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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is RNA virus which causes the coronavirus

disease 2019 (COVID-19). SARS-CoV-2 infects the epithelial (target) cells by binding its spike protein, S, to the

Angiotensin-Converting Enzyme 2 (ACE2) receptor on the surface of epithelial cells. ACE2 is an essential mediating

factor in the SARS-CoV-2 infection pathway. In this study, we build a mathematical model for characterizing the dynamics

of SARS-CoV-2 within the host while taking into account the impact of humoral immunity and the function of the ACE2

receptor. We incorporate the cells that are latently infected into the model. We consider three distributed delays: (i) delay in

development of latently infected epithelial cells, (ii) delay in the latently infected epithelium cells’ activation, and (iii) delay

in the maturation of recently released SARS-CoV-2 virions. We first address the fundamental properties of the delayed

system, then find all possible equilibria. We demonstrate the existence and stability of the equilibria on the basis of two

threshold parameters, namely basic reproduction number (ℜ0) and humoral immune activation number (ℜ1). By building

appropriate Lyapunov functions and applying LaSalle’s invariance principle, we prove the global asymptotic stability for

all equilibria. We do numerical simulations to demonstrate the theoretical conclusions. We do sensitivity analysis and

determine the most vulnerable parameters. Discussion is had on how the dynamics of the SARS-CoV-2 are affected by

ACE2 receptors, humoral immunity, latent phase and time delays. It is shown that vigorous activation of humoral immunity

can suppress viral multiplication. We found that, ℜ0 is influenced by the rates of ACE2 receptor growth and degradation,

and this may offer valuable guidance for the creation of potential receptor-targeted vaccinations and medications. Further,

it is shown that, increasing time delays can effectively decrease ℜ0 and then inhibit the SARS-CoV-2 replication. Finally,

we showed that, excluding the latently infected cells in the model would result in an overestimation of ℜ0. Our findings

may be useful in understanding the dynamics of SARS-CoV-2 infection in the host as well as in the development of novel

therapies.
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1. Introduction

As the spread of leading to death diseases has increased in recent times, we need more studies to help us find ways to

reduce the spread of these diseases and the possibility of producing effective treatments to reduce the number of deaths

caused by these viruses. An example of this is the recent spread of coronavirus disease 2019 (COVID-19), which the World

Health Organization (WHO) has classified as a pandemic. Some of the symptoms of COVID-19 infection are well-known

are common fever, cough, exhaustion, shortness of breath, loss of odor, and tastelessness. People who have co-morbid

conditions such as diabetes, liver illness, kidney disease, or cardiovascular disease are more likely to get COVID-19

infected. Patients with pneumonia influenced COVID-19 infection will also have acute respiratory sickness, which will

result in organ failure. In the earlier COVID-19 pandemic waves, it was found that a high percentage of those who were

tolerant to the virus had moderate symptoms and recovered because of their immunity, almost 20 percent of them eventually

died due to multiple organ failure [1]. The WHO reported on September 24, 2023, that there were more than 770 million

confirmed illnesses and 6.9 million fatalities worldwide [2].

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus attacks the

epithelial (target) cells by binding its spike protein, S, to the Angiotensin-Converting Enzyme 2 (ACE2) receptor on the

surface of epithelial cells [3, 4]. ACE2 receptor is used by SARS-CoV-2 to accurately enter host cells and helps to make

the host cells more susceptible [5]. Even though type II alveolar epithelial cells of the lungs contain the better copious

expression of ACE2, they are therefore thought to be the major target cells of SARS-CoV-2 infection [6, 7]. The immune

response is crucial for stopping the spread of the illness and getting rid of the SARS-CoV-2 infection. CTL and antibody

are the two primary immune responses to viral infections. While antibodies neutralize the viruses, CTLs are in charge of

destroying virus-infected cells.

Since the disease first started to spread, scientists and researchers from a wide range of disciplines have joined forces

to investigate and comprehend the interaction between the virus and target cell in order to develop antiviral drugs and

vaccines. It can be challenging and expensive to experimentally assess interactions between SARS-CoV-2, epithelial cells,

and immune cells. Understanding the dynamic behavior of the virus and its target cells as well as immune cells may be

facilitated by mathematical modeling studies of the dynamics of SARS-CoV-2 infection within the host. This study also

contributes to our understanding of the efficacy of drugs, both alone and in combination.

In [8, 9], a model of in-host SARS-CoV-2 infection was provided by assuming that the target cells are limited. The

initial use of this model was to explain influenza virus infections [10]. Uninfected epithelial cells (E), infected cells (I),
and free SARS-CoV-2 particles (S) make up the model’s three compartments. The model was formulated as follows:

Ė =−ηES, (1)

İ = ηES−δII, (2)

Ṡ = δIνI −δSS, (3)

where E = E(t), I = I(t) and S = S(t) represent the concentrations of the model’s compartments at time t. Parameters η

and ν , respectively, denote the infection rate constant and the number of free SARS-CoV-2 particles generated during the

course of an average infected cell’s life. δI and δS, respectively, stand for the death and clearance rates of infected cells and

viruses. The model was considered in several works (see e.g., [11–13]).

Experimental findings show that a lag in the period between a target cell’s initial infection and the release of new

SARS-CoV-2 particles exists [14]. Therefore, by dividing the infected cells into two populations, latently infected cells and

actively (productively) infected cells, a SARS-CoV-2 infection model was created using ordinary differential equations
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(ODEs) [8, 9]. Viruses are present in latently infected cells, but they are not released until the cells are activated. The

SARS-CoV-2 infection model with latent phase was provided as [8, 9]:

Ė =−ηES, (4)

L̇ = ηES−aL, (5)

İ = aL−δII, (6)

Ṡ = δIνI −δSS, (7)

where L = L(t) is the concentration of latently infected cells. The latently infected cells are activated by rate a. The model
was used in many works (see e.g., [13, 15–19]).

Li et al. [20] took into account the growth and decay of epithelial cells as:

Ė = δE(E(0)−E)−ηES,

where E(0) is the concentration of epithelial cells that are virus-free. This approach was considered and/or extended in
many works (see e.g., [5, 21–27]).

These works mentioned above did not take into account the kinetics of the ACE2 receptor on epithelial cells. The

Middle East respiratory syndrome coronavirus (MERS-CoV) infection was modeled by the authors of [28, 29] to see how

the dipeptidyl peptidase 4 (DPP4) receptor affects it. Chatterjee and Al Basir [30] studied the local stability of a system of

ODEs for SARS-CoV-2 infection with ACE2 receptor. Lv and Ma [31] formulated a system of delay differential equations

(DDEs) for SARS-CoV-2 infection mediated by ACE2 receptor as:

Ė = λE −ηΨ(A)ES−δEE, (8)

İ = e−α1τ1ηΨ(Aτ1)Eτ1Sτ1 −δII, (9)

Ṡ = δIνI −δSS, (10)

Ȧ = λA −κηΨ(A)AS−δAA, (11)

where (Eτ1 ,Sτ1 ,Aτ1) = (E(t − τ1),S(t − τ1),A(t − τ1)). The variable A = A(t) represents the concentration of per unit

volume of ACE2 receptors at time t. Ψ(A) is the probability of successful entry of the SARS-CoV-2 into the epithelial cell
mediated by the ACE2 receptors. When the concentration of ACE2 receptor is lower (higher), then Ψ(A)∼ 0(∼ 1) [31].
The term ηΨ(A)ES represents the reduction rate of epithelial cells by SARS-CoV-2 and ACE2. The term κηΨ(A)AS,
where k is a constant, shows the rate of decrease in ACE2 receptors as a result of the reduction in uninfected epithelial cells
(induced by free SARS-CoV-2). Here, τ1 represents the amount of time that has passed since SARS-CoV-2 particles had

made contact with healthy epithelial cells before those cells become actively infected. The likelihood that infected cells

will survive throughout the delay period is e−α1τ1 .

Model (8)–(11) disregards the immune system’s response to the SARS-CoV-2 infection. Further, the model disregards

the latent class and assumes that all infected cells are active. Additionally, the model ignores the maturation delay and only

takes into account one type of discrete-time delay, τ1. Several mathematical models in both virology and epidemiology
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were developed by taking into account the time delay as a random variable drawn from the probability distribution function

in order to avoid such (biologically implausible) assumption (see e.g., [32–35]). It is worth pointing out that the distributed

delay is one of various time delays and is more general than discrete delay.

Accordingly, the purpose of this article is to modify and analyze model (8)–(11) presented in [31] by taking into

account the following factors:

F1: Humoral immune response, which depends on the activation of the B cells to generate antibodies for neutralizing the

viruses.

F2: Latently infected cells, which contain virions, but they are not released until the cells are activated.

F3: Three distributed-time delays, (i) delay in development of latently infected epithelial cells, (ii) delay in the latently

infected epithelium cells’ activation, and (iii) delay in the maturation of recently released SARS-CoV-2 virions. It is

known that distributed-time delay is more general that discrete-time delay.

Before finding any equilibria and discussing their existence and global stability, we first examine the essential

properties of the DDEs. To look at the asymptotic stability of all equilibria globally, we develop appropriate Lyapunov

functions and apply LaSalle’s invariance principle (LIP). We show the theoretical conclusions using numerical simulations.

We wrap up by discussing the outcomes.

2. Model formulation

We propose the following SARS-CoV-2 infection model taking into account factors F1–F3 as:

Ė = λE −ηΨ(A)ES−δEE,
L̇ = η

∫ h1
0 f1(τ)e−α1τ Ψ(Aτ)Eτ Sτ dτ − (a+δL)L,

İ = a
∫ h2

0 f2(τ)e−α2τ Lτ dτ −δII,
Ṡ = δIν

∫ h3
0 f3(τ)e−α3τ Iτ dτ −δSS− γSB,

Ȧ = λA −κηΨ(A)AS−δAA,
Ḃ = ρSB−δBB,

(12)

where (Eτ ,Lτ , Iτ ,Sτ ,Aτ) = (E(t − τ),L(t − τ), I(t − τ),S(t − τ),A(t − τ)). The variable B = B(t) represents the

concentration of per unit volume of antibodies at time t. The antibodies are stimulated at rate ρSB, die at rate δBB
and neutralize the SARS-CoV-2 particles at rate γSB. We take τ as a random variable from probability distributed functions

fi(τ), i = 1,2,3 over the intervals [0,hi] , where hi is the limit superior of the delay period. The likelihood that epithelial

cells that were uninfected when the SARS-CoV-2 made contact with them at time t − τ survived for τ time units and

acquired latent infection at time t is represented by f1(τ)e−α1τ . The factor f2(τ)e−α2τ represents the likelihood that

latently infected cells will survive throughout the interval [t − τ, t]. The likelihood that an immature SARS-CoV-2 at time
t − τ survives for τ time units to become a mature SARS-CoV-2 at time t is represented by f3(τ)e−α3τ . A schematic

representation of the model in (12) is illustrated in Figure 1.
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Figure 1. The schematic diagram of the SARS-CoV-2 infection.

Function fi(τ), satisfies the following conditions:

fi(τ)> 0,
∫ hi

0
fi(τ)dτ = 1,

∫ hi

0
fi(τ)e`τ dτ < ∞, where ` > 0, i = 1,2,3.

Let χi(τ) = fi(τ)e−αiτ and ζi =
∫ hi

0 χi(τ)dτ, i = 1,2,3, thus 0 < ζi ≤ 1. Usually Ψ(A) is chosen as the classic Hill
function: Ψ(A) = An

A n
s +An where As is the half-saturation constant and n > 0 is the Hill coefficient [31, 36]. The function

Ψ(A) is continuously differentiable on [0,+∞), strictly monotonically increasing.

The initial conditions for model (12) are given by:

E(θ) = φ1(θ), L(θ) = φ2(θ), I(θ) = φ3(θ), S(θ) = φ4(θ),

A(θ) = φ5(θ), B(θ) = φ6(θ), φi(θ)≥ 0, i = 1,2, ...,6, θ ∈ [−τ
∗,0], (13)

where, τ∗ = max{h1,h2,h3}, φi ∈ C([−τ∗,0],R≥0) and C is the Banach space of continuous functions mapping from

[−τ∗,0] to R≥0 with the norm ‖φi‖ = sup
−τ∗≤θ≤0

|φi(θ)| for φi ∈ C, i = 1,2, ...,6. We note that system (12) with initial

conditions (13) has a unique solution [37]. All parameters of model (12) are positive.

3. Basic qualitative properties

This section proves the non-negativity and boundedness of the solutions of system (12).

Lemma 1. The solutions of model (12) with the initial states (13) are non-negative and ultimately bounded.
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Proof. We have Ė |E=0= λE > 0, Ȧ |A=0= λA > 0 and Ḃ |B=0= 0. Hence, E(t),A(t),B(t)≥ 0, for all t ≥ 0. From second,

third and fourth equations of system (12) we have

L(t) = e−(a+δL)tφ2(0)+η

∫ t

0

∫ h1

0
χ1(τ)Ψ(A(θ − τ))E(θ − τ)S(θ − τ)e−(a+δL)(t−θ)dτdθ ≥ 0,

I(t) = e−δI tφ3(0)+a
∫ t

0

∫ h2

0
χ2(τ)L(θ − τ)e−δI(t−θ)dτdθ ≥ 0,

S(t) = e−
∫ t

0(δS+γB(r))dr
φ4(0)+δIν

∫ t

0

∫ h3

0
χ3(τ)I(θ − τ)e−

∫ t
θ (δS+γB(r))drdτdθ ≥ 0,

for all t ∈ [0,τ∗]. Hence, by recursive argumentation, we obtain that L(t), I(t),S(t)≥ 0 for all t ≥ 0. Hence, E,L, I,S,A
and B are non-negative.

Now, we prove the ultimately boundedness of E, L, I, S, A and B. From the first equation of system (12) we have,

lim
t→∞

supE(t)≤ λE
δE

= ω1. To prove the ultimate boundedness of L, we define

Π1 =
∫ h1

0
χ1(τ)Eτ dτ +L.

Then, we obtain

Π̇1 =
∫ h1

0
χ1(τ)Ė(t − τ)dτ + L̇ =

∫ h1

0
χ1(τ){λE −ηΨ(Aτ)Eτ Sτ

−δEEτ}dτ +
∫ h1

0
χ1(τ)ηΨ(Aτ)Eτ Sτ dτ − (a+δL)L

= λE

∫ h1

0
χ1(τ)dτ −δE

∫ h1

0
χ1(τ)Eτ dτ − (a+δL)L

≤ λEζ1 − p1

[∫ h1

0
χ1(τ)Eτ dτ +L

]

≤ λE − p1

[∫ h1

0
χ1(τ)Eτ dτ +L

]
,

where, p1 = min{δE ,(a+δL)}, then

Π̇1 ≤ λE − p1Π1.
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It follows that, lim
t→∞

supΠ1(t)≤ λE
p1

= ω2. Since E > 0 and L ≥ 0, then lim
t→∞

supL(t)≤ ω2. From the third equation

we have

İ = a
∫ h2

0
χ2(τ)Lτ dτ −δII

≤ aω2ζ2 −δII

≤ aω2 −δII.

Therefore, lim
t→∞

sup I(t)≤ aω2
δI

= ω3. Now let us define

Π2 = S+
γ

ρ
B.

Then, we obtain

Π̇2 = Ṡ+
γ

ρ
Ḃ = δIν

∫ h3

0
χ3(τ)Iτ dτ −δSS− γSB

+
γ

ρ
(ρSB−δBB)

= δIν

∫ h3

0
χ3(τ)Iτ dτ −δSS− γδB

ρ
B

≤ δIνω3ζ3 − p2[S+
γ

ρ
B]

≤ δIνω3 − p2[S+
γ

ρ
B],

where, p2 = min{δS,δB}, then

Π̇2 ≤ δIνω3 − p2Π2.

Hence, lim
t→∞

supΠ2(t) ≤ δIνω3
p2

= ω4. Since S ≥ 0 and B ≥ 0, then lim
t→∞

supS(t) ≤ ω4 and lim
t→∞

supB(t) ≤ ρ

γ
ω4 = ω6.

Finally, from fifth equation of system (12) we have, lim
t→∞

supA(t) ≤ λA
δA

= ω5. Then E,L, I,S,A and B are ultimately

bounded.

Based on Lemma 1, we can establish that Γ = {(E,L, I,S,A,B) ∈C6
≥0 : ‖E‖ ≤ ω1, ‖L‖ ≤ ω2, ‖I‖ ≤ ω3, ‖S‖ ≤ ω4,

‖A‖ ≤ ω5, ‖B‖ ≤ ω6} is positively invariant for system (12).
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4. Equilibria

This section finds all equilibria of model (12) and the threshold parameters that determine the existence of these

equilibria. Firstly, we compute the basic infection reproduction number ℜ0 for system (12) by using the next-generation

matrix method [38]. We define the matrices F and V as follows:

F =

 0 0 ηζ1Ψ(A0)E0

0 0 0
0 0 0

 , V =

 a+δL 0 0
−aζ2 δI 0

0 −ζ3δIν δS

 ,

where E0 = λE/δE and A0 = λA/δA. Then ℜ0, can be derived as the spectral radius of FV−1, as:

ℜ0 =
ηaνζ1ζ2ζ3Ψ(A0)E0

(a+δL)δS
. (14)

Secondly, let ∆ = (E,L, I,S,A,B) be any equilibrium of system (12) fulfilling the following system of nonlinear

equations:

0 = λE −ηΨ(A)ES−δEE, (15)

0 = ηζ1Ψ(A)ES− (a+δL)L, (16)

0 = aζ2L−δII, (17)

0 = δIνζ3I −δSS− γSB, (18)

0 = λA −κηΨ(A)SA−δAA, (19)

0 = ρSB−δBB. (20)

Eq. (20) has two solutions, B = 0 and S = δB
ρ
. When B = 0, then from Eq. (18) we get

δII =
δS

νζ3
S. (21)

Substituting Eq. (21) into Eq. (17), we obtain

L =
δS

aνζ2ζ3
S. (22)

Substituting Eq. (22) into Eq. (16), we get(
ηζ1Ψ(A)E − (a+δL)δS

νaζ2ζ3

)
S = 0,
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and then we have

S = 0, or ηζ1Ψ(A)E − (a+δL)δS

νaζ2ζ3
= 0.

If S = 0, then from Eqs. (15), (16), (17) and (19), we have E = λE/δE , L = 0, I = 0 and A = λA/δA. Then, we obtain

the uninfected equilibrium ∆0 = (E0,0,0,0,A0,0).
If S 6= 0, then L 6= 0 and

ηζ1Ψ(A)E =
(a+δL)δS

νaζ2ζ3
.

Therefore, we obtain

E =
λE − (a+δL)ζ

−1
1 L

δE
, S =

νaζ2ζ3

δS
L, I =

aζ2

δI
L and A =

λA

δA +κζ
−1
1 (a+δL)L/E

. (23)

Substituting Eq. (23) into Eq. (16), we have

ηζ1Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)(
λE − (a+δL)ζ

−1
1 L

δE

)(
νaζ2ζ3

δS
L
)
− (a+δL)L = 0,

Since L 6= 0, then

ηζ1Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)(
λE − (a+δL)ζ

−1
1 L

δE

)(
νaζ2ζ3

δS

)
− (a+δL) = 0.

We define a function G(L) as:

G(L) = ηζ1Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)(
λE − (a+δL)ζ

−1
1 L

δE

)(
νaζ2ζ3

(a+δL)δS

)
−1 = 0.

We have

G(0) =
ηνaζ1ζ2ζ3

(a+δL)δS
Ψ

(
λA

δA

)(
λE

δE

)
−1 = ℜ0 −1 > 0, if ℜ0 > 1,

lim
L→ λE ζ1

a+δL

G(L) =−1 < 0,

and

d
dL

[
Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)]
=−

κ(a+δL)δEλAλEζ
−1
1

[δAλE +(a+δL)ζ
−1
1 L(κδE −δA)]2

×ΨL

(
λA

δA +κζ
−1
1 (a+δL)L/E

)
= Θ < 0.
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So, we have

dG(L)
dL

=
ηνaζ1ζ2ζ3

(a+δL)δS

(
λE − (a+δL)ζ

−1
1 L

δE

)
Θ− ηνaζ2ζ3

δSδE
Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)
< 0.

Then, there exists a unique L1 ∈
(

0, λE ζ1
a+δL

)
such that G(L1) = 0.

Therefore, there exists a unique infected equilibrium ∆1 = (E1,L1, I1,S1,A1,0) when ℜ0 > 1, where E1 =
λE−(a+δL)ζ

−1
1 L1

δE
∈
(

0, λE
δE

)
, I1 = aζ2

δI
L1 ∈

(
0, aλE ζ1ζ2

(a+δL)δI

)
,S1 = νaζ2ζ3

δS
L1 ∈

(
0, νaλE ζ1ζ2ζ3

(a+δL)δS

)
and A1 = λA

δA+κζ
−1
1 (a+δL)L1/E1

∈(
0, λA

δA

)
.

If B 6= 0 and S = δB
ρ
, therefore, we obtain

E =
λE − (a+δL)ζ

−1
1 L

δE
, I =

aζ2

δI
L, A =

λA

δA +κζ
−1
1 (a+δL)L/E

and B =
δS

γ

(
νaρζ2ζ3

δSδB
L−1

)
. (24)

Substituting Eq. (24) into Eq. (16), we obtain

ηδBζ1

ρ
Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)(
λE − (a+δL)ζ

−1
1 L

δE

)
− (a+δL)L = 0.

Define a function G∗(L) as:

G∗(L) =
ηδBζ1

ρ
Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)(
λE − (a+δL)ζ

−1
1 L

δE

)
− (a+δL)L.

We have

G∗(0) =
ηδBζ1

ρ
Ψ

(
λA

δA

)(
λE

δE

)
> 0,

lim
L→ λE ζ1

a+δL

G∗(L) =−λEζ1 < 0.

Moreover,

d
dL

[
Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)]
=−

κ(a+δL)δEλAλEζ
−1
1

[δAλE +(a+δL)ζ
−1
1 L(κδE −δA)]2

×ΨL

(
λA

δA +κζ
−1
1 (a+δL)L/E

)
= Θ

∗ < 0.
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So, we have

dG∗(L)
dL

= Θ
∗ ηδBζ1

ρ

(
λE − (a+δL)ζ

−1
1 L

δE

)
−
(

ηδB(a+δL)

ρδE

)
Ψ

(
λA

δA +κζ
−1
1 (a+δL)L/E

)
− (a+δL)< 0.

Then, there exists a unique L2 ∈
(

0, λE ζ1
a+δL

)
such that G∗(L2) = 0. It follows that, there exists a unique infected

equilibrium with antibody immune response ∆2 = (E2,L2, I2,S2,A2,B2), when ℜ1 > 1, where E2 =
λE−(a+δL)ζ

−1
1 L2

δE
∈(

0, λE
δE

)
, I2 =

aζ2
δI

L2 ∈
(

0, aλE ζ1ζ2
(a+δL)δI

)
, S2 =

δB
ρ
, A2 =

λA
δA+κζ

−1
1 (a+δL)L2/E2

∈
(

0, λA
δA

)
and B2 =

δS
γ
(ℜ1 −1) , where,

ℜ1 =
νaρζ2ζ3

δSδB
L2.

Here, ℜ1 represents the humoral immunity activation number.

We have Ψ(A2)< Ψ(A0) and E2 < E0. Therefore

ℜ1 =
νaρζ2ζ3L2

δSδB
=

νaρζ2ζ3

δSδB

ζ1ηΨ(A2)E2S2

a+δL

=
νaζ1ζ2ζ3ηΨ(A2)E2

δS(a+δL)
<

νaζ1ζ2ζ3ηΨ(A0)E0

δS(a+δL)
= ℜ0.

Now we can state the following lemma:

Lemma 2. For system (12), there exist two threshold parameters ℜ0 and ℜ1 such that

(i) If ℜ0 ≤ 1, then the uninfected equilibrium ∆0 = (E0,0,0,0,A0,0) is the unique equilibrium,
(ii) If ℜ1 ≤ 1 < ℜ0, then there exists two equilibria ∆0 and infected equilibrium without humoral immunity ∆1 =

(E1,L1, I1,S1,A1,0),
(iii) If ℜ1 > 1, then there exist three equilibria ∆0, ∆1 and infected equilibrium with humoral immunity ∆2 =

(E2,L2, I2,S2,A2,B2).

5. Global stability

This section formulates Lyapunov function and uses LIP to study the global asymptotic stability of equilibria. We

follow the method presented in [39, 40].We define a function Φ(x) = x− 1− lnx. Clearly, Φ(1) = 0 and Φ(x) ≥ 0 for

x > 0. Let Ω̃ j be the largest invariant subset of

Ω j = {(E,L, I,S,A,B) :
dΛ j
dt

= 0}, j = 0,1,2,

where, Λ j(E,L, I,S,A,B) is a Lyapunov function candidate.

Theorem 1. Consider system (12) and suppose that ℜ0 ≤ 1, then ∆0 is globally asymptotically stable (G.A.S) and it is

unstable when ℜ0 > 1.
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Proof.

Λ0 = ζ1E0Φ

(
E
E0

)
+L+

a+δL

aζ2
I +

a+δL

aνζ2ζ3
S+

ζ1E0

κA0

(
A−A0 −

∫ A

A0

Ψ(A0)

Ψ(ξ )
dξ

)

+
γ(a+δL)

aρνζ2ζ3
B+η

∫ h1

0
χ1(τ)

∫ t

t−τ

Ψ(A(s))E(s)S(s)dsdτ

+
a+δL

ζ2

∫ h2

0
χ2(τ)

∫ t

t−τ

L(s)dsdτ +
δI(a+δL)

aζ2ζ3

∫ h3

0
χ3(τ)

∫ t

t−τ

I(s)dsdτ.

We note that, Λ0(E,L, I,S,A,B)> 0 for all E,L, I,S,A,B > 0 and Λ0(E0,0,0,0,A0,0) = 0. We calculate
dΛ0
dt along

the solutions of model (12) as:

dΛ0

dt
= ζ1

(
1− E0

E

)
Ė + L̇+

a+δL

aζ2
İ +

a+δL

aνζ2ζ3
Ṡ+

ζ1E0

κA0

(
1− Ψ(A0)

Ψ(A)

)
Ȧ

+
γ(a+δL)

aρνζ2ζ3
Ḃ+η

d
dt

∫ h1

0
χ1(τ)

∫ t

t−τ

Ψ(A(s))E(s)S(s)dsdτ

+
a+δL

ζ2

d
dt

∫ h2

0
χ2(τ)

∫ t

t−τ

L(s)dsdτ +
δI(a+δL)

aζ2ζ3

d
dt

∫ h3

0
χ3(τ)

∫ t

t−τ

I(s)dsdτ.
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Using system (12) we get

dΛ0

dt
= ζ1

(
1− E0

E

)
[λE −ηΨ(A)ES−δEE]

+η

∫ h1

0
χ1(τ)Ψ(Aτ)Eτ Sτ dτ − (a+δL)L

+
a+δL

aζ2

[
a
∫ h2

0
χ2(τ)Lτ dτ −δII

]

+
a+δL

aνζ2ζ3

[
δIν

∫ h3

0
χ3(τ)Iτ dτ −δSS− γSB

]

+
ζ1E0

κA0

(
1− Ψ(A0)

Ψ(A)

)
[λA −κηΨ(A)SA−δAA]

+
γ(a+δL)

aρνζ2ζ3
[ρSB−δBB]

+η

∫ h1

0
χ1(τ) [Ψ(A)ES−Ψ(Aτ)Eτ Sτ ]dτ

+
a+δL

ζ2

∫ h2

0
χ2(τ)[L−Lτ ]dτ +

δI(a+δL)

aζ2ζ3

∫ h3

0
χ3(τ)[I − Iτ ]dτ.
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Collecting terms we get

dΛ0

dt
= ζ1

(
1− E0

E

)
[λE −δEE]+ηζ1Ψ(A)E0S

− a+δL

aνζ2ζ3
δSS+ηζ1Ψ(A0)E0S−ηζ1Ψ(A0)E0S

+
ζ1E0

κA0

(
1− Ψ(A0)

Ψ(A)

)
[λA −δAA]− ζ1E0

A0
(Ψ(A)−Ψ(A0))ηSA

− γ(a+δL)δB

aρνζ2ζ3
B

= ζ1

(
E −E0

E

)
[λE −δEE]+

(
ηζ1Ψ(A0)E0 −

(a+δL)δS

aνζ2ζ3

)
S

+ηζ1E0S(Ψ(A)−Ψ(A0))+
ζ1E0

κA0Ψ(A)
(Ψ(A)−Ψ(A0)) [λA −δAA]

− ζ1E0

A0
(Ψ(A)−Ψ(A0))ηSA− γ(a+δL)δB

aρνζ2ζ3
B.

Using the equilibrium condition λE = δEE0 and λA = δAA0, we get:

dΛ0

dt
=−ζ1δE

(E −E0)
2

E
+

(a+δL)δS

aνζ2ζ3

(
aνζ1ζ2ζ3ηΨ(A0)E0

(a+δL)δS
−1
)

S

+ηζ1E0S(Ψ(A)−Ψ(A0))
A0

A0
+

ζ1δAE0

κA0Ψ(A)
(Ψ(A)−Ψ(A0))(A0 −A)

− ηζ1E0

A0
S (Ψ(A)−Ψ(A0))A− γ(a+δL)δB

aρνζ2ζ3
B

=−ζ1δE
(E −E0)

2

E
+

(a+δL)δS

aνζ2ζ3
(ℜ0 −1)S

+

(
ηζ1E0S

A0
+

ζ1δAE0

κA0Ψ(A)

)
(Ψ(A)−Ψ(A0))(A0 −A)− γ(a+δL)δB

aρνζ2ζ3
B.
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Since ℜ0 ≤ 1 and (Ψ(A)−Ψ(A0))(A0−A)≤ 0, then dΛ0
dt ≤ 0 for all E,S,A,B > 0. In addition dΛ0

dt = 0 when E = E0,

A = A0 and S = B = 0. Solutions of system (12) converge to Ω̃0 which contains elements with S = 0 [41]. Thus, Ṡ = 0, the
fourth equation of system (12) gives

0 = Ṡ = δIν

∫ h3

0
χ3(τ)Iτ dτ =⇒ I = 0, for all t.

Since I = 0, then İ = 0 and from the third equation of system (12) we have:

0 = İ = a
∫ h2

0
χ2(τ)Lτ dτ =⇒ L = 0, for all t.

Therefore, Ω̃0 = {∆0} and applying LIP [42], we obtain that ∆0 is G.A.S.

To show that instability of ∆0 we calculate the characteristic equation of system (12) at ∆0 as:

0 = (c+δE)(c+δB)
[
c4 +(a+δL +δI +δS +δA)c3 +[(a+δL)(δI +δS +δA)+δSδA +δI(δS +δA)]c2

+(δIδSδA −ηaζ̄1ζ̄2ζ̄3δIνΨ(A0)E0)c+(a+δL)δIδSδA −ηaζ̄1ζ̄2ζ̄3δIνδAΨ(A0)E0
]
.

Define a function where T (c) as:

T (c) = c4 +(a+δL +δI +δS +δA)c3 +[(a+δL)(δI +δS +δA)+δSδA +δI(δS +δA)]c2

+(δIδSδA −ηaζ̄1ζ̄2ζ̄3δIνΨ(A0)E0)c+(a+δL)δIδSδA −ηaζ̄1ζ̄2ζ̄3δIνδAΨ(A0)E0,

where ζ̄i =
∫ hi

0 fi(τ)e−(c+αi)τ dτ, i = 1,2,3, which is continuous on [0,∞). We have

T (0) = (a+δL)δIδSδA(1−ℜ0)< 0, when ℜ0 > 1,

lim
c→∞

T (c) = ∞.

Hence, T (c) has a positive real root and thus ∆0 is unstable.

For confirming result on dynamics of ∆1, we require a additional assumptions [43]:

S1 ≤
δB

ρ
. (A)

Theorem 2. Suppose that ℜ1 ≤ 1 < ℜ0 and Assumption (A) is satisfied, then ∆1 is G.A.S.
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Proof. Define Λ1 as:

Λ1 = ζ1E1Φ

(
E
E1

)
+L1Φ

(
L
L1

)
+

a+δL

aζ2
I1Φ

(
I
I1

)
+

a+δL

aνζ2ζ3
S1Φ

(
S
S1

)

+
ζ1E1

κA1

(
A−A1 −

∫ A

A1

Ψ(A1)

Ψ(ξ )
dξ

)
+

γ(a+δL)

ρaνζ2ζ3
B

+ηΨ(A1)E1S1

∫ h1

0
χ1(τ)

∫ t

t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A1)E1S1

)
dsdτ

+
a+δL

ζ2
L1

∫ h2

0
χ2(τ)

∫ t

t−τ

Φ

(
L(s)
L1

)
dsdτ

+
(a+δL)δI

aζ2ζ3
I1

∫ h3

0
χ3(τ)

∫ t

t−τ

Φ

(
I(s)
I1

)
dsdτ.

We note that, Λ1(E,L, I,S,A,B)> 0 for all E,L, I,S,A,B > 0 and Λ1(E1,L1, I1,S1,A1,0) = 0.
We calculate

dΛ1
dt along the solutions of model (12) as:

dΛ1

dt
= ζ1

(
1− E1

E

)
Ė +

(
1− L1

L

)
L̇+

a+δL

aζ2

(
1− I1

I

)
İ

+
a+δL

aνζ2ζ3

(
1− S1

S

)
Ṡ+

ζ1E1

κA1

(
1− Ψ(A1)

Ψ(A)

)
Ȧ+

γ(a+δL)

ρaνζ2ζ3
Ḃ

+ηΨ(A1)E1S1
d
dt

∫ h1

0
χ1(τ)

∫ t

t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A1)E1S1

)
dsdτ +

a+δL

ζ2
L1

× d
dt

∫ h2

0
χ2(τ)

∫ t

t−τ

Φ

(
L(s)
L1

)
dsdτ +

(a+δL)δI

aζ2ζ3
I1

d
dt

∫ h3

0
χ3(τ)

∫ t

t−τ

Φ

(
I(s)
I1

)
dsdτ.
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Using system (12) we get

dΛ1

dt
= ζ1

(
1− E1

E

)
[λE −ηΨ(A)ES−δEE]

+

(
1− L1

L

)[
η

∫ h1

0
χ1(τ)Ψ(Aτ)Eτ Sτ dτ − (a+δL)L

]

+
a+δL

aζ2

(
1− I1

I

)[
a
∫ h2

0
χ2(τ)Lτ dτ −δII

]

+
a+δL

aνζ2ζ3

(
1− S1

S

)[
δIν

∫ h3

0
χ3(τ)Iτ dτ −δSS− γSB

]

+
ζ1E1

κA1

(
1− Ψ(A1)

Ψ(A)

)
[λA −κηΨ(A)SA−δAA]+

γ(a+δL)

ρaνζ2ζ3
[ρSB−δBB]

+ηΨ(A1)E1S1

∫ h1

0
χ1(τ)

[
Ψ(A)ES

Ψ(A1)E1S1
− Ψ(Aτ)Eτ Sτ

Ψ(A1)E1S1
+ ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)]
dτ

+
a+δL

ζ2
L1

∫ h2

0
χ2(τ)

[
L
L1

− Lτ

L1
+ ln

(
Lτ

L

)]
dτ

+
(a+δL)δI

aζ2ζ3
I1

∫ h3

0
χ3(τ)

[
I
I1
− Iτ

I1
+ ln

(
Iτ

I

)]
dτ.
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Collecting terms we get

dΛ1

dt
= ζ1

(
1− E1

E

)
[λE −δEE]+ζ1ηΨ(A)E1S

−η

∫ h1

0
χ1(τ)Ψ(Aτ)Eτ Sτ

L1

L
dτ +(a+δL)L1

− a+δL

ζ2

∫ h2

0
χ2(τ)Lτ

I1

I
dτ +

a+δL

aζ2
δII1

− a+δL

aνζ2ζ3
δSS− a+δL

aζ2ζ3
δI

∫ h3

0
χ3(τ)Iτ

S1

S
dτ +

a+δL

aνζ2ζ3
δSS1

+
a+δL

aνζ2ζ3
γS1B+

ζ1E1

κA1

(
1− Ψ(A1)

Ψ(A)

)
[λA −δAA]

− ζ1E1

A1
ηSA(Ψ(A)−Ψ(A1))−

γ(a+δL)δB

ρaνζ2ζ3
B

+ηΨ(A1)E1S1

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
dτ

+
a+δL

ζ2
L1

∫ h2

0
χ2(τ) ln

(
Lτ

L

)
dτ +

(a+δL)δI

aζ2ζ3
I1

∫ h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.

Using the equilibrium condition for ∆1:

λE = ηΨ(A1)E1S1 +δEE1, (a+δL)L1 = ηζ1Ψ(A1)E1S1,

δII1 = aζ2L1, δSS1 = δIνζ3I1, λA = κηΨ(A1)S1A1 +δAA1,
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we obtain,

dΛ1

dt
=−ζ1δE

(E −E1)
2

E
+5(a+δL)L1 − (a+δL)L1

E1

E
+ζ1ηΨ(A)E1S

− a+δL

ζ1
L1

∫ h1

0
χ1(τ)

Ψ(Aτ)Eτ Sτ L1

Ψ(A1)E1S1L
dτ − a+δL

ζ2
L1

∫ h2

0
χ2(τ)

Lτ I1

L1I
dτ

−ζ1ηΨ(A1)E1S− a+δL

ζ3
L1

∫ h3

0
χ3(τ)

Iτ S1

I1S
dτ +

(
(a+δL)γ

aνζ2ζ3
S1 −

(a+δL)γδB

aρνζ2ζ3

)
B

+
ζ1δAE1

κA1Ψ(A)
(Ψ(A)−Ψ(A1))(A1 −A)− (a+δL)L1

Ψ(A1)

Ψ(A)

− ηζ1E1

A1
(Ψ(A)−Ψ(A1))SA+

a+δL

ζ1
L1

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
dτ

+
a+δL

ζ2
L1

∫ h2

0
χ2(τ) ln

(
Lτ

L

)
dτ +

a+δL

ζ3
L1

∫ h3

0
χ3(τ) ln

(
Iτ

I

)
dτ

=−ζ1δE
(E −E1)

2

E
+5(a+δL)L1 − (a+δL)L1

E1

E
+ηζ1E1S(Ψ(A)−Ψ(A1))

− a+δL

ζ1
L1

∫ h1

0
χ1(τ)

Ψ(Aτ)Eτ Sτ L1

Ψ(A1)E1S1L
dτ − a+δL

ζ2
L1

∫ h2

0
χ2(τ)

Lτ I1

L1I
dτ

− a+δL

ζ3
L1

∫ h3

0
χ3(τ)

Iτ S1

I1S
dτ +

(a+δL)γ

aνζ2ζ3

(
S1 −

δB

ρ

)
B

+
ζ1δAE1

κA1Ψ(A)
(Ψ(A)−Ψ(A1))(A1 −A)− (a+δL)L1

Ψ(A1)

Ψ(A)

− ηζ1E1

A1
(Ψ(A)−Ψ(A1))SA+

a+δL

ζ1
L1

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
dτ

+
a+δL

ζ2
L1

∫ h2

0
χ2(τ) ln

(
Lτ

L

)
dτ +

a+δL

ζ3
L1

∫ h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.
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Using equalities

ln
(

Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
= ln

(
Ψ(Aτ)Eτ Sτ L1

Ψ(A1)E1S1L

)

+ ln
(

Ψ(A1)

Ψ(A)

)
+ ln

(
LS1

L1S

)
+ ln

(
E1

E

)
,

ln
(

Lτ

L

)
= ln

(
Lτ I1

L1I

)
+ ln

(
L1I
LI1

)
,

ln
(

Iτ

I

)
= ln

(
Iτ S1

I1S

)
+ ln

(
I1S
IS1

)
,

we obtain,

dΛ1

dt
=−ζ1δE

(E −E1)
2

E
− (a+δL)L1

[
Φ

(
E1

E

)
+

1
ζ1

∫ h1

0
χ1(τ)

×Φ

(
Ψ(Aτ)Eτ Sτ L1

Ψ(A1)E1S1L

)
dτ +

1
ζ2

∫ h2

0
χ2(τ)Φ

(
Lτ I1

L1I

)
dτ

+
1
ζ3

∫ h3

0
χ3(τ)Φ

(
Iτ S1

I1S

)
dτ +Φ

(
Ψ(A1)

Ψ(A)

)]
+

(a+δL)γ

aνζ2ζ3

(
S1 −

δB

ρ

)
B

+

[
ζ1δAE1

κA1Ψ(A)
+

ηζ1E1S
A1

]
(Ψ(A)−Ψ(A1))(A1 −A).

We have Since S1 ≤ δB
ρ
and (Ψ(A)−Ψ(A1))(A1−A)≤ 0, then dΛ1

dt ≤ 0 for all E,L, I,S,A,B > 0. In addition, dΛ1
dt = 0

when E = E1, L = L1, I = I1, S = S1, A = A1 and B = 0. Therefore, Ω̃1 = {∆1} and applying LIP, we obtain that ∆1 is

G.A.S.

Theorem 3. For system (12), let ℜ1 > 1, then ∆2 is G.A.S.
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Proof. Consider

Λ2 = ζ1E2Φ

(
E
E2

)
+L2Φ

(
L
L2

)
+

a+δL

aζ2
I2Φ

(
I
I2

)

+
a+δL

aνζ2ζ3
S2Φ

(
S
S2

)
+

ζ1E2

κA2

(
A−A2 −

∫ A

A2

Ψ(A2)

Ψ(ξ )
dξ

)

+
γ(a+δL)

ρaνζ2ζ3
B2Φ

(
B
B2

)
+ηΨ(A2)E2S2

∫ h1

0
χ1(τ)

∫ t

t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A2)E2S2

)
dsdτ

+
a+δL

ζ2
L2

∫ h2

0
χ2(τ)

∫ t

t−τ

Φ

(
L(s)
L2

)
dsdτ +

(a+δL)δI

aζ2ζ3
I2

∫ h3

0
χ3(τ)

∫ t

t−τ

Φ

(
I(s)
I2

)
dsdτ.

We note that, Λ2(E,L, I,S,A,B)> 0 for all E,L, I,S,A,B > 0 and Λ2(E2,L2, I2,S2,A2,B2) = 0.
We calculate

dΛ2
dt as:

dΛ2

dt
= ζ1

(
1− E2

E

)
Ė +

(
1− L2

L

)
L̇+

a+δL

aζ2

(
1− I2

I

)
İ

+
a+δL

aνζ2ζ3

(
1− S2

S

)
Ṡ+

ζ1E2

κA2

(
1− Ψ(A2)

Ψ(A)

)
Ȧ+

γ(a+δL)

ρaνζ2ζ3

(
1− B2

B

)
Ḃ

+ηΨ(A2)E2S2
d
dt

∫ h1

0
χ1(τ)

∫ t

t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A2)E2S2

)
dsdτ

+
a+δL

ζ2
L2

d
dt

∫ h2

0
χ2(τ)

∫ t

t−τ

Φ

(
L(s)
L2

)
dsdτ

+
(a+δL)δI

aζ2ζ3
I2

d
dt

∫ h3

0
χ3(τ)

∫ t

t−τ

Φ

(
I(s)
I2

)
dsdτ.
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From system (12) we get

dΛ2

dt
= ζ1

(
1− E2

E

)
[λE −ηΨ(A)ES−δEE]

+

(
1− L2

L

)[
η

∫ h1

0
χ1(τ)Ψ(Aτ)Eτ Sτ dτ − (a+δL)L

]

+
a+δL

aζ2

(
1− I2

I

)[
a
∫ h2

0
χ2(τ)Lτ dτ −δII

]

+
a+δL

aνζ2ζ3

(
1− S2

S

)[
δIν

∫ h3

0
χ3(τ)Iτ dτ −δSS− γSB

]

+
ζ1E2

κA2

(
1− Ψ(A2)

Ψ(A)

)
[λA −κηΨ(A)SA−δAA]

+
γ(a+δL)

ρaνζ2ζ3

(
1− B2

B

)
[ρSB−δBB]+ηΨ(A2)E2S2

∫ h1

0
χ1(τ)

×
[

Ψ(A)ES
Ψ(A2)E2S2

− Ψ(Aτ)Eτ Sτ

Ψ(A2)E2S2
+ ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)]
dτ

+
a+δL

ζ2
L2

∫ h2

0
χ2(τ)

[
L
L2

− Lτ

L2
+ ln

(
Lτ

L

)]
dτ

+
(a+δL)δI

aζ2ζ3
I2

∫ h3

0
χ3(τ)dτ

[
I
I2
− Iτ

I2
+ ln

(
Iτ

I

)]
dτ.
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Collecting terms we get

dΛ2

dt
= ζ1

(
1− E2

E

)
[λE −δEE]+ηζ1Ψ(A)E2S

−η

∫ h1

0
χ1(τ)Ψ(Aτ)Eτ Sτ

L2

L
dτ +(a+δL)L2

− a+δL

ζ2

∫ h2

0
χ2(τ)Lτ

I2

I
dτ +

(a+δL)δI

aζ2
I2

− (a+δL)δS

aνζ2ζ3
S− (a+δL)δI

aζ2ζ3

∫ h3

0
χ3(τ)Iτ

S2

S
dτ

+
(a+δL)δS

aνζ2ζ3
S2 +

(a+δL)γ

aνζ2ζ3
S2B+

ζ1E2

κA2

(
1− Ψ(A2)

Ψ(A)

)
[λA −δAA]

− ζ1E2

A2
(Ψ(A)−Ψ(A2))ηSA− γ(a+δL)δB

ρaνζ2ζ3
B− γ(a+δL)

aνζ2ζ3
SB2

+
γ(a+δL)δB

ρaνζ2ζ3
B2 +ηΨ(A2)E2S2

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
dτ

+
a+δL

ζ2
L2

∫ h2

0
χ2(τ) ln

(
Lτ

L

)
dτ +

(a+δL)δI

aζ2ζ3
I2

∫ h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.

Using the equilibrium condition for ∆2:

λE = ηΨ(A2)E2S2 +δEE2, (a+δL)L2 = ηζ1Ψ(A2)E2S2,

δII2 = aζ2L2, δSS2 = δIνζ3I2 − γS2B2, λA = κηΨ(A2)S2A2 +δAA2, S2 =
δB

ρ
,
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we obtain,

dΛ2

dt
=−δEζ1

(E −E2)
2

E
+5(a+δL)L2 − (a+δL)L2

E2

E
+ζ1ηΨ(A)E2S

− a+δL

ζ1
L2

∫ h1

0
χ1(τ)

Ψ(Aτ)Eτ Sτ L2

Ψ(A2)E2S2L
dτ − a+δL

ζ2
L2

∫ h2

0
χ2(τ)

Lτ I2

L2I
dτ

−ηζ1Ψ(A2)E2S− a+δL

ζ3
L2

∫ h3

0
χ3(τ)

Iτ S2

I2S
dτ +

ζ1δAE2

κA2Ψ(A)

× (Ψ(A)−Ψ(A2))(A2 −A)− (a+δL)L2
Ψ(A2)

Ψ(A)
− ζ1E2

A2
ηSA(Ψ(A)−Ψ(A2))

+
a+δL

ζ1
L2

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
dτ +

a+δL

ζ2
L2

∫ h2

0
χ2(τ) ln

(
Lτ

L

)
dτ

+
a+δL

ζ3
L2

∫ h3

0
χ3(τ) ln

(
Iτ

I

)
dτ

=−δEζ1
(E −E2)

2

E
+5(a+δL)L2 − (a+δL)L2

E2

E
+ζ1ηE2S(Ψ(A)−Ψ(A2))

− a+δL

ζ1
L2

∫ h1

0
χ1(τ)

Ψ(Aτ)Eτ Sτ L2

Ψ(A2)E2S2L
dτ − a+δL

ζ2
L2

∫ h2

0
χ2(τ)

Lτ I2

L2I
dτ

− a+δL

ζ3
L2

∫ h3

0
χ3(τ)

Iτ S2

I2S
dτ +

ζ1δAE2

κA2Ψ(A)
(Ψ(A)−Ψ(A2))(A2 −A)

− (a+δL)L2
Ψ(A2)

Ψ(A)
− ζ1E2

A2
ηSA(Ψ(A)−Ψ(A2))

+
a+δL

ζ1
L2

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
dτ +

a+δL

ζ2
L2

∫ h2

0
χ2(τ)

× ln
(

Lτ

L

)
dτ +

a+δL

ζ3
L2

∫ h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.

Using equalities
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ln
(

Ψ(Aτ)Eτ Sτ

Ψ(A)ES

)
= ln

(
Ψ(Aτ)Eτ Sτ L2

Ψ(A2)E2S2L

)
+ ln

(
Ψ(A2)

Ψ(A)

)

+ ln
(

LS2

L2S

)
+ ln

(
E2

E

)
,

ln
(

Lτ

L

)
= ln

(
Lτ I2

L2I

)
+ ln

(
L2I
LI2

)
,

ln
(

Iτ

I

)
= ln

(
Iτ S2

I2S

)
+ ln

(
I2S
IS2

)
,

we obtain,

dΛ2

dt
=−δEζ1

(E −E2)
2

E
− (a+δL)L2

[
Φ

(
E2

E

)
+

1
ζ1

∫ h1

0
χ1(τ)

×Φ

(
Ψ(Aτ)Eτ Sτ L2

Ψ(A2)E2S2L

)
dτ +

1
ζ2

∫ h2

0
χ2(τ)Φ

(
Lτ I2

L2I

)
dτ

+
1
ζ3

∫ h3

0
χ3(τ)Φ

(
Iτ S2

I2S

)
+Φ

(
Ψ(A2)

Ψ(A)

)]
+

[
ζ1δAE2

κA2Ψ(A)
+

ζ1ηSE2

A2

]

× (Ψ(A)−Ψ(A2))(A2 −A).

If ℜ1 > 1, we get dΛ2
dt ≤ 0 for all E,L, I,S,A > 0. Further, dΛ2

dt = 0 when E = E2, L = L2, I = I2, S = S2, and A = A2.

Trajectories of system (12) converge to Ω̃2 which has I = I2 and S = S2. The fourth equation of system (12) provides

0 = Ṡ = δIνζ3I2 − γS2B−δSS2 =⇒ B = B2, for all t.

Therefore, Ω̃2 = {∆2}. Applying LIP implies that ∆2 is G.A.S.

5.1 Comparison results

We examine model (12) under the influence of medication therapy for inhibiting the virus replication as an example

to demonstrate the significance of including the latently infected cells and humoral immunity in our suggested model:

Ė = λE −ηΨ(A)ES−δEE,
L̇ = η

∫ h1
0 f1(τ)e−α1τ Ψ(Aτ)Eτ Sτ dτ − (a+δL)L,

İ = a
∫ h2

0 f2(τ)e−α2τ Lτ dτ −δII,
Ṡ = (1− ε)δIν

∫ h3
0 f3(τ)e−α3τ Iτ dτ −δSS− γSB,

Ȧ = λA −κηΨ(A)AS−δAA,
Ḃ = ρSB−δBB,

(25)
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where ε ∈ [0,1] is the efficacy of drug therapy. The basic reproduction number of system (25) is:

ℜ
ε
0 =

(1− ε)ηaνζ1ζ2ζ3Ψ(A0)E0

(a+δL)δS
= (1− ε)ℜ0.

Now, we calculate the drug efficacy ε that makes ℜε
0 ≤ 1 and stabilizes ∆0 of system (25) as:

1 ≥ ε ≥ ε̃min = max
{

0,1− 1
ℜ0

}
. (26)

When we ignore the latent phase in model (25) we obtain

Ė = λE −ηΨ(A)ES−δEE,
İ = η

∫ h1
0 f1(τ)e−α1τ Ψ(Aτ)Eτ Sτ dτ −δII,

Ṡ = (1− ε)δIν
∫ h3

0 f3(τ)e−α3τ Iτ dτ −δSS− γSB,
Ȧ = λA −κηΨ(A)AS−δAA,
Ḃ = ρSB−δBB,

(27)

and the basic reproduction number of model (27) is given by

ℜ̂
ε
0 =

(1− ε)ηνζ1ζ3Ψ(A0)E0

δS
= (1− ε)ℜ̂0

We determine the drug efficacy ε that makes ℜ̂ε
0 ≤ 1 and stabilizes ∆0 of system (27) as:

1 ≥ ε ≥ ε̂min = max
{

0,1− 1

ℜ̂0

}
. (28)

Since 0 < ζ2 ≤ 1, then

ℜ0 =
ηaνζ1ζ2ζ3Ψ(A0)E0

(a+δL)δS
≤ ηaνζ1ζ3Ψ(A0)E0

(a+δL)δS
<

ηνζ1ζ3Ψ(A0)E0

δS
= ℜ̂0.

In the SARS-CoV-2 dynamical model, excluding the latently infected cells would result in an overestimation of the

basic reproduction number. By comparing Eqs. (26) and (28) we get that ε̂min > ε̃min. As a result, when using a model

with latent phase, less anti-SARS-CoV-2 medication will be required to maintain the system at the uninfected equilibrium

and eradicate SARS-CoV-2 from the body.

In the absence of humoral immune response, system (12) becomes:

Ė = λE −ηΨ(A)ES−δEE,
L̇ = η

∫ h1
0 f1(τ)e−α1τ Ψ(Aτ)Eτ Sτ dτ − (a+δL)L,

İ = a
∫ h2

0 f2(τ)e−α2τ Lτ dτ −δII,
Ṡ = δIν

∫ h3
0 f3(τ)e−α3τ Iτ dτ −δSS,

Ȧ = λA −κηΨ(A)AS−δAA.

(29)

This model has only two equilibria:

(i) Uninfected equilibrium, ∆̄0 = (E0,0,0,0,A0), where the SARS-CoV-2 infection is cleared,
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(ii) Infected equilibrium ∆̄1 = (E1,L1, I1,S1,A1), where the SARS-CoV-2 infection is present.

Corollary 1. For system (29), the following statements hold true:

(a) If ℜ̄0 ≤ 1, then ∆̄0 is G.A.S.

(b) If ℜ̄0 > 1, then ∆̄1 is G.A.S.

As a result, the SARS-CoV-2 infection model may not effectively represent SARS-CoV-2 infection if humoral immunity

is ignored. Therefore, our proposed model are more relevant in describing the SARS-CoV-2 dynamics than the model

presented in [31].

6. Numerical simulations

To demonstrate the theoretical conclusions in this part, we do a numerical simulation for model (12). We perform

sensitivity analysis for the model. We show how humoral immunity and time delays affect the dynamics of SARS-CoV-2.

Take a look at a specific type of probability distributed functions as

fi(τ) = F(τ − τi), i = 1,2,3.

where F(.) is the Dirac delta function. When hi → ∞, i = 1,2,3, we have∫
∞

0
fi(τ)dτ = 1 and

∫
∞

0
F(τ − τi)e−αiτ dτ = e−αiτi , i = 1,2,3.

Moreover ∫
∞

0
F(τ − τ1)e−α1τ

Ψ(Aτ)Eτ Sτ dτ = e−α1τ1Ψ(Aτ1)Eτ1Sτ1 ,

∫
∞

0
F(τ − τ2)e−α2τ Lτ dτ = e−α2τ2Lτ2 ,

∫
∞

0
F(τ − τ3)e−α3τ Iτ dτ = e−α3τ3Iτ3 .

Then, model (12) becomes

Ė = λE −ηΨ(A)ES−δEE,

L̇ = ηe−α1τ1Ψ(Aτ1)Eτ1Sτ1 − (a+δL)L,

İ = ae−α2τ2Lτ2 −δII,

Ṡ = δIνe−α3τ3Iτ3 −δSS− γSB,

Ȧ = λA −κηΨ(A)AS−δAA,

Ḃ = ρSB−δBB. (30)
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MATLAB’s dde23 solver will be used to numerically solve the DDEs system (30). Table 1 contains the values of the

parameters of model (30). We choose the function Ψ as Ψ(A) = An

A n
s +An . Then ℜ0 given by Eq. (14) becomes

ℜ0 =
ηaνe−α1τ1−α2τ2−α3τ3E0

(a+δL)δS

An
0

A n
s +An

0
. (31)

Table 1. Model parameters.

Parameter Value Parameter Value

λE 5 ρ Varied

δE 0.1 δB 0.1

η Varied As 50

δI 0.1 α1 1

ν 20 α2 1

δS 0.1 α3 1

γ 0.04 τ1 Varied

λA 1 τ2 Varied

κ 0.3 τ3 Varied

a 0.2 δL 0.1

n 1 δA 0.1

We mentioned that, other numerical techniques, such as the finite difference approach, can also be used to solve

system (12). We leave this for future work since more study is necessary.

6.1 Stability of the equilibria

We use the following three initials to demonstrate the global stability of the equilibrium points of system (30):

C1 : (E(θ),L(θ), I(θ),S(θ),A(θ),B(θ)) = (35,0.5,0.5,1,7,2),

C2 : (E(θ),L(θ), I(θ),S(θ),A(θ),B(θ)) = (40,1,2,3,8,2.5),

C3 : (E(θ),L(θ), I(θ),S(θ),A(θ),B(θ)) = (45,1.5,3.5,5,9,3),

where θ ∈ [−max{τ1,τ2,τ3},0]. Here, we set τi = 0.9, i = 1,2,3 and select the values of η and ρ as:

State 1 (Stability of ∆0): η = 0.005 and ρ = 0.0005. These values give ℜ0 = 0.373364 < 1. Figure 2 demonstrates
that for all starting values, the trajectories lead to the equilibrium ∆0 = (50,0,0,0,10,0). This demonstrates that Theorem
1’s statement that ∆0 is G.A.S. In this state, SARS-CoV-2 particles are eventually cleared.

State 2 (Stability of ∆1): η = 0.04 and ρ = 0.0005. With such selection we obtain ℜ1 = 0.189932 < 1 <

2.98691 = ℜ0, S1 = 25.0488 and δB
ρ

= 0.1
0.0005 = 200, then S1 < δB

ρ
. The equilibrium point ∆1 exists with ∆1 =

(22.0461,3.7884,3.0805,25.0488,7.2443,0). Figure 3 clearly demonstrates that the trajectories eventually trend to ∆1 for all

initials, which is consistent with Theorem 2. This is the situation of an infected person when humoral immunity is not engaged.

State 3 (Stability of ∆2): η = 0.04 and ρ = 0.05. This gives ℜ1 = 1.99231 > 1. The numerical results show that,

∆2 = (44.2806,0.7751,0.6303,2,9.62697,3.9063) exists. Figure 4 shows that, for all initials, the trajectories eventually
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converge to ∆2, which is consistent with Theorem 3. This case depicts a person who has SARS-CoV-2 infection and active

humoral immunity.
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Figure 2. Solutions of model (30) with initials C1-C3 converge to ∆0 = (50,0,0,0,10,0) when ℜ0 ≤ 1 (State 1).
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Figure 3. Solutions of model (30) with initials C1-C3 converge to ∆1 = (22.0461,3.7884,3.0805,25.0488,7.2443,0) when ℜ0 > 1 and ℜ1 ≤ 1 (State
2).
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Figure 4. Solutions of model (30) with initials C1-C3 converge to ∆2 = (44.2806,0.7751,0.6303,2,9.62697,3.9063) when ℜ1 > 1 (State 3).
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6.2 Impact of the time delay on the SARS-CoV-2 dynamics

We demonstrate how time delays parameters τ1, τ2 and τ3 affect the system’s solutions and the stability of ∆0. From

Eq. (31), it is clear that while all other parameters are constant, the parameter ℜ0 is decreasing when the delay parameters

τ1, τ2 and τ3 are increased. Therefore, depending on τ1, τ2 and τ3, the stability of ∆0 can be greatly altered. Let us fix

η = 0.01, ρ = 0.001 and vary τ1, τ2 and τ3 as:

D1: τ1 = τ2 = τ3 = 0,

D2: τ1 = τ2 = τ3 = 0.6,

D3: τ1 = τ2 = τ3 = 1.0,

D4: τ1 = τ2 = τ3 = 1.5.

Additionally, we take the following initial.

C4 : (E(θ),L(θ), I(θ),S(θ),A(θ),B(θ)) = (35,5,10,50,8,3),

where θ ∈ [−max{τ1,τ2,τ3},0]. Assume that τ = τ1 = τ2 = τ3, then for n = 1, ℜ0 is given by

ℜ0 =
ηaνe−(α1+α2+α3)τ λEλA

(a+δL)δS(AsδEδA +λAδE)
.

We see that, ℜ0 is a decreasing function of τ . Let τcr be such that ℜ0(τcr) = 1. Consequently,

ℜ0 ≤ 1 for all τ ≥ τcr.

Hence, ∆0 is G.A.S when τ ≥ τcr. Using the values of the parameters we obtain, τcr = 0.802649. Therefore, we have
the following cases:

(i) If τ ≥ τcr, then ℜ0 ≤ 1 and thus ∆0 is G.A.S. Therefore, when τ is large enough, then ∆0 can be stabilized.

(ii) If τ < τcr, then ℜ0 > 1 and thus ∆0 will be unstable.

The impact of time delay on the system’s trajectories is depicted in Figure 5. It is evident that as τ increases, the

proportions of uninfected epithelial cells and the ACE2 receptor increase, whereas those of latently and actively infected

epithelial cells, SARS-CoV-2 particles, and antibodies decrease.
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Figure 5. Solutions of model (30) under the impact of the time delay τ .
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6.3 Impact of humoral immunity on the SARS-CoV-2 infection

This part discusses how the dynamics of system (30) are affected by the stimulated rate constant ρ . We fix the

parameters η = 0.04 and τ1 = τ2 = τ3 = 0.9 and vary the parameter ρ as: ρ = 0.0005, ρ = 0.02, ρ = 0.05 and ρ = 0.07.
Further, we consider the initial condition:

C5 : (E(θ),L(θ), I(θ),S(θ),A(θ),B(θ)) = (40,1,2,6,8,3), θ ∈ [−0.9,0]

Figure 6 illustrates how humoral immunity affected the SARS-CoV-2 infection. We see that when ρ is raised, the

levels of uninfected epithelial cells, antibodies, and ACE2 receptors rise, whereas the levels of latently infected cells,

actively infected cells, and SARS-CoV-2 particles fall. Therefore, the SARS-CoV-2 infection can be managed through

humoral immunity. Keep in mind that because ℜ0 does not depend on ρ , ∆0 cannot be attained by raising ρ . This might

contribute to the development of anti-SARS-CoV-2 treatments with the potential to boost humoral immunity.
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Figure 6. Solutions of model (30) under the impact of humoral immunity parameter ρ .

6.4 Sensitivity analysis

Sensitivity analysis is crucial in pathology and epidemiology when modeling complex interactions [44]. Sensitivity

analysis can help us assess how well we are able to prevent the progression of the disease between-hosts and within-host.

Three techniques may be used to determine sensitivity indices: directly by direct differentiation, with the use of a Latin

hypercube sampling technique, or by linearizing the system and resolving the resultant equations [44, 45]. With the use of

direct differentiation, the indices in this study may be stated analytically. When variables fluctuate dependent on parameters,

you may get the sensitivity index by using partial derivatives. The normalized forward sensitivity index of ℜ0 is written in

terms of the parameter m:

Sm =
m
ℜ0

∂ℜ0

∂m
. (32)

Using the values given in Table 1 and η = 0.003, ρ = 0.01 and τ1 = τ2 = τ3 = 0.9, we present the sensitivity index
Sm in Table 2 and Figure 7. Obviously, λE , η , λA, a and ν have positive indices. Clearly, λE , η and ν , have the most

positive sensitivity index. In this state, there is a positive relationship between the progression of COVID-19 and the

parameters λE , η , λA, a and ν , when all other parameters are fixed. Parameters δE , δS, δA, δL, τ1, τ2, τ3, α1, α2 α3, As

and n have negative indices, meaning that when the values of these parameters rise, the value of ℜ0 declines. Obviously, n
has the most negative sensitivity index.
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Table 2. Sensitivity index of ℜ0.

m Sm m Sm m Sm

λE 1 δA −0.833 α1 −0.9

η 1 δL −0.333 ν 1

δE −1 τ1 −0.9 τ3 −0.9

δS −1 λA 0.833 α2 −0.9

a 0.333 τ2 −0.9 α3 −0.9

n −1.3412 As −0.833

Figure 7. Forward sensitivity analysis of the parameters on ℜ0.

7. Conclusion and discussions

In this study, we investigated a SARS-CoV-2 infection model that takes into account the function of the ACE2

receptor to characterize the dynamics of SARS-CoV-2 in the host. The effect of humoral immunity and latent phase

on the SARS-CoV-2 infection was taken into consideration. Three distributed time-delays were incorporated: (i) delay

in development of latently infected epithelial cells, (ii) delay in the latently infected epithelium cells’ activation, and

(iii) delay in the maturation of recently released SARS-CoV-2 virions. We started by demonstrating the solutions’ basic

characteristics, nonnegativity and boundedness. Then, we established that the model have three equilibria, uninfected

equilibrium, ∆0, infected equilibrium without humoral immunity, ∆1, and infected equilibrium with humoral immunity ∆2.

The existence and global stability of the equilibria were demonstrated using the two threshold parameters ℜ0 and ℜ1. We

created appropriate Lyapunov functions and used LIP to demonstrate the three equilibria’s global asymptotic stability. We

proved the following:
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• If ℜ0 ≤ 1, then ∆0 is the only equilibrium and it is G.A.S. In this state, the number of SARS-CoV-2 particles

eventually converges to 0 and the COVID-19 patient will recover. Different control strategies can be applied to make

ℜ0 =
ηaνe−α1τ1−α2τ2−α3τ3λEλA

(a+δL)δS(AsδEδA +λAδE)
≤ 1.

These strategies such as: (i) reducing the parameter η as (1− εB)η by applying treatment for blocking the virus

binding with drug efficacy εB ∈ [0,1] [46], (ii) reducing the parameter ν as (1− εI)ν by applying treatment for

inhibiting the virus replication with drug efficacy εI ∈ [0,1] [46], (iii) enlarging the length of delay periods τ1, τ2

and τ3 [40], (iv) inhibiting the proliferation rate of ACE2 receptors λA, (v) increasing the degradation rate of ACE2

receptors δA. We see that ℜ0 is independent of humoral immunity parameters; as a result, humoral immunity only

functions to regulate infection rather than to eradicate it.

• If ℜ1 ≤ 1 < ℜ0, then there exist two equilibria ∆0 and ∆1, where ∆0 is unstable and ∆1 is G.A.S. In this case,

the infection is there, but the immune system is not responding. The reason for this is because when the viral

concentration decreases (i.e. S ≤ δB/ρ), it may not be high enough to trigger an immune response.

• If ℜ1 > 1, then in addition to ∆0 and ∆1, there exists ∆2 and it is G.A.S. In this instance, the body has enough viruses

(i.e. S > δB/ρ) to trigger the immune system’s response.

The model was numerically solved, the results were visually shown, and they agreed with our theoretical findings. We

investigated the sensitivity analysis to see how the parameter ℜ0 is affected by the values of the model’s parameters. We

investigated the effects of ACE2 receptors, humoral immunity, time delay and latent phase on the SARS-CoV-2 infection.

We showed that ACE2 receptor proliferation and degradation rates have an impact on ℜ0, which may be useful information

for the creation of potential receptor-targeted vaccinations and medications. We demonstrated that whereas humoral

immunity plays a function in infection management, it does not ultimately remove SARS-CoV-2 particles. Additionally,

lengthening the time delay can considerably reduce ℜ0 and hence impede the advancement of COVID-19. This makes

it possible to develop various therapies that will extend the delay time. Finally, we showed that, excluding the latently

infected cells in the model would result in an overestimation of ℜ0.

Our inability to determine the values of the model’s parameters using actual data from COVID-19 patients is the

primary drawback of our study. The explanations are as follows: (i) Real data from infected individuals are still scarce; (ii)

our results may not be very accurate when compared to a small number of real studies; (iii) it is difficult to gather real data

from patients who have SARS-CoV-2 infection; and (iv) doing experiments to get real data is outside the purview of this

study.

It is possible to extend the proposed model in several ways by considering immune response delay [21], CTL response

[23, 47], reaction diffusion [48, 49] and memory effect [50, 51].
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