
κY −

Killing of HIV-1-infected cells via HIV-1-specific CTLs︷︸︸︷
τSY , (2)

V̇ =

Production of HIV-1︷︸︸︷
ρY −

Natural death︷︸︸︷
σV , (3)

Ẇ =

HTLV-1 infectious transmission︷ ︸︸ ︷
φ2XW −

Natural death︷︸︸︷
αW −

Killing of HTLV-1-infected cells via HTLV-1-specific CTLs︷ ︸︸ ︷
δUW , (4)

Ṡ =

Stimulation of HIV-1-specific CTLs︷︸︸︷
ςSY −

Natural death︷︸︸︷
υS , (5)

U̇ =

Stimulation of HTLV-1-specific CTLs︷ ︸︸ ︷
ρUW −

Natural death︷︸︸︷
εU , (6)

Volume 5 Issue 2|2024| 1607 Contemporary Mathematics



where X = X(t), Y = Y (t), V = V (t), W = W (t), S = S(t) and U = U(t) are the concentrations of uninfected CD4+T
cells, HIV-1-infected cells, free HIV-1 particles, HTLV-1-infected cells, HIV-1-specific CTLs and HTLV-1-specific CTLs,

respectively, at time t. The antibody response was includied in HIV-1 and HTLV-1 coinfection model as [23]:

Ẋ = λ − γX −φ1XV −φ2XW, (7)

Ẏ = φ1XV −κY,

V̇ = ρY −σV −θV Z,

Ẇ = φ2XW −αW,

Ż = ξV Z −µZ. (8)

where Z = Z(t) is the concentration of HIV-1-specific antibodies. The HIV-1-specific antibodies are stimulated and die at

rates ξV Z and µZ, respectively. The free HIV-1 particles are neutralized via antibodies at rate θV Z.
It was shown that model (1)–(6), examined in [21, 22], took into account the CTL response but disregarded the

antibody response. However, model (7)–(8), which was examined in [23], ignored the CTL immunological response in

favor of the antibody response. Modeling the co-infection of HIV-1 and HTLV-1 with both CTL and antibody responses

has never been done previously. Thus, the purpose of this work is to develop and examine an HIV-1/HTLV-1 coinfection

model that includes both CTL and antibody responses. We first look into the fundamental characteristics of the system,

then we find all equilibria and discusses their existence and global stability. We construct suitable Lyapunov functions and

use LaSalle’s invariance principle (LIP) to investigate the global asymptotic stability of all equilibria. We use numerical

simulations to demonstrate the theoretical findings. Finally, we discuss the obtained results.

Our suggested approach could be helpful in simulating various coinfections with viruses, as SARS-CoV-2/dengue/zika

[24], SARS-CoV-2/HBV [25] and SARS-CoV-2/influenza [26].
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2. HIV-1/HTLV-1 model with CTL and antibody responses

HIV-1/HTLV-1 infection model with CTL and antibody responses can be written as:

Ẋ = λ − γX −φ1XV −φ2XW, (9)

Ẏ = φ1XV −κY − τSY, (10)

V̇ = ρY −σV −θV Z, (11)

Ẇ = φ2XW −αW −δUW, (12)

Ż = ξV Z −µZ, (13)

Ṡ = ςSY −υS, (14)

U̇ = ρUW − εU. (15)

We point out that model (9)–(15) leads to the model given in [21] when the antibody reaction is ignored, whereas it

leads to the model given in [23] when the CTL response is ignored.

This model admits fourteen equilibrium points and studying the stability analysis of all equilibria will be too long.

To simplify the model we consider two immune responses for HIV-1/HTLV-1 coinfection, HTLV-1-specific CTLs and

HIV-1-specific antibodies. The effect of HIV-1-specific CTLs in killing the HIV-1-infected cells may be included in the

parameter κ . As a result we study the following model:

Ẋ = λ − γX −φ1XV −φ2XW, (16)

Ẏ = φ1XV −κY, (17)

V̇ = ρY −σV −θV Z, (18)

Ẇ = φ2XW −αW −δUW, (19)

Ż = ξV Z −µZ, (20)

U̇ = ρUW − εU. (21)

A schematic representation of the model in (16)–(21) is illustrated in Figure 1. The basic and global properties of

(16)–(21) will be invetigated in the next sections.
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Figure 1. The illustrative diagram of the dynamics at a within-host HIV-1/HTLV-1 coinfection.

3. Basic results

3.1 Nonnegativity and boundedness

This subsection proves the nonnegativity and boundedness of the solutions of system (16)–(21).

Lemma 1. The solution (X(t),Y (t),V (t),W (t),Z(t),U(t)) of system (16)–(21) are nonnegative and bounded.

Proof. From system (16)–(21) we get

Ẋ |X=0= λ > 0, Ẏ |Y=0= φ1XV ≥ 0 for any X ,V ≥ 0,

V̇ |V=0= ρY ≥ 0 for any Y ≥ 0,

Ẇ |W=0= 0, Ż |Z=0= 0, U̇ |U=0= 0.

Hence, (X(t),Y (t),V (t),W (t),Z(t),U(t)) ∈R6
≥0 for all t ≥ 0 when (X(0),Y (0),V (0),W (0),Z(0),U(0)) ∈R6

≥0 (see

Proposition B.7 of [27]). Hence, X ,Y,V,W,Z and U are nonnegative.

Now, we prove the boundedness of X , Y, V, W, Z and U . We define

Ψ = X +Y +
κ

2ρ
V +W +

κθ

2ρξ
Z +

δ

ρ
U.
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Then, we have

Ψ̇ = λ − γX −φ1XV −φ2XW +φ1XV −κY +
κ

2ρ
[ρY −σV −θV Z]

+φ2XW −αW −δUW +
κθ

2ρξ
[ξV Z −µZ]+

δ

ρ
[ρUW − εU ]

= λ − γX − κ

2
Y − σκ

2ρ
V −αW − κθ µ

2ρξ
Z − εδ

ρ
U

≤ λ −η

[
X +Y +

κ

2ρ
V +W +

κθ

2ρξ
Z +

δ

ρ
U
]

= λ −ηΨ,

where η =min{γ, κ

2 ,σ ,α,µ,ε}. If Ψ(0)≤ω1, then, 0≤Ψ(t)≤ω1 for all t ≥ 0,where ω1 =
λ

η
. Since X ,Y,V,W,Z,U ≥ 0,

then 0≤X(t),Y (t),W (t)≤ω1, 0≤V (t)≤ω2, 0≤ Z(t)≤ω3, 0≤U(t)≤ω4 ifX(0)+Y (0)+ κ

2ρ
V (0)+W (0)+ κθ

2ρξ
Z(0)+

δ

ρ
U(0)≤ ω1, where ω2 =

2ρ

κ
ω1, ω3 =

2ρξ

κθ
ω1, and ω4 =

ρ

δ
ω1.

3.2 Threshold parameters and equilibria

Here, we find all equilibria of model (16)–(21) as well as the threshold parameters that guarantee the existence of the

model’s equilibria. An equilibrium point Ξ = (X ,Y,V,W,Z,U) satisfies:

0 = λ − γX −φ1XV −φ2XW, (22)

0 = φ1XV −κY, (23)

0 = ρY −σV −θV Z, (24)

0 = φ2XW −αW −δUW, (25)

0 = ξV Z −µZ, (26)

0 = ρUW − εU. (27)

Solving Eqs. (22)–(27), we obtain eight equilibria as follows:

(i) The uninfected equilibrium, Ξ0 = (X0,0,0,0,0,0), where X0 = λ/γ .

(ii) HIV-1 single-infection equilibrium without antibody response Ξ1 = (X1,Y1,V1,0,0,0), where

X1 =
κσ

ρφ1
, Y1 =

γσ

ρφ1

(
X0ρφ1

κσ
−1

)
, V1 =

γ

φ1

(
X0ρφ1

κσ
−1

)
.
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Hence, Y1 > 0 and V1 > 0 when

X0ρφ1

κσ
> 1.

We define the basic HIV-1 single-infection reproductive ratio as:

ℜ1 =
X0ρφ1

κσ
.

The determination of whether an HIV-1 single-infection can be confirmed is contingent upon the parameter ℜ1. Thus,

we can write

X1 =
X0

ℜ1
, Y1 =

γσ

ρφ1
(ℜ1 −1) , V1 =

γ

φ1
(ℜ1 −1) .

Consequently, Ξ1 exists if ℜ1 > 1.
(iii) HTLV-1 single-infection equilibrium without CTL response, Ξ2 = (X2,0,0,W2,0,0), where

X2 =
α

φ2
, W2 =

γ

φ2

(
X0φ2

α
−1

)
.

Hence, W2 > 0 when

X0φ2

α
> 1.

We define the basic HTLV-1-infection reproductive ratio as:

ℜ2 =
X0φ2

α
.

The determination of whether an HTLV-1 single-infection can be confirmed is contingent upon the parameter ℜ2.

Thus, we can write

X2 =
X0

ℜ2
, W2 =

γ

φ2
(ℜ2 −1) .

Therefore, Ξ2 exists if ℜ2 > 1.
(iv) HIV-1 single-infection equilibrium with stimulated HIV-1-specific antibody response, Ξ3 = (X3,Y3,V3,0,Z3,0),

where

X3 =
λξ

γξ +µφ1
, Y3 =

λφ1µ

κ (γξ +µφ1)
,

V3 =
µ

ξ
, Z3 =

σ

θ

[
λξ ρφ1

κσ(γξ +µφ1)
−1

]
.

We note that Ξ3 exists when

λξ ρφ1

κσ(γξ +µφ1)
> 1.
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The HIV-1-specific antibody activation ratio in case of HIV-1 single-infection is:

ℜ3 =
λξ ρφ1

κσ(γξ +µφ1)
.

Thus, Z3 =
σ

θ
(ℜ3 −1).

The activation of HIV-1-specific antibody response in the absence of HTLV-1 infection is contingent upon the

parameter ℜ3.

(v) HTLV-1 single-infection equilibrium with stimulated HTLV-1-specific CTL response, Ξ4 = (X4,0,0,W4,0,U4),

where

X4 =
λρ

γρ + εφ2
, W4 =

ε

ρ
, U4 =

α

δ

(
λρφ2

α(γρ + εφ2)
−1

)
.

Clearly Ξ4 exists if

λρφ2

α(γρ + εφ2)
> 1.

The HTLV-1-specific CTL activation ratio for HTLV-1 single-infection is:

ℜ4 =
λρφ2

α(γρ + εφ2)
.

Thus, U4 = α

δ
(ℜ4 −1). The activation of HTLV-1-specific CTL response in the absence of HIV-1 infection is

contingent upon the parameter ℜ4.

(vi) HIV-1/HTLV-1 coinfection equilibrium with only stimulated HIV-1-specific antibody response, Ξ5 = (X5,Y5,V5,

W5,Z5,0), where

X5 =
α

φ2
= X2, Y5 =

αµφ1

κξ φ2
, V5 =

µ

ξ
=V3,

W5 =
γξ +µφ1

ξ φ2

(
λξ φ2

α(γξ +µφ1)
−1

)
,

Z5 =
σ

θ

(
αρφ1

σκφ2
−1

)
=

σ

θ
(ℜ1/ℜ2 −1) .

Obviously Ξ5 exists if,

ℜ1

ℜ2
> 1 and

λξ φ2

α(γξ +µφ1)
> 1.

The HTLV-1 infection reproductive ratio in the presence of HIV-1 infection is:

ℜ5 =
λξ φ2

α(γξ +µφ1)
.

The parameter ℜ5 locates the potential for coinfection of HTLV-1 in patients already infected with HIV-1. Hence,

W5 =
γξ +µφ1

ξ φ2
(ℜ5 −1) ,
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and then Ξ5 exists if ℜ1/ℜ2 > 1 and ℜ5 > 1.
(vii) HIV-1/HTLV-1 coinfection equilibriumwith only stimulatedHTLV-1-specific CTLresponse,Ξ6 =(X6,Y6,V6,W6,0,U6),

where

X6 =
κσ

ρφ1
, Y6 =

σ(γρ + εφ2)

ρρφ1

(
λρρφ1

κσ(γρ + εφ2)
−1

)
,

V6 =
γρ + εφ2

ρφ1

(
λρρφ1

κσ(γρ + εφ2)
−1

)
, W6 =

ε

ρ
=W4,

U6 =
α

δ

(
σκφ2

αρφ1
−1

)
=

α

δ
(ℜ2/ℜ1 −1) .

We note that Ξ6 exists when

ℜ2

ℜ1
> 1 and

λρρφ1

κσ(γρ + εφ2)
> 1.

We define the HIV-1 infection reproductive ratio in the context of HTLV-1 infection as:

ℜ6 =
λρρφ1

κσ(γρ + εφ2)
.

Thus,

Y6 =
σ(γρ + εφ2)

ρρφ1
(ℜ6 −1) , V6 =

(γρ + εφ2)

ρφ1
(ℜ6 −1) .

The parameter ℜ6 locates the potential for coinfection of HIV-1 in patients already infected with HTLV-1.

(viii) HIV-1/HTLV-1 coinfection equilibrium with stimulated both HIV-1-specific antibody and HTLV-1-specific

CTL responses Ξ7 = (X7,Y7,V7,W7,Z7,U7), where

X7 =
λξ ρ

γξ ρ +µρφ1 + εξ φ2
, Y7 =

λ µρφ1

κ(γξ ρ +µρφ1 + εξ φ2)
,

V7 =
µ

ξ
=V3, W7 =

ε

ρ
=W6 =W4,

Z7 =
σ

θ

(
λξ ρρφ1

κσ(γξ ρ +µρφ1 + εξ φ2)
−1

)
,

U7 =
α

δ

(
λξ ρφ2

α(γξ ρ +µρφ1 + εξ φ2)
−1

)
.

It is obvious that Ξ7 exists when

λξ ρρφ1

κσ(γξ ρ +µρφ1 + εξ φ2)
> 1,

λξ ρφ2

α(γξ ρ +µρφ1 + εξ φ2)
> 1.
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Now we define ℜ7 and ℜ8 as:

ℜ7 =
λξ ρρφ1

κσ(γξ ρ +µρφ1 + εξ φ2)
, ℜ8 =

λξ ρφ2

α(γξ ρ +µρφ1 + εξ φ2)
,

where ℜ7 is the HIV-1-specific antibody activation ratio in case of HIV-1/HTLV-1 coinfection, and ℜ8 is the HTLV-1-

specific CTL activation ratio in case of HIV-1/HTLV-1 coinfection. Hence, U7 =
α

δ
(ℜ8 −1) and Z7 =

σ

θ
(ℜ7 −1). As a

consequence, the equilibrium Ξ7 exists when ℜ7 > 1 and ℜ8 > 1.
To sum up, we have eight threshold parameters which locate the existence of the model’s equilibria as given below:

ℜ1 =
X0ρφ1

κσ
, ℜ2 =

X0φ2

α
, ℜ3 =

λξ ρφ1

κσ(γξ +µφ1)
,

ℜ4 =
λρφ2

α(γρ + εφ2)
, ℜ5 =

λξ φ2

α(γξ +µφ1)
, ℜ6 =

λρρφ1

κσ(γρ + εφ2)
,

ℜ7 =
λξ ρρφ1

κσ(γξ ρ +µρφ1 + εξ φ2)
, ℜ8 =

λξ ρφ2

α(γξ ρ +µρφ1 + εξ φ2)
. (28)

4. Global stability analysis

This section formulates Lyapunov function and uses LIP to establish the global asymptotic stability of equilibria. We

follow the method presented in [7, 21, 23]. We’ll use the arithmetic and geometric means inequality below.:

g1 +g2 + ...+gn

n
≥ n

√
g1g2...gn, gi ≥ 0, i = 1,2, ...,n. (29)

Define

Ωi =

{
(X ,Y,V,W,Z,U) :

dΛi

dt
= 0

}
, i = 0,1,2, ...,7.

and Ω̃i be the greatest subset of Ωi that is invariant. Moreover, we use the function

z(κ) = κ−1− lnκ.

According to the following findings, independent of the beginning conditions (any illness phases), both HIV-1 and

HTLV-1 infections are projected to die out when ℜ1 ≤ 1 and ℜ2 ≤ 1.

Theorem 1. Suppose that ℜ1 ≤ 1 and ℜ2 ≤ 1, then Ξ0 is globally asymptotically stable (G.A.S).

Proof. Define

Λ0 = X0z
(

X
X0

)
+Y +

κ

ρ
V +W +

κθ

ρξ
Z +

δ

ρ
U.
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We note that, Λ0 > 0 for all X ,Y,V,W,Z,U > 0, and Λ0(X0,0,0,0,0,0) = 0. We calculate
dΛ0
dt along the solutions of

model (16)–(21) as:

dΛ0

dt
=

(
1− X0

X

)
Ẋ + Ẏ +

κ

ρ
V̇ +Ẇ +

κθ

ρξ
Ż +

δ

ρ
U̇

=

(
1− X0

X

)
(λ − γX −φ1XV −φ2XW )+φ1XV −κY +

κ

ρ
(ρY −σV −θV Z)

+φ2XW −αW −δUW +
κθ

ρξ
(ξV Z −µZ)+

δ

ρ
(ρUW − εU)

=

(
1− X0

X

)
(λ − γX)+φ1X0V +φ2X0W − κσ

ρ
V −αW − κθ µ

ρξ
Z − δε

ρ
U.

Using λ = γX0, we get:

dΛ0

dt
=−γ(X −X0)

2

X
+

κσ

ρ
(ℜ1 −1)V +α(ℜ2 −1)W − κθ µ

ρξ
Z − δε

ρ
U.

Since ℜ1 ≤ 1 and ℜ2 ≤ 1, then dΛ0
dt ≤ 0 for any X ,V,W,Z,U > 0. In addition dΛ0

dt = 0 when X = X0 and V =W =

Z =U = 0. Solutions of system (16)–(21) are attracted to to Ω̃0 [28]. Since Ω̃0 is invariant with respect to (16), on Ω̃0, we

have from Eq. (18)

0 = V̇ = ρY =⇒ Y (t) = 0, for all t.

Therefore, Ω̃0 = {Ξ0} and applying LIP [29], we obtain that Ξ0 is G.A.S.

Based on the results below, it can be concluded that regardless of initial states, HIV-1 single-infection with unstimulated

antibody response is always established when ℜ1 > 1, ℜ2/ℜ1 ≤ 1 and ℜ3 ≤ 1.

Theorem 2. If ℜ1 > 1, ℜ2/ℜ1 ≤ 1 and ℜ3 ≤ 1, then Ξ1 is G.A.S.

Proof. Define Λ1 as:

Λ1 = X1z
(

X
X1

)
+Y1z

(
Y
Y1

)
+

κ

ρ
V1z

(
V
V1

)
+W +

κθ

ρξ
Z +

δ

ρ
U.
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We calculate
dΛ1
dt as:

dΛ1

dt
=

(
1− X1

X

)
Ẋ +

(
1− Y1

Y

)
Ẏ +

κ

ρ

(
1− V1

V

)
V̇

+Ẇ +
κθ

ρξ
Ż +

δ

ρ
U̇

=

(
1− X1

X

)
(λ − γX −φ1XV −φ2XW )+

(
1− Y1

Y

)
(φ1XV −κY )

+
κ

ρ

(
1− V1

V

)
(ρY −σV −θV Z)+φ2XW −αW −δUW

+
κθ

ρξ
(ξV Z −µZ)+

δ

ρ
(ρUW − εU) . (30)

Simplifying Eq. (30) as:

dΛ1

dt
=

(
1− X1

X

)
(λ − γX)+φ1X1V +φ2X1W −φ1XV

Y1

Y
+κY1 −

κσ

ρ
V

−κY
V1

V
+

κσ

ρ
V1 +

κθ

ρ
V1Z −αW − κθ µ

ρξ
Z − δε

ρ
U.

Using the equilibrium conditions for Ξ1:

λ = γX1 +φ1X1V1, φ1X1V1 = κY1, Y1 =
σ

ρ
V1,

we obtain

dΛ1

dt
=

(
1− X1

X

)
(γX1 − γX)+3φ1X1V1 −φ1X1V1

X1

X
−φ1X1V1

Y1XV
Y X1V1

−φ1X1V1
V1Y
VY1

+α

(
σκφ2

αρφ1
−1

)
W +

κθ µ

ρξ

(
ξ

µ
V1 −1

)
Z − δε

ρ
U. (31)

Then, collecting terms of (31), we get

dΛ1

dt
=−γ(X −X1)

2

X
+φ1X1V1

(
3− X1

X
− Y1XV

Y X1V1
− V1Y

VY1

)

+α (ℜ2/ℜ1 −1)W +
κθ(γξ +µφ1)

ρφ1ξ
(ℜ3 −1)Z − δε

ρ
U.
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Using inequality (29), we get

3− X1

X
− Y1XV

Y X1V1
− V1Y

VY1
≤ 0.

Since ℜ2/ℜ1 ≤ 1 and ℜ3 ≤ 1, then dΛ1
dt ≤ 0 for all X ,Y,V,W,Z,U > 0. Moreover,

dΛ1
dt = 0 when X = X1, Y = Y1,

V =V1 and W = Z =U = 0. Therefore, Ω̃1 = {Ξ1} .Applying LIP, we obtain Ξ1 is G.A.S.

The findings below suggest that HTLV-1 single-infection with unstimulated CTL response is always established when

ℜ2 > 1, ℜ1/ℜ2 ≤ 1 and ℜ4 ≤ 1, independent of initial conditions.

Theorem 3. Let ℜ2 > 1, ℜ1/ℜ2 ≤ 1 and ℜ4 ≤ 1, then Ξ2 is G.A.S.

Proof. Consider

Λ2 = X2z
(

X
X2

)
+Y +

κ

ρ
V +W2z

(
W
W2

)
+

κθ

ρξ
Z +

δ

ρ
U.

We calculate
dΛ2
dt as:

dΛ2

dt
=

(
1− X2

X

)
Ẋ + Ẏ +

κ

ρ
V̇ +

(
1− W2

W

)
Ẇ +

κθ

ρξ
Ż +

δ

ρ
U̇

=

(
1− X2

X

)
(λ − γX −φ1XV −φ2XW )+φ1XV −κY

+
κ

ρ
(ρY −σV −θV Z)+

(
1− W2

W

)
(φ2XW −αW −δUW )

+
κθ

ρξ
(ξV Z −µZ)+

δ

ρ
(ρUW − εU) . (32)

Then simplifying Eq. (32) as:

dΛ2

dt
=

(
1− X2

X

)
(λ − γX)+φ1X2V +φ2X2W − κσ

ρ
V −αW

−φ2XW2 +αW2 +δUW2 −
κθ µ

ρξ
Z − δε

ρ
U.

Using the equilibrium conditions for Ξ2:

λ = γX2 +φ2X2W2, φ2X2W2 = αW2,
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we obtain

dΛ2

dt
=

(
1− X2

X

)
(γX2 − γX)+2φ2X2W2 −φ2X2W2

X2

X
−φ2X2W2

X
X2

+
κσ

ρ
(

φ1ρ

κσ
X2 −1)V − κθ µ

ρξ
Z +

δε

ρ

(
ρ

ε
W2 −1

)
U

=−γ(X −X2)
2

X
+φ2X2W2

(
2− X2

X
− X

X2

)
+

κσ

ρ
(ℜ1/ℜ2 −1)V

− κθ µ

ρξ
Z +

δ (γρ + εφ2)

ρφ2
(ℜ4 −1)U

=− (X −X2)
2

X
(γ +φ2W2)+

κσ

ρ
(ℜ1/ℜ2 −1)V − κθ µ

ρξ
Z +

δ (γρ + εφ2)

ρφ2
(ℜ4 −1)U.

Since ℜ1/ℜ2 ≤ 1 and ℜ4 ≤ 1, then dΛ2
dt ≤ 0 for all X ,V,Z,U > 0. In addition, dΛ2

dt = 0 when X = X2 and V = Z =

U = 0. Solutions of system (16)-(21) converge to Ω̃2 where V = 0 and X = X2. Thus, V̇ = 0, Ẋ = 0 and Eqs. (16), (18)

provide

0 = Ẋ = λ − γX2 −φ2X2W =⇒W (t) =W2, for all t,

0 = V̇ = ρY =⇒ Y (t) = 0, for all t.

Therefore, Ω̃2 = {Ξ2}. Applying LIP, we get Ξ2 is G.A.S.

The following finding demonstrates that, regardless of the starting points, an HIV-1 single-infection with an active

antibody response is always founded when ℜ3 > 1 and ℜ5 ≤ 1.

Theorem 4. Suppose that ℜ3 > 1 and ℜ5 ≤ 1, then Ξ3 is G.A.S.

Proof. Define

Λ3 = X3z
(

X
X3

)
+Y3z

(
Y
Y3

)
+

κ

ρ
V3z

(
V
V3

)
+W +

κθ

ρξ
Z3z

(
Z
Z3

)
+

δ

ρ
U.
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We calculate
dΛ3
dt as:

dΛ3

dt
=

(
1− X3

X

)
Ẋ +

(
1− Y3

Y

)
Ẏ +

κ

ρ

(
1− V3

V

)
V̇ +Ẇ

+
κθ

ρξ

(
1− Z3

Z

)
Ż +

δ

ρ
U̇

=

(
1− X3

X

)
(λ − γX −φ1XV −φ2XW )+

(
1− Y3

Y

)
(φ1XV −κY )

+
κ

ρ

(
1− V3

V

)
(ρY −σV −θV Z)+φ2XW −αW −δUW

+
κθ

ρξ

(
1− Z3

Z

)
(ξV Z −µZ)+

δ

ρ
(ρUW − εU) . (33)

Collecting terms as:

dΛ3

dt
=

(
1− X3

X

)
(λ − γX)+φ1X3V +φ2X3W −φ1XV

Y3

Y
+κY3 −

κσ

ρ
V −κY

V3

V

+
κσ

ρ
V3 +

κθ

ρ
V3Z −αW − κθ µ

ρξ
Z − κθ

ρ
Z3V +

κθ µ

ρξ
Z3 −

δε

ρ
U.

Using the equilibrium conditions for Ξ3:

λ = γX3 +φ1X3V3, φ1X3V3 = κY3, Y3 =
σ

ρ
V3 +

θ

ρ
V3Z3, V3 =

µ

ξ
,

and collecting terms we obtain

dΛ3

dt
=

(
1− X3

X

)
(γX3 − γX)+3φ1X3V3 −φ1X3V3

X3

X
−φ1X3V3

Y3XV
Y X3V3

−φ1X3V3
V3Y
VY3

+α

(
λξ φ2

α(γξ +µφ1)
−1

)
W − δε

ρ
U

=−γ(X −X3)
2

X
+φ1X3V3

(
3− X3

X
− Y3XV

Y X3V3
− V3Y

VY3

)
+α (ℜ5 −1)W − δε

ρ
U.

Using inequality (29) and since ℜ5 ≤ 1, we get dΛ3
dt ≤ 0 for any X ,Y,V,W,U > 0. In addition, dΛ3

dt = 0 when X = X3,

Y = Y3, V =V3 and W =U = 0. Trajectories of system (16)-(21) attracted to Ω̃3 where Y = Y3 and V =V3. Then V̇ = 0,
and Eq. (18) provide

0 = V̇ = ρY3 −σV3 −θV3Z =⇒ Z(t) = Z3, for any t.
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Therefore, Ω̃3 = {Ξ3}. Applying LIP, yields Ξ3 is G.A.S.

The following finding demonstrates that, regardless of the starting points, an HTLV-1 single-infection with stimulated

CTL response is always founded when ℜ4 > 1 and ℜ6 ≤ 1.

Theorem 5. Suppose that ℜ4 > 1 and ℜ6 ≤ 1, then Ξ4 is G.A.S.

Proof. Consider

Λ4 = X4z
(

X
X4

)
+Y +

κ

ρ
V +W4z

(
W
W4

)
+

κθ

ρξ
Z +

δ

ρ
U4z

(
U
U4

)
.

Calculating
dΛ4
dt as:

dΛ4

dt
=

(
1− X4

X

)
Ẋ + Ẏ +

κ

ρ
V̇ +

(
1− W4

W

)
Ẇ

+
κθ

ρξ
Ż +

δ

ρ

(
1− U4

U

)
U̇

=

(
1− X4

X

)
(λ − γX −φ1XV −φ2XW )+φ1XV −κY

+
κ

ρ
(ρY −σV −θV Z)+

(
1− W4

W

)
(φ2XW −αW −δUW )

+
κθ

ρξ
(ξV Z −µZ)+

δ

ρ

(
1− U4

U

)
(ρUW − εU) . (34)

Eq. (34) can be written as:

dΛ4

dt
=

(
1− X4

X

)
(λ − γX)+φ1X4V +φ2X4W − κσ

ρ
V −αW

−φ2XW4 +αW4 +δUW4 −
κθ µ

ρξ
Z − δε

ρ
U −δU4W +

δε

ρ
U4.

Using the equilibrium conditions for Ξ4:

λ = γX4 +φ2X4W4, φ2X4W4 = αW4 +δU4W4, W4 =
ε

ρ
,
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we obtain

dΛ4

dt
=

(
1− X4

X

)
(γX4 − γX)+2φ2X4W4 −φ2X4W4

X4

X
−φ2X4W4

X
X4

+
κσ

ρ

[
λρρφ1

κσ(γρ + εφ2)
−1

]
V − κθ µ

ρξ
Z

=−γ(X −X4)
2

X
+φ2X4W4

(
2− X4

X
− X

X4

)
+

κσ

ρ
(ℜ6 −1)V − κθ µ

ρξ
Z

=− (γ +φ2W4)(X −X4)
2

X
+

κσ

ρ
(ℜ6 −1)V − κθ µ

ρξ
Z.

Since ℜ6 ≤ 1, then dΛ4
dt ≤ 0 for all X ,V,Z > 0. Further, dΛ4

dt = 0 when X = X4, V = 0 and Z = 0. System’s solutions

converge to Ω̃4 where X = X4,V = 0 and Z = 0, Then Ẋ = 0, V̇ = 0 and Eqs. (16), (18) imply

0 = Ẋ = λ − γX4 −φ2X4W =⇒W (t) =W4, for any t,

0 = V̇ = ρY =⇒ Y (t) = 0, for any t.

Since W =W4, then Ẇ = 0 and Eq. (19) implies

0 = Ẇ = φ2X4W4 −αW4 −δUW4 =⇒U(t) =U4, for any t.

Therefore, Ω̃4 = {Ξ4} and by applying LIP, we get Ξ4 is G.A.S.

Regardless of the initial states, the following result indicates that, the HIV-1 and HTLV-1 coinfection with solely

stimulated HIV-1-specific antibodies is always founded when ℜ5 > 1, ℜ1/ℜ2 > 1 and ℜ8 ≤ 1.

Theorem 6. If ℜ5 > 1, ℜ1/ℜ2 > 1 and ℜ8 ≤ 1, then Ξ5 is G.A.S.

Proof. Define

Λ5 = X5z
(

X
X5

)
+Y5z

(
Y
Y5

)
+

κ

ρ
V5z

(
V
V5

)
+W5z

(
W
W5

)
+

κθ

ρξ
Z5z

(
Z
Z5

)
+

δ

ρ
U.
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Calculating
dΛ5
dt as:

dΛ5

dt
=

(
1− X5

X

)
Ẋ +

(
1− Y5

Y

)
Ẏ +

κ

ρ

(
1− V5

V

)
V̇

+

(
1− W5

W

)
Ẇ +

κθ

ρξ

(
1− Z5

Z

)
Ż +

δ

ρ
U̇

=

(
1− X5

X

)
(λ − γX −φ1XV −φ2XW )+

(
1− Y5

Y

)
(φ1XV −κY )

+
κ

ρ

(
1− V5

V

)
(ρY −σV −θV Z)+

(
1− W5

W

)
(φ2XW −αW −δUW )

+
κθ

ρξ

(
1− Z5

Z

)
(ξV Z −µZ)+

δ

ρ
(ρUW − εU) . (35)

Eq. (35) can be simplified as:

dΛ5

dt
=

(
1− X5

X

)
(λ − γX)+φ1X5V +φ2X5W −φ1XV

Y5

Y
+κY5

− κσ

ρ
V −κY

V5

V
+

κσ

ρ
V5 +

κθ

ρ
V5Z −αW −φ2XW5 +αW5

+δUW5 −
κθ µ

ρξ
Z − κθ

ρ
Z5V +

κθ µ

ρξ
Z5 −

δε

ρ
U.

Using the equilibrium conditions for Ξ5:

λ = γX5 +φ1X5V5 +φ2X5W5, φ1X5V5 = κY5,

φ2X5W5 = αW5, Y5 =
σ

ρ
V5 +

θ

ρ
V5Z5, V5 =

µ

ξ
,
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and collecting terms we obtain

dΛ5

dt
=

(
1− X5

X

)
(γX5 − γX)+3φ1X5V5 +2φ2X5W5 −φ1X5V5

X5

X
−φ2X5W5

X5

X

−φ1X5V5
Y5XV
Y X5V5

−φ1X5V5
V5Y
VY5

−φ2X5W5
X
X5

+
δε

ρ

(
ρ

ε
W5 −1

)
U

=−γ(X −X5)
2

X
+φ1X5V5

(
3− X5

X
− Y5XV

Y X5V5
− V5Y

VY5

)

+φ2X5W5

(
2− X5

X
− X

X5

)
+

δ (φ1µρ +φ2εξ + γξ ρ)

ξ ρφ2
(ℜ8 −1)U

=− (γ +φ2W5)(X −X5)
2

X
+φ1X5V5

(
3− X5

X
− Y5XV

Y X5V5
− V5Y

VY5

)

+
δ (φ1µρ +φ2εξ + γξ ρ)

ξ ρφ2
(ℜ8 −1)U.

Since ℜ8 ≤ 1, then inequality (29) gives dΛ5
dt ≤ 0 for any X ,Y,V,U > 0. In addition, dΛ5

dt = 0 when X = X5, Y = Y5,

V =V5 and U = 0. Trajectories of system (16)-(21) tend to Ω̃5 where X = X5 and V =V5. Then Ẋ = 0, V̇ = 0 and Eqs.

(16), (18) provide

0 = Ẋ = λ − γX5 −φ1X5V5 −φ2X5W =⇒W (t) =W5, for any t,

0 = V̇ = ρY5 −σV5 −θV5Z =⇒ Z(t) = Z5, for any t.

Thus, Ω̃5 = {Ξ5} and LIP implies that Ξ5 is G.A.S.

Regardless of the initial states, the following result indicates that, the HIV-1 and HTLV-1 coinfection with solely

stimulated HTLV-1-specific CTL is always founded when ℜ6 > 1, ℜ2/ℜ1 > 1 and ℜ7 ≤ 1.

Theorem 7. If ℜ6 > 1, ℜ2/ℜ1 > 1 and ℜ7 ≤ 1, then Ξ6 is G.A.S.

Proof. Consider

Λ6 = X6z
(

X
X6

)
+Y6z

(
Y
Y6

)
+

κ

ρ
V6z

(
V
V6

)
+W6z

(
W
W6

)
+

κθ

ρξ
Z +

δ

ρ
U6z

(
U
U6

)
.
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Calculating
dΛ6
dt as:

dΛ6

dt
=

(
1− X6

X

)
Ẋ +

(
1− Y6

Y

)
Ẏ +

κ

ρ

(
1− V6

V

)
V̇

+

(
1− W6

W

)
Ẇ +

κθ

ρξ
Ż +

δ

ρ

(
1− U6

U

)
U̇

=

(
1− X6

X

)
(λ − γX −φ1XV −φ2XW )+

(
1− Y6

Y

)
(φ1XV −κY )

+
κ

ρ

(
1− V6

V

)
(ρY −σV −θV Z)+

(
1− W6

W

)
(φ2XW −αW −δUW )

+
κθ

ρξ
(ξV Z −µZ)+

δ

ρ

(
1− U6

U

)
(ρUW − εU) . (36)

Collecting terms as:

dΛ6

dt
=

(
1− X6

X

)
(λ − γX)+φ1X6V +φ2X6W −φ1XV

Y6

Y
+κY6

− κσ

ρ
V −κY

V6

V
+

κσ

ρ
V6 +

κθ

ρ
V6Z −αW −φ2XW6 +αW6

+δUW6 −
κθ µ

ρξ
Z − δε

ρ
U −δU6W +

δε

ρ
U6.

Using the equilibrium conditions for Ξ6:

λ = γX6 +φ1X6V6 +φ2X6W6, φ1X6V6 = κY6,

φ2X6W6 = αW6 +δU6W6, Y6 =
σ

ρ
V6, W6 =

ε

ρ
,
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and collecting terms we obtain

dΛ6

dt
=

(
1− X6

X

)
(γX6 − γX)+3φ1X6V6 +2φ2X6W6 −φ1X6V6

X6

X
−φ2X6W6

X6

X

−φ1X6V6
Y6XV
Y X6V6

−φ2X6W6
X
X6

−φ1X6V6
V6Y
VY6

+
κθ µ

ρξ

(
ξ

µ
V6 −1

)
Z

=−γ(X −X6)
2

X
+φ1X6V6

(
3− X6

X
− Y6XV

Y X6V6
− V6Y

VY6

)

+φ2X6W6

(
2− X6

X
− X

X6

)
+

κθ(φ1µρ +φ2εξ + γξ ρ)

ξ ρρφ1
(ℜ7 −1)Z

=− (γ +φ2W6)(X −X6)
2

X
+φ1X6V6

(
3− X6

X
− Y6XV

Y X6V6
− V6Y

VY6

)

+
κθ(φ1µρ +φ2εξ + γξ ρ)

ξ ρρφ1
(ℜ7 −1)Z.

Since ℜ7 ≤ 1, then inequality (29) gives dΛ6
dt ≤ 0 for any X ,Y,V,Z > 0. Moreover,

dΛ6
dt = 0 when X = X6, Y =Y6,V =

V6, and Z = 0. System’s solutions attracted to Ω̃6 which has X = X6. Then Ẋ = 0, Eq. (16) provides

0 = Ẋ = λ − γX6 −φ1X6V6 −φ2X6W =⇒W (t) =W6, for any t.

Since W =W6, then Ẇ = 0, Eq. (19) implies

0 = Ẇ = φ2X6W6 −αW6 −δUW6 =⇒U(t) =U6, for any t.

Consequently, Ω̃6 = {Ξ6} by using LIP, we get Ξ6 is G.A.S.

The ensuing finding implies that, regardless of the starting points, the HIV-1 and HTLV-1 coinfection with stimulated

both HIV-1-specific antibody and HTLV-1-specific CTL responses is always established when ℜ7 > 1 and ℜ8 > 1.

Theorem 8. If ℜ7 > 1 and ℜ8 > 1, then Ξ7 is G.A.S.

Proof. Define

Λ7 = X7z
(

X
X7

)
+Y7z

(
Y
Y7

)
+

κ

ρ
V7z

(
V
V7

)
+W7z

(
W
W7

)
+

κθ

ρξ
Z7z

(
Z
Z7

)
+

δ

ρ
U7z

(
U
U7

)
.
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Calculating
dΛ7
dt as:

dΛ7

dt
=

(
1− X7

X

)
Ẋ +

(
1− Y7

Y

)
Ẏ +

κ

ρ

(
1− V7

V

)
Ż

+

(
1− W7

W

)
Ẇ +

κθ

ρξ

(
1− Z7

Z

)
Ż +

δ

ρ

(
1− U7

U

)
U̇

=

(
1− X7

X

)
(λ − γX −φ1XV −φ2XW )+

(
1− Y7

Y

)
(φ1XV −κY )

+
κ

ρ

(
1− V7

V

)
(ρY −σV −θV Z)+

(
1− W7

W

)
(φ2XW −αW −δUW )

+
κθ

ρξ

(
1− Z7

Z

)
(ξV Z −µZ)+

δ

ρ

(
1− U7

U

)
(ρUW − εU) . (37)

Collecting terms as:

dΛ7

dt
=

(
1− X7

X

)
(λ − γX)+φ1X7V +φ2X7W −φ1XV

Y7

Y
+κY7

− κσ

ρ
V −κY

V7

V
+

κσ

ρ
V7 +

κθ

ρ
V7Z −αW −φ2XW7 +αW7

+δUW7 −
κθ µ

ρξ
Z − κθ

ρ
Z7V +

κθ µ

ρξ
Z7 −

δε

ρ
U −δU7W +

δε

ρ
U7.

Using the equilibrium conditions for Ξ7:

λ = γX7 +φ1X7V7 +φ2X7W7, φ1X7V7 = κY7,

φ2X7W7 = αW7 +δU7W7, Y7 =
σ

ρ
V7 +

θ

ρ
V7Z7, V7 =

µ

ξ
, W7 =

ε

ρ
,
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and collecting terms we obtain

dΛ7

dt
=

(
1− X7

X

)
(γX7 − γX)+3φ1X7V7 +2φ2X7W7 −φ1X7V7

X7

X
−φ2X7W7

X7

X

−φ1X7V7
Y7XV
Y X7V7

−φ1X7V7
V7Y
VY7

−φ2X7W7
X
X7

=−γ(X −X7)
2

X
+φ1X7V7

(
3− X7

X
− Y7XV

Y X7V7
− V7Y

VY7

)
+φ2X7W7

(
2− X7

X
− X

X7

)

=− (γ +φ2W7)(X −X7)
2

X
+φ1X7V7

(
3− X7

X
− Y7XV

Y X7V7
− V7Y

VY7

)
.

Using inequality (29), we obtain
dΛ7
dt ≤ 0 for all X ,Y,V > 0. Moreover

dΛ7
dt = 0 when X = X7, Y = Y7 and V =V7 .

System’ solutions attacked to Ω̃7 which has X = X7,Y = Y7 and V =V7. Then Ẋ = 0, V̇ = 0 and Eqs. (16), (18) imply

0 = Ẋ = λ − γX7 −φ1X7V7 −φ2X7W =⇒W (t) =W7, for any t,

0 = V̇ = ρY7 −σV7 −θV7Z =⇒ Z(t) = Z7, for any t.

Since W =W7, then Ẇ = 0 and Eq. (19) implies

0 = Ẇ = φ2X7W7 −αW7 −δUW7 =⇒U(t) =U6, for any t.

Hence, Ω̃7 = {Ξ7} and LIP yields that Ξ7 is G.A.S.

Now we able to summarize the existence and stability conditions of the model’s equilibria (see Table 1):

Table 1. Existence and stability conditions .

Equilibrium Existence conditions Stability conditions

Ξ0 = (X0,0,0,0,0,0) None ℜ1 ≤ 1 and ℜ2 ≤ 1

Ξ1 = (X1,Y1,V1,0,0,0) ℜ1 > 1 ℜ1 > 1, ℜ2
ℜ1

≤ 1 and ℜ3 ≤ 1

Ξ2 = (X2,0,0,W2,0,0) ℜ2 > 1 ℜ2 > 1, ℜ1
ℜ2

≤ 1 and ℜ4 ≤ 1

Ξ3 = (X3,Y3,V3,0,Z3,0) ℜ3 > 1 ℜ3 > 1 and ℜ5 ≤ 1

Ξ4 = (X4,0,0,W4,0,U4) ℜ4 > 1 ℜ4 > 1 and ℜ6 ≤ 1

Ξ5 = (X5,Y5,V5,W5,Z5,0) ℜ5 > 1 and
ℜ1
ℜ2

> 1 ℜ5 > 1, ℜ1
ℜ2

> 1 and ℜ8 ≤ 1

Ξ6 = (X6,Y6,V6,W6,0,U6) ℜ6 > 1 and
ℜ2
ℜ1

> 1 ℜ6 > 1, ℜ2
ℜ1

> 1 and ℜ7 ≤ 1

Ξ7 = (X7,Y7,V7,W7,Z7,U7) ℜ7 > 1 and ℜ8 > 1 ℜ7 > 1 and ℜ8 > 1
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5. Comparison study

In this section we show the significance of incorporating HIV-1-specific antibody and HTLV-1-specific CTL responses

in our proposed model. Model (7)–(8), which was investigated in [23], is the result of our model when the CTL immune

response is disregarded. Here, the model includes just five equilibria (for further information, see [23]).

System (16)–(21) without CTL and antibody immune responses becomes:
Ẋ = λ − γX −φ1XV −φ2XW,

Ẏ = φ1XV −κY,
V̇ = ρY −σV,
Ẇ = φ2XW −αW.

(38)

This model has only three equilibria:

• Uninfected equilibrium, Ξ̆0 = (X̌0,0,0,0), where HIV-1 and HTLV-1 are cleared,

• HIV-1 single-infection equilibrium, Ξ̆1 = (X̌1,Y̌1,V̌1,0), where the HTLV-1 is prevented,

• HTLV-1 single-infection equilibrium, Ξ̆2 = (X̌2,0,0,W̌2), where the HIV-1 is prevented, where X̌i = Xi, i = 0,1,2,
Y̌1 =Y1, V̌1 =V1 and W̌2 =W2. Section 3 defines two thresholds, ℜ1 and ℜ2, which determine the existence of these

three equilibria.

As a result, in the absence of antibody and CTL responses, there will be a competition between HTLV-1 and HIV-1

on consuming resources of target cells, CD4+T cells. There is only one kind of virus that can survive with the highest

basic reproduction ratio. The scenario of HTLV-1 and HIV-1 cohabitation appears in our suggested model. This scenario is

more plausible since HTLV-1 and HIV-1 are often present and cannot currently be eliminated from the body by medication.

This scenario might be interpreted as follows: cohabitation of HTLV-1 and HIV-1 is possible because antibody and CTL

immune responses inhibit viral development, which also suppresses competition between HTLV-1 and HIV-1 [30].

Lastly, our model leads to the HIV-1 single-infection scenario given in [4] in the absence of HTLV-1 infection and

immune response as follows: 
Ẋ = λ − γX −φ1XV,
Ẏ = φ1XV −κY,
V̇ = ρY −σV.

(39)

System (39) has only two equilibria:

(I) Uninfected equilibrium, Ξ̃0 = (λ

γ
,0,0), where the HIV-1 particles are cleared,

(II) HIV-1 single-infection equilibrium, Ξ̃1 = ( λ

γℜ1
, γσ

ρφ1
(ℜ1 −1) , γ

φ1
(ℜ1 −1)), where the HIV-1 is chronic.

6. Numerical simulations

In this section, we conduct numerical simulation for model (16)–(21) to illustrate the theoretical findings. We

demonstrate the effect of HIV-1-specific antibody and HTLV-1-specific CTL responses on the HIV-1/HTLV-1 coinfection

dynamics. MATLAB’s ode45 solver will be used to numerically solve the ODEs system (16)–(21). The values of model’s

parameters are listed in Table 2.
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Table 2. Model parameters.

Parameter Value Source Parameter Value Source

λ 10 [31, 32] θ 0.8 [33, 34]

γ 0.01 [35, 36] α 0.2 [19, 17, 18]

φ1 Varied Assumed δ 0.2 [33]

φ2 Varied Assumed ξ Varied Assumed

κ 0.5 [37, 9], [10] µ 0.1 [33]

ρ 5 [33, 21] ρ Varied Assumed

σ 2 [33, 21] ε 0.1 [15, 38]

6.1 Stability of the equilibria

In order to demonstrate the global stability of the system’s equilibria, we demonstrate that the system’s solutions

attracted to one of its equilibria regardless of the initial conditions. So, we use three distinct initials as follows:

C1 : (X(0),Y (0),V (0),W (0),Z(0),U(0)) = (500,1.5,5,30,3,2) ,

C2 : (X(0),Y (0),V (0),W (0),Z(0),U(0)) = (400,1,2,20,2,1.5) ,

C3 : (X(0),Y (0),V (0),W (0),Z(0),U(0)) = (300,0.5,1.5,10,1,0.5) .

Here, we select the values of φ1, φ2, ξ and ρ as:

State 1 (Stability of Ξ0): φ1 = 0.0001, φ2 = 0.0001, ξ = 0.3 and ρ = 0.2. These values give ℜ1 = 0.5 < 1 and ℜ2 =

0.5 < 1. Figure 2 demonstrates that for all starting values, the trajectories lead to the equilibrium Ξ0 = (1000,0,0,0,0,0).
This demonstrates that based on Theorem 1, Ξ0 is G.A.S. In this state, both HIV-1 and HTLV-1 will be eventually cleared.

State 2 (Stability of Ξ1): φ1 = 0.0005, φ2 = 0.0001, ξ = 0.001 and ρ = 0.02. This gives ℜ2 = 0.5 < 1 < 2.5 = ℜ1,

ℜ3 = 0.4167 < 1 and hence ℜ2/ℜ1 = 0.2 < 1. The numerical results show that, Ξ1 = (400,12,30,0,0,0) exists. Figure
3 clearly demonstrates that the trajectories eventually trend to Ξ1 for all initials, which is consistent with Theorem 2. This

case simulates an HIV-1 single-infection but without antibody response.

State 3 (Stability of Ξ2): φ1 = 0.0001, φ2 = 0.0007, ξ = 0.001 and ρ = 0.002. These values give ℜ1 =

0.5 < 1 < 3.5 = ℜ2, ℜ4 = 0.7778 < 1 and then ℜ1/ℜ2 = 0.1429 < 1. The equilibrium point Ξ2 exists with Ξ2 =

(285.71,0,0,35.71,0,0). Figure 4 shows that, for all initials, the trajectories tend to Ξ2, which is consistent with Theorem

3. This state represents an HTLV-1 single-infection but without CTL response.

State 4 (Stability of Ξ3): φ1 = 0.001, φ2 = 0.00003, ξ = 0.01 and ρ = 0.002. With such selection we obtain

ℜ3 = 2.5 > 1 and ℜ5 = 0.075 < 1. The equilibrium point Ξ3 exists with Ξ3 = (500,10,10,0,3.75,0). Figure 5 clearly
demonstrates that the trajectories eventually trend to Ξ3 for all initials, which is consistent with Theorem 4. Once an HIV-1

single infection has been achieved, an HIV-1-specific antibody has been induced.

State 5 (Stability of Ξ4): φ1 = 0.0003, φ2 = 0.0009, ξ = 0.05 and ρ = 0.003. With such selection we obtain

ℜ4 = 1.125 > 1 and ℜ6 = 0.375 < 1. Thus, Ξ4 exists with Ξ4 = (250,0,0,33.33,0,0.13). Figure 6 shows that, for all
initials, the trajectories tend to Ξ4 which is consistent with Theorem 5. It is possible to achieve the case of HTLV-1

single-infection with activated HTLV-1-specific CTL.
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State 6 (Stability of Ξ5): φ1 = 0.0006, φ2 = 0.0005, ξ = 0.1 and ρ = 0.0005. This gives ℜ5 = 2.3585 > 1,
ℜ8 = 0.226 < 1 and ℜ1/ℜ2 = 1.2 > 1. The numerical results show that, Ξ5 = (400,0.48,1,28.8,0.5,0) exists. Figure 7
clearly demonstrates that the trajectories eventually trend to Ξ5 for all initials, which agrees with Theorem 6. Hence, a

coinfection with HIV-1 and HTLV-1 is attained where only HIV-1-specific antibody is stimulated.

State 7 (Stability of Ξ6): φ1 = 0.0005, φ2 = 0.0007, ξ = 0.001 and ρ = 0.08. With such selection we have

ℜ6 = 2.2989> 1,ℜ7 = 0.4107< 1 andℜ2/ℜ1 = 1.4> 1. We find that, the equilibriumΞ6 =(400,11.3,28.25,1.25,0,0.4)
exists. Figure 8 shows that, for all initials, the trajectories tend to Ξ6 which is consistent with Theorem 7. The patient will

only have active HTLV-1-specific CTL when they reach the case of coinfection with HIV-1 and HTLV-1.

State 8 (Stability of Ξ7): φ1 = 0.006, φ2 = 0.007, ξ = 0.01 and ρ = 0.05. This selection gives ℜ7 = 3.5714 > 1 and

ℜ8 = 4.1667 > 1. Figure 9 shows that Ξ7 = (119.05,14.29,10,2,6.43,3.17) exists and for all initials. The trajectories of
the system attacked to Ξ7 and this is in line with Theorem 8. In this stage of the coinfection, both HTLV-1-specific CTL

and HIV-1-specific antibodies are at work.

To obtain further verification, we conduct an investigation the local stability of the system’s equilibria. We calculate

the Jacobian matrix J = J(X ,Y,V,W,Z,U) of system (16)–(21) as:

J =



−(γ +φ1V +φ2W ) 0 −φ1X −φ2X 0 0
φ1V −κ φ1X 0 0 0

0 ρ −θZ −σ 0 −θV 0
φ2W 0 0 −(α +δU)+φ2X 0 −δW

0 0 ξ Z 0 −µ +ξV 0
0 0 0 ρU 0 −ε +ρW


. (40)

At each equilibrium we find the eigenvalues λ j, j = 1,2, ...,7 of J. An equilibrium is locally stable if Re(λ j)< 0.
Choosing the parameters φ1, φ2, ξ and ρ from states 1–8, we proceed to compute all equilibria that are nonnegative along

with their corresponding eigenvalues. The real components of the eigenvalues, the nonnegative equilibria, and the stability

of the equilibrium point were all shown in Table 3. It was observed that the local stability characteristics were in accordance

with the global stability analysis.

Table 3. Local stability of nonnegative equilibria Ξ j , j = 0,1, ...,7.

State The equilibria Re(λ j) j = 0,1,2, ...,7 Stability

1 Ξ0 = (1000,0,0,0,0,0) (−2.28,−0.22,−0.1,−0.1,−0.1,−0.01) stable

2
Ξ0 = (1000,0,0,0,0,0)
Ξ1 = (400,12,30,0,0,0)

(−3,0.5,−0.1,−0.1,−0.1,−0.01)
(−2.5,−0.16,−0.1,−0.01,−0.01,−0.07)

unstable
stable

3
Ξ0 = (1000,0,0,0,0,0)
Ξ2 = (285.71,0,0,35.71,0,0)

(−2.28,0.5,−0.22,−0.1,−0.1,−0.01)
(−2.09,−0.41,−0.1,−0.02,−0.02,−0.03)

unstable
unstable
stable

4
Ξ0 = (1000,0,0,0,0,0)
Ξ1 = (200,16,40,0,0,0)
Ξ3 = (500,10,10,0,3.75,0)

(−3.61,1.11,−0.17,−0.1,−0.1,−0.01)
(−2.51,0.3,−0.19,−0.02,−0.02,−0.1)
(−5.45,−0.19,−0.03,−0.03,−0.1,−0.02)

unstable
unstable
stable

5

Ξ0 = (1000,0,0,0,0,0)
Ξ1 = (666.67,6.67,16.67,0,0,0)
Ξ2 = (222.22,0,0,38.89,0,0)
Ξ3 = (943.4,1.13,2,0,1.04,0)
Ξ4 = (250,0,0,33.33,0,0.13)

(−2.69,0.7,0.19,−0.1,−0.1,−0.01)
(−2.5,0.73,0.4,−0.1,−0.007,−0.007)
(−2.2,−0.3,−0.1,−0.02,−0.02,0.02)
(−3.31,0.65,−0.01,−0.01,−0.1,−0.01)
(−2.22,−0.28,−0.1,−0.01,−0.01,−0.01)

unstable
unstable
unstable
unstable
stable

6

Ξ0 = (1000,0,0,0,0,0)
Ξ1 = (333.33,13.33,33.33,0,0,0)
Ξ2 = (400,0,0,30,0,0)
Ξ3 = (943.4,1.13,1,0,4.58,0)
Ξ5 = (400,0.48,1,28.8,0.5,0)

(−3.14,0.64,0.3,−0.1,−0.1,−0.01)
(3.23,−2.5,−0.1,−0.01,−0.01,−0.03)
(−2.58,−0.1,−0.09,0.08,−0.01,−0.01)
(−6.11,0.27,−0.03,−0.03,−0.1,−0.01)
(−2.89,−0.09,−0.007,−0.007,−0.01,−0.01)

unstable
unstable
unstable
unstable
stable

7

Ξ0 = (1000,0,0,0,0,0)
Ξ1 = (400,12,30,0,0,0)
Ξ2 = (285.71,0,0,35.71,0,0)
Ξ4 = (919.54,0,0,1.25,0,2.22)
Ξ6 = (400,11.3,28.25,1.25,0,0.4)

(−3,0.5,0.5,−0.1,−0.1,−0.01)
(−2.5,−0.1,0.08,−0.01,−0.01,−0.07)
(2.76,−2.38,−0.12,−0.1,−0.02,−0.02)
(−2.94,0.44,−0.0002,−0.0002,−0.1,−0.01)
(−2.5,−0.002,−0.002,−0.01,−0.01,−0.07)

unstable
unstable
unstable
unstable
stable
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Table 3. Cont.

8

Ξ0 = (1000,0,0,0,0,0)
Ξ1 = (33.33,19.33,48.33,0,0,0)
Ξ2 = (28.57,0,0,48.57,0,0)
Ξ3 = (142.86,17.14,10,0,8.21,0)
Ξ4 = (416.67,0,0,2,0,13.58)
Ξ6 = (33.33,18.4,46,2,0,0.17)
Ξ7 = (119.05,14.29,10,2,6.43,3.17)

(6.8,−6.78,4.28,−0.1,−0.1,−0.01)
(−2.55,0.38,−0.12,−0.12,−0.1,0.03)
(−2.44,2.33,−0.18,−0.18,−0.1,−0.06)
(−9.002,0.8,−0.05,−0.05,−0.1,−0.04)
(−4.86,2.36,−0.001,−0.001,−0.1,−0.02)
(−2.55,0.36,−0.13,−0.13,−0.0005,−0.0005)
(−7.58,−0.03,−0.03,−0.03,−0.03,−0.04)

unstable
unstable
unstable
unstable
unstable
unstable
stable
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Figure 2. Solutions of model (16)–(21) with C1–C3 converge to Ξ0 = (1000,0,0,0,0,0) when ℜ1 ≤ 1 and ℜ2 ≤ 1 (State 1).
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Figure 3. Solutions of model (16)–(21) with C1–C3 converge to Ξ1 = (400,12,30,0,0,0) when ℜ1 > 1 , ℜ2/ℜ1 ≤ 1 and ℜ3 ≤ 1 (State 2).
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Figure 4. Solutions of model (16)–(21) with C1–C3 converge to Ξ2 = (285.71,0,0,35.71,0,0) when ℜ2 > 1, ℜ1/ℜ2 ≤ 1 and ℜ4 ≤ 1 (State 3).
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Figure 5. Solutions of model (16)–(21) with C1–C3 converge to Ξ3 = (500,10,10,0,3.75,0) when ℜ3 > 1 and ℜ5 ≤ 1 (State 4).
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Figure 6. Solutions of model (16)–(21) with C1–C3 converge to Ξ4 = (250,0,0,33.33,0,0.13) when ℜ4 > 1 and ℜ6 ≤ 1 (State 5).
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Figure 7. Solutions of model (16)–(21) with C1–C3 converge to Ξ5 = (400,0.48,1,28.8,0.5,0) when ℜ5 > 1,ℜ1/ℜ2 > 1 and ℜ8 ≤ 1 (State 6).
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Figure 8. Solutions of model (16)–(21) with C1–C3 converge to Ξ6 = (400,11.3,28.25,1.25,0,0.4) when ℜ6 > 1,ℜ2/ℜ1 > 1 and ℜ7 ≤ 1 (State 7).
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Figure 9. Solutions of model (16)–(21) with C1–C3 converge to Ξ7 = (119.05,14.29,10,2,6.43,3.17) when ℜ7 > 1 and ℜ8 > 1 (State 8).

6.2 Impact of CTL and antibody responses on the system’s behavior

This subsection addresses the effect of stimulated rate constants of HIV-1-specific antibody and HTLV-1-specific

CTL responses, (ρ and ξ ) on the dynamics of system (16)-(21). We fix the parameters φ1 = 0.01 and φ2 = 0.03 and vary

the parameter ρ and ξ as:

B1: ρ = 0.01, ξ = 0.05,

B2: ρ = 0.04, ξ = 0.07,
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B3: ρ = 0.07, ξ = 0.09,

B4: ρ = 0.1, ξ = 0.11.

Additionally, we take into account the initial condition:

C4 : (X(0),Y (0),V (0),W (0),Z(0),U(0)) = (250,45,35,45,40,50) .

The impact of HIV-1-specific antibody and HTLV-1-specific CTL responses on the system’s solutions can be seen

in Figure 10. We observe that, as ρ and ξ are increased, the concentrations of uninfected CD4+T cells, HIV-1-specific

antibody and HTLV-1-specific CTL are increased, while concentrations of HIV-1 infected cells, HTLV-1 infected cells

and HIV-1 particles are decreased. Therefore, antibody and CTL responses can control the HIV-1/HTLV-1 coinfection.

Note that, ℜ1 and ℜ2 do not depend on ρ and ξ , therefore Ξ0 can not be reached by increasing ρ and ξ . This might

contribute to the development of treatments for HIV-1 and HTLV-1 with the potential to boost HIV-1-specific antibody and

HTLV-1-specific CTL responses.
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Figure 10. Cont.
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Figure 10. Solutions of model (16)–(21) under the impact of adaptive immune response.

7. Discussion

We presented a mathematical model that accurately captures the dynamics of coinfection between HIV-1 and HTLV-1

in this study. The model included both CTL and antibody responses. The fundamental and global properties of the model

were examined in our study. The model has eight equilibrium points as the following:

• Uninfected equilibrium (Ξ0) which is usually exists. In addition, Ξ0 is G.A.S when ℜ1 ≤ 1, ℜ2 ≤ 1 and unstable

otherwise. In this state, the concentration of HIV-1 and HTLV-1 infections cells eventually converges to 0 and the

HIV-1 and HTLV-1 patient will recover.

• The HIV-1 single-infection equilibrium without immune response (Ξ1) exists when ℜ1 > 1. Futher Ξ1 is G.A.S

when ℜ1 > 1, ℜ2
ℜ1

≤ 1 and ℜ3 ≤ 1. In this state, the only HIV-1 infection is there, but the immune system is not

responding.

• The HTLV-1 single-infection equilibrium without immune response (Ξ2) exists when ℜ2 > 1 and it is G.A.S when

ℜ2 > 1, ℜ1
ℜ2

≤ 1 and ℜ4 ≤ 1. In this state, the only HTLV-1 infection is there, but the immune system is not

responding.

• The HIV-1 single-infection equilibrium with only HIV-1-specific antibody response (Ξ3) exists when ℜ3 > 1.
Moreover, Ξ3 is G.A.S when ℜ3 > 1 and ℜ5 ≤ 1. For this case, the body has enough number of HIV-1 viruses (i.e.,

V > µ/ξ ) which trigger the HIV-1-specific antibody response.

• The HTLV-1 single-infection equilibrium with only HTLV-1-specific CTL response (Ξ4) exists when ℜ4 > 1.
Moreover, Ξ4 is G.A.S when ℜ4 > 1 and ℜ6 ≤ 1. For this case, the body has enough number of HTLV-1 infected

cells (i.e., W > ε/ρ) which trigger the HTLV-1-specific CTL response.

• The HIV-1/HTLV-1 coinfection equilibrium with only HIV-1-specific antibody response (Ξ5) exists when ℜ5 > 1
and

ℜ1
ℜ2

> 1. Moreover, Ξ5 is G.A.S when ℜ5 > 1, ℜ1
ℜ2

> 1 and ℜ8 ≤ 1. For this case, the body has enough

number of HIV-1 viruses (i.e., V > µ/ξ ) which trigger the HIV-1-specific antibody response. But, the number of

HTLV-1-infected cells still not enough to activate the HTLV-1-specific CTL response (i.e., W ≤ ε/ρ).

• The HIV-1/HTLV-1 coinfection equilibrium with only HTLV-1-specific CTL response (Ξ6) exists when ℜ6 > 1 and
ℜ2
ℜ1

> 1. Moreover, Ξ6 is G.A.S when ℜ6 > 1, ℜ2
ℜ1

> 1 and ℜ7 ≤ 1. For this case, the body has enough number of

HTLV-1 infected cells (i.e., W > ε/ρ) which trigger HTLV-1-specific CTL response. But, the number of HIV-1

viruses still not enough to activate the HIV-1-specific antibody response (i.e., V ≤ µ/ξ ).
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• The HIV-1/HTLV-1 coinfection equilibrium with HIV-1-specific antibody and HTLV-1-specific CTL responses

(Ξ7) exists and is G.A.S when ℜ7 > 1 and ℜ8 > 1. For this case, the concentrations of HIV-1 viruses and HTLV-1
infected cells are high enough to trigger the HIV-1-specific antibody and HTLV-1-specific CTL responses (i.e.,

V > µ/ξ and W > ε/ρ).

Our study’s primary shortcoming is that we were unable to estimate the model’s parameter values using actual data

from HIV-1/HTLV-1 coinfected individuals. The reason for this is that although there may be real data for people who are

infected with either HIV-1 or HTLV-1, real data for co-infection with both HIV-1 and HTLV-1 is harder to come by.

8. Conclusion

Mathematical models are commonly employed in order to comprehend the intricate dynamics of biological systems.

Several several recent investigations were devoted for modeling HIV-1 and HTLV-1 coinfection with either antibody

response or CTL response. In the current research work we developed an HIV-1/HTLV-1 coinfection model accounting for

both antibody and CTL responses. We began by displaying the fundamental properties of the solutions, nonnegativity and

boundedness. Eight threshold parameters (ℜ1-ℜ8) that we determined fully define whether the model’s equilibria exist

and are globally stable. The global asymptotic stability of each and every equilibria was demonstrated using the Lyapunov

approach. We used numerical methods to solve the model and then visually displayed the outcomes. The theoretical and

numerical results agreed, as we discovered. We discussed the effect of adaptive immunity on the HIV-1/HTLV-1 coinfection

dynamics. We examined the effects of antibody and CTL responses on the HIV-1/HTLV-1 coinfection dynamical behavior.

We showed that viral coinfection may be suppressed by immunological activation of antibody and CTL responses, even

though the parameters of these responses have no influence on the basic reproduction ratio of HIV-1 single-infection (ℜ1)

and HTLV-1 single-infection (ℜ2). This might make it easier to develop treatment strategies for HIV-1 and HTLV-1, which

can improve the production of HIV-1-specific antibodies and CTL responses.

In our proposed model we assumed that the uninfected CD4+T cells are produced with a constant rate λ . Indeed,

in some publications (see e.g., [10, 31, 39–41]), the uninfected CD4+T cells are assumed to be proliferated at a logistic

growth rate ϖX
(

1− X
Xmax

)
, where where ϖ is the rate of growth and Xmax is the maximum capacity of uninfected CD4+T

cells in the human body. Our suggested model, which accounts for the uninfected CD4+T cells’ logistic growth rate, results

in:

Ẋ = λ +ϖX
(

1− X
Xmax

)
− γX −φ1XV −φ2XW,

Ẏ = φ1XV −κY,

V̇ = ρY −σV −θV Z,

Ẇ = φ2XW −αW −δUW,

Ż = ξV Z −µZ,

U̇ = ρUW − εU.

We leave this concept for future study since it requires more research.
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There are other methods to expand our proposed model, such by integrating: (i) reaction diffusion [42], (ii) memory

effect [43, 44], (iii) stochastic effect [44, 45] and (iv) time delay [8, 40]. Future studies might also focus on including the

effects of vaccines and antiviral drugs into the model. Additionally, we wish to compare the results with patient data that

has been infected.
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