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1. Introduction
Throughout this article, let N denote the set of nonnegative integers. Let K denote the real number field R or the 

complex number field C. Let Q denote the rational number field. If z ∈ C and r > 0 are fixed then define B(z, r) = {λ ∈ 
C : |λ − z| < r}. Let T = {z ∈ C : |z| = 1} and D = {z ∈ C : |z| < 1}.

A continuous linear operator T on a Banach space X is called hypercyclic if there is an element x in X whose orbit 
{T 

nx : n ∈ N} under T is dense in X; topologically transitive if for any pair U, V of nonempty open subsets of X, there 
exists some nonnegative integer n such that T 

n(U)  V ≠ ∅; mixing if for any pair U, V of nonempty open subsets 
of X, there exists some nonnegative integer N such that T 

n(U)  V ≠ ∅ for all n ≥ N; and chaotic if T is topologically 
transitive and T has a dense set of periodic points. It is well known that a continuous linear operator on a separable 
Banach space is topologically transitive if and only if it is hypercyclic (see page 10 in [1]).

The historical interest in hypercyclicity is related to the invariant subset problem. The invariant subset problem, 
which is open to this day, asks whether every continuous linear operator on any infinite dimensional separable 
Hilbert space possesses an invariant closed subset other than the trivial ones given by {0} and the whole space. 
Counterexamples do exist for continuous linear operators on non-reflexive spaces like l1. After a simple observation, a 
continuous linear operator T on a Banach space X has no nontrival invariant closed subsets if and only if every nonzero 
vector x is hypercyclic (i.e., the orbit {T 

nx : n ∈ N} under T is dense in X).
The best known examples of hypercyclic operators are due to Birkhoff [2], MacLane [3] and Rolewicz [4]. Each 

of these papers had a profound influence on the literature on hypercyclicity. Birkhoff’s result on the hypercyclicity of 
the translation operator Ta( f )(z) =  f (z + a), a ≠ 0, on the space H(C) of entire functions has led to an extensive study of 
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hypercyclic composition operators (see pages 110-118 in [1, 4-7]), while MacLane’s result on the hypercyclicity of the 
differentiation operator Df = f ' on H(C) initiated the study of hypercyclic differential operators (see pages 104-110 in [1], 
[8]).

Recently Godefroy and Shapiro [8] have studied the dynamic properties of conjugate multipliers on some Hilbert 
spaces of analytic functions, characterizing hypercyclic, mixing and chaotic conjugate multipliers on such spaces. It is 
therefore very natural to try to characterize hypercyclic, mixing and chaotic conjugate multipliers on arbitrary reflexive 
Banach spaces of analytic functions. In this paper we will characterize the hypercyclic, mixing and chaotic conjugate 
multipliers on some reflexive spaces of analytic functions, generalizing Theorem 4.5, Theorem 4.9, Theorem 6.2 in [8].

Theorem 1.1 Let Ω ⊆ C be a nonempty open connected subset. Let X ≠ {0} be a reflexive Banach space of 
analytic functions on Ω such that each point evaluation kλ : X → C(λ ∈ Ω) is continuous on X, where kλ( f ) =  f (λ)( f  ∈ X). 
Suppose further that every bounded analytic function ψ on Ω defines a multiplication operator Mψ : X → X with ||Mψ|| ≤ 

sup | ( ) |
z

M zψ ψ
∈Ω

≤‖ ‖ , where Mψ( f ) = ψf ( f  ∈ X). Let φ be a nonconstant bounded analytic function on Ω and Mφ
* the conjugate of 

Mφ. Then the following assertions are equivalent:

(1) Mφ
* is hypercyclic;

(2) Mφ
* is mixing;

(3) Mφ
* is chaotic;

(4) φ(Ω)  T ≠ ∅.
This paper is organized as follows. In Section 2 we characterize the hypercyclic, mixing and chaotic conjugate 

multipliers on some reflexive spaces of analytic functions, generalizing Theorem 4.5, Theorem 4.9, Theorem 6.2 in [8]. 
Furthermore, we exhibit several hypercyclic, mixing and chaotic conjugate multipliers on H p spaces for p > 1. These 
examples show that our generalizations are more effective.

2. The hypercyclic, mixing and chaotic conjugate multipliers
Recall the notion of annihilator introduced in page 163 in [9].
Definition 2.1 Let X be a normed linear space. If A ⊆ X , the annihilator A⊥ of A is the set

{ : ( ) 0 for all },' 'A x X x x x A⊥ ∗= ∈ = ∈

where X* is the set of continuous linear functionals on X.
If F  ⊆ X*, the annihilator F⊥ of F is the set

{ : ( ) 0 for all }.' 'F x X x x x F⊥ = ∈ = ∈

The following technical results will help us characterize hypercyclic, mixing and chaotic conjugate multipliers on 
some reflexive Banach spaces of analytic functions.

The following proposition is well known (see page 164 in [9]).
Proposition 2.2 A normed linear space X is a reflexive Banach space if and only if every norm-closed linear 

subspace in X* is σ(X*, X)-closed, where σ(X*, X) is the weak* topology on X*.
We need the following proposition (see pages 163-164 in [9]).
Proposition 2.3 Let X be a normed linear space. If F is a nonempty subset of X*, then F⊥⊥ is the σ(X*, X)-closed 

linear subspace generated by F , where F⊥⊥ = (F⊥)⊥.
The following basic result is well known in complex analysis.
The Identity Principle for analytic functions Let Ω ⊆ C be a nonempty open connected subset. Let  f  : Ω → C 
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be an analytic function on Ω. Then the following are equivalent statements:
(1)  f  ≡ 0;
(2) {z ∈ Ω :  f (z) = 0} has a limit point in Ω.
We need the following Godefroy-Shapiro criterion (see pages 69-70 in [1]).
Proposition 2.4 Let T be a continuous linear operator on a separable Banach space X. Suppose that the subspaces

0 { :  for some  with | | 1},X span x X Tx xλ λ λ= ∈ = ∈ <K

0 { :  for some  with | | 1}Y span x X Tx xλ λ λ= ∈ = ∈ >K

are dense in X. Then T is mixing, and in particular hypercyclic.
If, moreover, X is a complex space and also the subspace

0 { :  for some }iZ span x X Tx e xαπ α= ∈ = ∈

is dense in X, then T is chaotic.
The following is the major technique we need.
Lemma 2.5 Let Ω ⊆ C be a nonempty open connected subset. Let X ≠ {0} be a reflexive Banach space of analytic 

functions on Ω such that each point evaluation kλ : X → C(λ ∈ Ω) is continuous on X, where kλ( f ) =  f (λ)( f  ∈ X). Let Λ 
⊆ Ω be a set with a limit point in Ω. Then the set span{kλ : λ ∈ Λ} is dense in X*.

Proof. First we will show that (span{kλ : λ ∈ Λ})⊥ = {0}. Let  f  ∈ (span{kλ : λ ∈ Λ})⊥. We will show that  f  ≡ 0. 
Since  f  ∈ (span{kλ : λ ∈ Λ})⊥, we have kλ( f ) = 0 for all λ ∈ Λ. Notice that kλ( f ) =  f (λ). Then  f (λ) ≡ 0 for all λ ∈ Λ. 
This implies that 

{ : ( ) 0}.z f zΛ ⊆ ∈ Ω =

Since Λ has a limit point in Ω, {z ∈ Ω :  f (z) = 0} has a limit point in Ω. By the Identity Principle for analytic 
functions we have  f  ≡ 0.

Next we will show that { : }span k Xλ λ ∗∈ Λ = . Since 

( { : }) ( { : })span k span kλ λλ λ⊥ ⊥∈ Λ = ∈ Λ

and ( { : }) {0}, ( { : }) {0}.span k span kλ λλ λ⊥ ⊥∈ Λ = ∈ Λ =  Hence 

( { : } .) {0}span k Xλ λ ⊥⊥ ⊥ ∗∈ Λ = =

Since X is reflexive and { : }span k Xλ λ ∗∈ Λ = is norm-closed, by Proposition 2.2 we have { : }span k Xλ λ ∗∈ Λ = is σ(X*, X)-
closed. Finally by Proposition 2.3 we have 

( { : }) { : }.span k span kλ λλ λ⊥⊥∈ Λ = ∈ Λ

Therefore { : }span k Xλ λ ∗∈ Λ = .                                                                                                                                 □
Remark 2.6 Let Ω ⊆ C be a nonempty open connected subset. Let X ≠ {0} be a reflexive Banach space of analytic 
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functions on Ω such that each point evaluation kλ : X → C(λ ∈ Ω) is continuous on X. Then by Lemma 2.5 we have X* 
is separable.

Next we prove Theorem 1.1.
Proof of Theorem 1.1 (4) ⇒ (2) First we will show that Mφ

*(kλ) = φ(λ)kλ for all λ ∈ Ω. Let λ ∈ Ω and  f  ∈ X. Notice 
that

(1)

(4)

(2)

(3)

( )( ) ( ( ))M k f k M fϕ λ λ ϕ
∗ =

( )k fλ ϕ=

( )( )fϕ λ=

( ) ( )fϕ λ λ=

(5)( ( ) )( )k fλϕ λ=

Therefore Mφ
*(kλ) = φ(λ)kλ for all λ ∈ Ω.

Next we will show that {λ ∈ Ω : |φ(λ)| < 1} is nonempty and has a limit point in Ω. Since φ(Ω)  T ≠ ∅, we may 
choose z0 ∈ Ω with |φ(z0)| = 1. By the Open Mapping Theorem, φ(Ω) is open. Hence there exists δ > 0 such that B(φ(z0), 
δ) ⊆ φ(Ω). Since |φ(z0)| = 1, we may choose λ0 ∈ B(φ(z0), δ) with |λ0| < 1. Since B(φ(z0), δ) ⊆ φ(Ω), we have λ0 ∈ φ(Ω). 
Therefore there exists w0 ∈ Ω such that λ0 ∈ φ(w0). This implies that 

0 { :| ( ) | 1}w λ ϕ λ∈ ∈ Ω <

and {λ ∈ Ω : |φ(λ)| < 1} is nonempty. Since φ is continuous, {λ ∈ Ω : |φ(λ)| < 1} is a nonempty open subset. Hence {λ ∈ 
Ω : |φ(λ)| < 1} has a limit point in Ω.

Similarly we can show that {λ ∈ Ω : |φ(λ)| > 1} is nonempty and has a limit point in Ω. Since φ(Ω)  T ≠ ∅, we 
may choose z0 ∈ Ω with |φ(z0)| = 1. By the Open Mapping Theorem, φ(Ω) is open. Hence there exists δ > 0 such that 
B(φ(z0), δ) ⊆ φ(Ω). Since |φ(z0)| = 1, we may choose λ0 ∈ B(φ(z0), δ) with |λ0| > 1. Since B(φ(z0), δ) ⊆ φ(Ω), we have λ0 
∈ φ(Ω). Therefore there exists w0 ∈ Ω such that λ0 ∈ φ(w0). This implies that

0 { :| ( ) | 1}w λ ϕ λ∈ ∈ Ω >

and {λ ∈ Ω : |φ(λ)| > 1} is nonempty. Since φ is continuous, {λ ∈ Ω : |φ(λ)| > 1} is a nonempty open subset. Hence {λ ∈ 
Ω : |φ(λ)| > 1} has a limit point in Ω.

Finally we will show that Mφ
* is mixing. Let

{ :  for some  with | | 1},A span x X M x xϕ λ λ λ∗ ∗ ∗ ∗ ∗= ∈ = ∈ <

{ :  for some  with | | 1}.B span x X M x xϕ λ λ λ∗ ∗ ∗ ∗ ∗= ∈ = ∈ >

Since Mφ
*(kλ) = φ(λ)kλ for all λ ∈ Ω, spank{kλ : λ ∈ Ω and |φ(λ)| < 1} ⊆ A and spank{kλ : λ ∈ Ω and |φ(λ)| > 1} ⊆ 

B. Since {λ ∈ Ω : |φ(λ)| < 1} and {λ ∈ Ω : |φ(λ)| > 1} both have a limit point in Ω, by Lemma 2.5 we have spank{kλ : λ 
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∈ Ω and |φ(λ)| < 1} and spank{kλ : λ ∈ Ω and |φ(λ)| > 1} are both dense in X*. Hence A and B are both dense in X*. By 
Proposition 2.4, we have Mφ

* is mixing.
(2) ⇒ (1) This is trivial.
(1) ⇒ (4) Let us suppose that φ(Ω) does not intersect the unit circle. Since φ(Ω) is open and connected, it must lie 

entirely inside or entirely outside D. If φ(Ω) ⊆ D then

sup | ( ) | 1,
z

M M zϕ ϕ ϕ∗

∈Ω
= ≤ ≤‖ ‖ ‖ ‖ (6)

and hence Mφ
* cannot be hypercyclic. If φ(Ω) ⊆ C\D

_ 
 then 1ψ

ϕ
=  is a bounded analytic function on Ω with ψ(Ω) ⊆ D, 

which implies that Mψ
* cannot be hypercyclic. But Mφ is the inverse of Mψ and therefore Mφ

* is the inverse of Mψ
*. Hence 

Mφ
* cannot be hypercyclic.

(4) ⇒ (3) First we will show that {λ ∈ Ω : φ(λ) is a root of unity} has a limit point in Ω. Since φ(Ω)  T ≠ ∅, 

we may choose z0 ∈ Ω with |φ(z0)| = 1. Since Ω is open, there is r > 0 such that 0( , )B z r ⊆ Ω. By the Open Mapping 
Theorem, φ(B(z0, r) is open. Since φ(z0) ∈ φ(B(z0, r)), there is δ > 0 such that B(φ(z0), δ) ⊆ φ(B(z0, r). Since |φ(z0)| = 1, 
B(φ(z0), δ) contains infinitely many roots of unity. This implies that infinitely many preimages of roots of unity lie in the 
compact subset 0( , )B z r ⊆ Ω of Ω. Therefore {λ ∈ Ω : φ(λ) is a root of unity} has a limit point in Ω.

Next we will show that Mφ
* is chaotic. Let

{ :  for some }.iC span x X M x e xαπ
ϕ α∗ ∗ ∗ ∗ ∗= ∈ = ∈

Since Mφ
*(kλ) = φ(λ)kλ for all λ ∈ Ω, spank{kλ : λ ∈ Ω and φ(λ) is a root of unity} ⊆ C. Since {λ ∈ Ω : φ(λ) is a root 

of unity} has a limit point in Ω, by Lemma 2.5 we have spank{kλ : λ ∈ Ω and φ(λ) is a root of unity} is dense in X*. 
Hence C is dense in X*. By (4) ⇒ (2), we have Mφ

* is mixing. By Proposition 2.4, taking Z0 = C, we have Mφ
* is chaotic.

(3) ⇒ (1) This is trivial.                                                                                                                                                □
Godefroy and Shapiro [8] proved Theorem 1.1 in the case of Hilbert spaces of analytic functions, thus Theorem 1.1 

generalizes Theorem 4.5, Theorem 4.9, Theorem 6.2 in [8].
Example 2.7 For 1 ≤ p < +∞, let H p denote the space of all analytic functions on D for which 

1
2
00 1

1sup ( | ( ) | ) .
2

i p p

r
f re d

π θ θ
π≤ <

< +∞∫
 

For any  f  ∈ H p, let

1
2
00 1

1sup ( | ( ) | ) .
2

i p p
p

r
f f re d

π θ θ
π≤ <

= ∫‖‖

Then (H p, ||·||p) is a Banach space.
In this example we will characterize hypercyclic, mixing and chaotic conjugate multipliers on H p for 1 < p < +∞.
First we will show that each point evaluation kλ : H

p → C(λ ∈ D) is continuous on H p for 1 ≤ p < +∞, where kλ( f ) 
=  f (λ)( f  ∈ H p). Let λ ∈ D, { fn}

∞
n=1 be a sequence in H p,  f  ∈ H p and lim 0n p

n
f f

→∞
− =‖ ‖ . We will show that lim ( ) ( )n

n
f fλ λ

→∞
=

=  f (λ). Since λ ∈ D, we may choose r, R ∈ (0, 1) with |λ| < r < R < 1. Notice that
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(8)

(9)

(7)

(10)

1
2
0

1( | ( ) ( ) | )
2

i i p p
n p nf f f Re f Re d

π θ θ θ
π

− ≥ −∫‖ ‖

1
2

1 0
1 ( | ( ) ( ) | )

(2 )

i i p p
n

p

f Re f Re d
π θ θ θ

π

= −∫

2
1 1 0

1 1 1 1| ( ) ( ) |  (where 1)

(2 ) (2 )

i i
n

p q

f Re f Re d
p q

π θ θ θ

π π

≥ − + =∫

2
0

1 | ( ) ( ) | .
2

i i
nf Re f Re d

π θ θ θ
π

= −∫

By Cauchy’s integral formula, we have

(11)

(12)

(13)

( )( )1( )( )  (where ( ) , 0 2 )
2

in
n

f f
f f d t Re

i
θ

γ
ω

λ ω γ θ π
π ω λ

−
− = = ≤ ≤

−∫

2
0

( ) ( )1 ( )
2

i i
in

i
f Re f Re

d Re
i Re

θ θπ θ
θπ λ

−
=

−∫

2
0

( ) ( )
.

2

i i
in

i
f Re f ReR e d

Re

θ θπ θ
θ θ

π λ

−
=

−∫

Therefore

(14)

(17)

(15)

(18)

(16)

2
0

1 | ( ) ( ) |
2

i i
nf Re f Re d

π θ θ θ
π

−∫

2
0

( ) ( )1 | | | |
2

i i
i in

i
f Re f Re

e Re d
Re

θ θπ θ θ
θ λ θ

π λ

−
= ⋅ −

−∫

2
0

( ) ( )
| |

2

i i
in

i
f Re f ReR r e d

Re

θ θπ θ
θ θ

π λ

−−
≥

−∫

2
0

( ) ( )
| |

2

i i
in

i
f Re f ReR r e d

Re

θ θπ θ
θ θ

π λ

−−
≥

−∫

2| ( ( ) ( )) |
2 n

R r f f
R
π λ λ

π
−

= −
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(19)| ( ) ( ) | .n
R r f f

R
λ λ−

= −

Hence | ( ) ( ) | . Since lim 0, lim ( ) ( ).n p n n p n
n n

R rf f f f f f f f
R

λ λ λ λ
→∞ →∞

−
− ≥ − − = =‖ ‖ ‖ ‖

Next we will show that every bounded analytic function ψ on D defines a multiplication operator Mψ : H p → H p 
with sup | ( ) |

z
M zψ ψ

∈
≤‖ ‖

D
 for 1 ≤ p < +∞. Let ψ be a bounded analytic function on D. Then ψ defines a multiplication 

operator Mψ on H p. Furthermore, for any  f  ∈ H p we have

1
2
00 1

1sup | ( ) | sup ( ( ) )
2

pi p

z r
z f re d

π θψ θ
π∈ ≤ <

⋅≤ ∫
D

sup | ( ) | .p
z

z fψ
∈

= ⋅‖‖
D

1
2
00 1

1( ) sup ( ( ) ( ) )
2

pi i p
p

r
M f re f re d

π θ θ
ψ ψ θ

π≤ <
= ∫‖ ‖ (20)

(21)

(22)

Therefore sup | ( ) | .
z

M zψ ψ
∈

≤‖ ‖
D

It is already well-known that the Hardy spaces (H p, ||·||p) are reflexive Banach spaces for 1 < p < +∞ (see pages 
112-113 in [10]). By Theorem 1.1, for any nonconstant bounded analytic function φ on D and 1 < p < +∞, Mφ

* : (H p)* → 
(H p)* is hypercyclic if and only if Mφ

* : (H p)* → (H p)* is mixing if and only if Mφ
* : (H p)* → (H p)* is chaotic if and only 

if φ(D)  T ≠ ∅.
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