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Abstract: In this paper the authors discuss a class of differential equations known as neutral delay differential equations

(NDDEs) in which the delay occurs in the derivative with the highest order. They are encountered in various fields of

applied sciences and are essential for mathematically representing real-world phenomena. It was challenging to discover

approximate analytical solutions for certain methods. In this study, the researchers utilized the generalized Lambert W

function to derive the characteristic roots for a first-order neutral delay differential equation featuring random delays.

Numerical examples were then utilized to validate the obtained results.
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1. Introduction

In Delay Differential Equations (DDEs), the values of the solution and its derivatives in a particular instant depend on

the time derivatives at a distinct earlier time instant. The general form of these equation described as

xk(t) = f (t,x(t), . . . , xk−1(t),x(d0), . . . ,xk(dk)), where d j ≡ d j(t,x(t)) (1)

is known as the delay, sustaining d j ≤ t everywhere in the time interval [t0, t1] given, for j = 0, . . . ,k. Neutral delay
differential equations (NDDEs) are frequently encountered in many practical areas. DDEs, in particular NDDEs, offer an

effective mathematical tool to represent different phenomena from issues in real life. New analytical techniques are being

developed quickly in recent times with the goal of solving various classes of DDEs. It is clear that many of these newly
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proposed methodologies have had some trouble locating approximate analytical solutions that lead to an accurate solution

of DDEs, more specifically NDDEs. Due to their distinct transcendental nature, finding analytical solutions for Neutral

Delay Differential Equations (NDDEs) with constant and proportional delays is extremely difficult. Therefore, numerical

techniques are commonly employed for their solution [1–4]. Hence, it becomes increasingly vital to develop an innovative

analytical approach for addressing these equations.

Neutral Delay Differential Equations find applications across a diverse range of fields such as neural networks,

engineering, bioscience, economics, fluid dynamics, physics, and chemistry. Challenges within these domains have

frequently prompted researchers and physicists to invest significant efforts in exploring intriguing phenomena, such as the

impact of vibrating systems attached to an elastic bar. Within the realm of biology, a neutral logistic equation is employed

to represent the growth of a population of a single species. Numerical evaluation of the Lambert W function and its

application in generating generalized Gaussian noise with an exponent [5]. In addition, [6] utilizes this model to depict the

torsional characteristics of a flexible rod that incorporates mass.

In 2020, NormahM and Bardez J [7, 8] proposed a resolution for NDDE by employing HAM and the Natural transform

method. However, it proves challenging to identify an initial approximate solution due to its tedious nature. Piriadarshani

D and Sasikala K [9] achieved stabilization of the equation by employing numerical methods with the LambertW function,

successfully obtaining approximate roots for the equation.

1.1 The Lambert W function

In this the authors presented some basic concept of LambertW function.

Euler and Lambert examined the transcendental equation xex = a before [10, 11]. The inverse of the above equation
is determined by W indicates the Lambert function and. It gives the solution denoted by W (a). The well-known A
transcendental equation that appears in a variety of applications can be solved using the Lambert-W function, including

population dynamics, physics, and combinatorics (see [12–14]).

1.2 The Generalized Lambert W function

In this the authors discussed Generalized LambertW function.

The Generalized LambertW function, as introduced by T.C. Scott et al., serves as the solution to the equation described

as follows:

ex (x− t1)(x− t2) . . .(x− ln)
(x− s1)(x− s2)...(x− sm)

= z. (2)

The solution of equation (2) can be represented [10],

W

(
t1 t2 ... tn
s1 s2 ... sn

;Z

)
. (3)

Specifically,

W (t;z) = log(z), W (t;z) =W (z), W (t;z) =W
(
− 1

Z

)

W (t;z) = t +W (ze−t), W (t;z) = s−W (−es

Z
).

The solution function of the Lambert function is actually the equation xex + rx = z. Where r is real or arbitrary
parameter.

Wr(z)eWr(z)+ rWr(z) = z.
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1.3 Existence and computation of characteristic roots of NDDE

In this the authors discussed some the Existence and computation of Characteristic roots of NDDE.

Theorem 1. For the first order NDDE

x′(t)+ax(t)+adx(t −h)+bdx′(t −h) = 0, t ∈ [0, T1]; x(t) = ϕ(t), T ∈ [−h, 0] (4)

The characteristic root is given by

λ =
1
h

Wbde(ah)(−bd h e(ah)(−a+
ad

bd
))−a.

Proof. The characteristic equation of NDDE (4) is

λeλ t +aeλ t +adeλ (t−h)+bdλeλ (t−h) = 0. (5)

It can be written as

e−λh =
−(λ − (−a))

bd

(
λ − bd

ad

)

eλh (λ +a)

(λ + bd
ad
)
=−bd .

Which can be denoted as

hW

(
−ha
−h ad

bd
−bd

)
. (6)

The characteristic equation of Neutral Delay Differential Equation is

λeλ t +aeλ t +adeλ (t−h)+bdλeλ (t−h) = 0

(λ +a)eλ t +(ad +bdλ )eλ (t−h) = 0.

Multiplying by heh(λ+a)−λ t yields

(λ +a)eλ theh(λ+a)−λ t +(ad +bdλ )eλ (t−h)heh(λ+a)−λ t = 0

(λ +a)eλ theh(λ+a)−λ t +adeλ (t−h)heh(λ+a)−λ t +bdλeλ (t−h)heh(λ+a)−λ t = 0

heh(λ+a)(λ +a)+he(ah)ad +heh(a)bdλ = 0

h(λ +a)eh(λ+a)+adhe(ah)+bdhλe(ah) = 0

h(λ +a)eh(λ+a)+bdhλe(ah) =−ad h e(ah).
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Adding and subtracting bdahe(ah) and after rearranging the equation’s terms, we obtain

h(λ +a) eh(λ+a)+bdhλe(ah)+bdahe(ah) =−ad he (ah)+bdahe(ah)

h(λ +a)eh(λ+a)+bd he (ah)(λ +a) =−ad he (ah)+bdahe(ah)

It follows that

λ =
1
h

Wbde(ah)(bdahe(ah)−adhe(ah))−a. (7)

Comparing (6) and (7), we get

hW

(
−ha
−h ad

bd
−bd

;−bd

)
=

1
h

Wbde(ah)

(
−bdhe(ah)

(
−a+

ad

bd

))
−a.

The r - LambertW function have five branch structures

(i) r = 0;

(ii) r >
1
e2 ;

(iii) 0 < r <
1
e2 ;

(iv) r =
1
e2 ; and

(v) r < 0

Case 1:

r = bde(ah) = 0 → bd = 0 or eah = 0.

Since eah 6= 0 hence bd = 0.

If r = 0 → bd = 0, then the LambertW function is obtained.

Hence λ =
1
h

Wbde(ah)(bdahe(ah)−adhe(ah))−a reduces to

λ =
1
h

W0(−adhe)−a.
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Case 2: If r >
1
e2 ,then sgnW (x) = sgn(x), whereWr(x) : R→R is differentiable and strictly increasing function universally.

r >
1
e2 ⇒ bde(ah) >

1
e2

e2e(ah) >
1
bd

⇒ e2+ah >
1
bd

2+ah > logbd ⇒ 2+ah > logb−1
d

2+ah >− logbd ⇒ ah >−2− logbd

sgn Wr(x) = sgn(x).

sgn is a signum function defined as

sgn(x) =


−1 i f x < 0
0 i f x = 0
1 i f x > 0

Here x =Wbde(ah)(bdahe(ah)−adhe(ah)).

sgn(Wbde(ah)(bdahe(ah)−adhe(ah))) = sgn(bdahe(ah)−adhe(ah))

sgn(bdahe(ah)−adhe(ah)) =


−1 i f bdahe(ah)−ad h e (ah) < 0
0 i f bdahe(ah)−ad h e (ah) = 0
1 i f bdahe(ah)−ad h e (ah) > 0

sgn(bdahe(ah)−adhe(ah)) =


−1 i f bdahe(ah) < adhe(ah)

0 i f bdahe(ah) = ad h e (ah)

1 i f bdahe(ah) > adhe(ah)

sgn(bdahe(ah)−adhe(ah)) =


−1 i f bda < ad

0 i f bda = ad

1 i f bda > ad

Case 3: If r =
1
e2 , then

bde(ah) =
1
e2 ⇒ e2e(ah) =

1
bd

⇒ e2+ah =
1
bd

⇒ 2+ah = log
1
bd

.

Hence, bde(ah) =
1
e2 , thenWr(x) : R → R differentiable function everywhere and is a strictly increasing, on R\{− 4

e2 },
where sgnWr(x) = sgn(x).

Contemporary Mathematics 1666 | D. Piriadarshani, et al.



Case 4: If 0 < r <
1
e2 , then three branches of Wr are represented by wr,−2,wr,−1,wr,0. Assume αr =W−1(−re)−1 and

βr =W0(−re)−1.

In whichW0 andW−1 denote two branches of the Lambert function and can be represented as follows:

wr,−2 :]−∞, fr(αr)]→]−∞,αr] is a function increase strictly.

wr,−1 : [ fr(αr), fr(βr)]→ [−αr/βr] is a function decrease strictly.

wr,0 : [ fr∞ [→ [βr/∞] is a function decrease strictly.

The above functions are differentiable on their respective domains interiorly.

Case 5: wr,−1 and wr,0 are the two branches ofWr(x) for r < 0. Let

γr =W (−re)−1,

where classical Lambert function is denoted byW .

Henceforth, we have that for these branches.

wr,−1 : [ fr(γr), +∞[→]−∞,γr] is a function increases strictly.

wr,0 : [ fr +∞[→ [γr +∞[ is a function increases strictly.

The above functions are differentiable on their respective domains interiorly.

The branches wr,−2 and wr,−1 takes non positive values, where wr,0 is positive for all values of r, only if it is less

than
1
e2 .

Corollary 1. As

−bdhe(ah)(−a+
ad

bd
)→ ∞,

Wbde(ah)(bdahe(ah)−adhe(ah))∼
−bdhe(ah)(−a+ ad

bd
)

bde(ah)
,

gives λ =
(ad)

bd
.

Proof. We know that for a generalized lambertW function we have as x → ∞Wr(x)∼
x
r
.

The characteristic root of the NDDE is

λ =
1
h

Wbde(ah)(bdahe(ah)−adhe (ah))−a

Wbde(ah)(bdahe(ah)−adhe (ah))∼
−bdhe(ah)(−a+ ad

bd
)

bde(ah)

λ =
1
h

−bdhe(ah)(−a+ ad
bd
)

bde(ah)
−a

λ =
(ad)

bd
.
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Hence λ is stable, λ < 0 → ad

bd
< 0,→ ad < bd .

Example 1. Neutral Delay Differential Equation where

x′(t)−+ax(t)+bx(t −h)+ cx′(t −h) = 0,x(t) = /0(t), t ∈ [−h, 0],

where a = 1,b = 2.3,c = 0,h = 1.7.
Apply case 1, we get

λ =
1

1.7
W0(−2.3∗1.7e1.7)−1

λ = 0.1541+1.3418i.

Example 2. We show that Neutral Delay Differential Equation x′(t)+0.3x(t)+0.5x(t −2)+0.7x′(t −2) = 0 is stable

when ad < bd and a = 0.3,ad = 0.5,bd = 0.7,h = 2.
Black dots are denoted by the spectrum values, the imaginary parts and real parts of the characteristic equation are

denoted by red and blue lines respectively. We have all the roots present left half z-plane, which can be verified using the

Figure 1, QPmR spectrum [13] of this characteristic roots

Figure 1. Quasi polynomial spectrum when ad < bd.

Corollary 2. When bde(ah) = 1/e2 is continuous and a
−ad

bd
− 4

h
, we getWbde(ah)(bdahe(ah)−adhe(ah)) =−2, which shows

stability of equation.

Proof. We know that when r =
1
e2 = 0.135335 is continuous implies bde(ah) =

1
e2 = 0.135335. eah =

1
e2bd

=
0.135335

bc1
.
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Taking log on both sides ah = log
[

0.135335
bd

]

a =
1
h
[−0.8686− logbd ]

Wbde(ah)(bdahe(ah)−adhe(ah)) =W 1
e2
(− 4

e2 )

Implies that

bdah
1

e2bd
−adh

1
e2bd

=− 4
e2

ah−adh
1
bd

=−4

a =
ad

bd
− 4

h
.

When bd =
e−ah

e2 and a
−ad

bd
− 4

h
, we getWbde(ah)(bdahe(ah)−adhe(ah)) =−2 then

λ =
1
h

Wbde(ah)(bdahe(ah)−adhe (ah))−a

λ =
1
h
(−2)−a

λ =
−2
h

−a < 0.

Which shows the stability.

Example 3. The NDDE is stable when a =
ad

bd
− 4

h
for the equation x′(t)−0.0902x(t)+1.4324x(t−2)+0.75x′(t−2) = 0

which is shown in the spectrum of roots (see Figure 2).
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Figure 2. Quasi-polynomial spectrum when a =
ad
bd

− h
4 .

2. Conclusion

The generalized LambertW function of different branches was employed to compute and analyze the characteristic

roots of neutral delay differential equation of first order with delays. This offers an alternative perspective on the roots

by incorporating our results into the equation. Numerical examples were also generated to validate the obtained results.

Moreover, it can be extended to encompass second-order dynamics and variable delays.
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