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1. Introduction 

William K. Clifford introduced the Geometric Algebra which is now usually known as 

Clifford Algebra [1] by creating a new multiplication rule in Grassmann’s Exterior Algebra [2, 

3]. Clifford was able to unite two seemingly unrelated mathematical frameworks: the algebra 

of extensions, which Hermann Grassmann invented, and the quaternion, which Sir William 

Rowan Hamilton constructed [4]. Clifford observed that Hamilton and Grassmann were 

tackling the same problem from different perspectives, and consequently, he combined both 

ideas to define the Geometric Product in 1876. In 1878, Clifford made a significant contribution 

by integrating the framework of quaternion into Grassmann’s algebra of extensions [5]. This 

combination resulted in a system specifically designed to align with the orthogonal geometry 

of any given space. Within this system, quaternion emerged as a specific instance of a broader 

category known as Clifford algebra. However, his ideas were not further developed by his 

contemporary mathematicians for many years [6]. 

 

The Clifford algebras have been developed with the involvement of several 

Mathematicians and physicists such as Rudolf Lipschits, Theodor Valen, Elie Cartan, Claude 
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Chevalley reinvented the ”Clifford Algebra” [7] and established its power as a formal 

mathematics and physics language. Specifically, David Hesten and Elie Cartan are notable 

contributors to the progress and development of Clifford algebra. Elie Cartan presented the 

idea of the spinor in 1913 and in 1938 the idea of the pure spinor and he defined Clifford 

algebra’s as algebras of matrices and found that 8 has a periodicity inside these algebraic 

structures, for more info, refer [8]. David Hesten extended the concept of “Clifford Algebra” 

to devise a formalism and calls it Geometric Algebra [6]. He defines orthogonal operators as 

similarity transformations on Euclidian space E, which can also be considered as group actions 

in Clifford Algebra on the underlying Vector Space. In this paper, we investigate the finite 

subgroup of Euclidian space of Clifford Algebra over a finite dimension vector space E and we 

will the show that the subgroup 𝐵3 of Clifford algebra is Solvable. 

 

2. Preliminaries: 

2.1  Clifford Algebra: 

The algebra denoted as C(E), which is defined over an n-dimensional vector space E, 

includes a Clifford map denoted as 𝜌: 𝐸 → 𝐶(𝐸). This Clifford map must fulfil the condition 

that for any algebra L and any other Clifford map 𝜓: 𝐸 → 𝐿, there exists a unique algebra 

homomorphism 𝜓∗: 𝐶(𝐸) → 𝐿   see the Figure 1, such that 𝜓∗𝑜𝜌 =  𝜓  [5,7]. 

 

Figure 1: unique algebra homomorphism                                    
 

2.2  Clifford’s original definition:   

      Grassmann’s exterior algebra ∧ Rn of the linear space Rn is an associative algebra of 

dimension 2n. In terms of a basis { 𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛 } for Rn the exterior algebra ∧ Rn 

has a basis, 

1 

𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛 

𝜎1 ∧ 𝜎2,  𝜎1 ∧ 𝜎3, … . 𝜎1 ∧ 𝜎𝑛,  𝜎2 ∧ 𝜎3, … … 𝜎(𝑛 − 1) ∧ 𝜎𝑛 

. 

. 

. 

𝜎1 ∧ 𝜎2 ∧ 𝜎3 … … ∧ 𝜎𝑛 

The exterior algebra has unit 1 and satisfies the multiplication rules 
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𝜎𝑖 ∧ 𝜎𝑗 = −𝜎𝑗 ∧ 𝜎𝑖 for 𝑖 ≠ 𝑗 

                                                                    𝜎𝑖 ∧ 𝜎𝑖 = 0             (1)                                                              

    

        Clifford in 1882 kept the first rule but altered the second rule, and arrived at the 

multiplication rule 

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖 for 𝑖 ≠ 𝑗 

                                                                        𝜎𝑖𝜎𝑖 = 1                                                             (2)                                                                                       

This time { 𝜎1, 𝜎2, 𝜎3, … … , 𝜎𝑛  } is an orthonormal basis for the positive definite Euclidean 

space 𝑅𝑛. An associative algebra of dimension  2n so defined is the Clifford algebra 𝐶𝑙𝑛. 

Clifford in 1878, considered the multiplication rules 

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖 for 𝑖 ≠ 𝑗 

                                                                        𝜎𝑖𝜎𝑖 = −1                                                          (3)                                                                           

of the Clifford algebra 𝐶𝑙(0,𝑛) of the negative definite space 𝑅(0,𝑛) [7, 9]. 

2.3 Clifford Mapping:  

         A linear mapping 𝜓: 𝐸 → 𝐿 is referred to as a Clifford map from E to L provided that it 

meets the following criteria: 

                                                               [𝜓(𝑥)]2 = 𝑔(𝑥, 𝑥)1𝐿 =∥ 𝑥 ∥2 1𝐿                              

(4)                                                                  

 

Which is equivalent to, 

                                                    𝜓(𝑥)𝜓(𝑦) + 𝜓(𝑦)𝜓(𝑥) = 2𝑔(𝑥, 𝑦)1𝐿    ∀𝑥, 𝑦𝜀𝐸                (5)                                      

2.4 Even Clifford Algebra:  

         Assume that E is a vector space having n dimensions and {𝜎𝑖}i=1
n  is a basis of E then the  

2𝑛  elements 𝜎𝑖1
, 𝜎𝑖2

, … … 𝜎𝑖𝑠
 for 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑠 , 0 ≤ 𝑠 ≤ 𝑛  form a basis for the Clifford 

Algebra C(E). Let L=C(E) and  𝜓: 𝐸 → 𝐶(𝐸)  be given by 𝜓(𝑢) = −𝑢  then we find a 

isomorphism 𝜓∗ of C(E) into itself so that 𝜓∗(𝑢) = −𝑢, 𝑢 ∈ 𝐸, and may be written as 𝜓∗(𝑎) =

𝑎′. 

Now we put, 

𝐶+(𝐸) = {𝑎 ∈ 𝐶(𝐸): 𝑎′ = 𝑎       &        𝐶−(𝐸) = {𝑎 ∈ 𝐶(𝐸): 𝑎′ = −𝑎},  also 𝜎𝑠
′ = (−1)|𝑠|𝜎𝑠 

        Therefore the product  𝜎1𝜎2𝜎3 … 𝜎𝑠 belongs to 𝐶+(𝐸) or 𝐶−(𝐸) according as ‘s’ is even 

or odd, then the elements 𝜎𝑖1
𝜎𝑖2

… … 𝜎𝑖𝑠
 for 𝑖1 < 𝑖2 < ⋯ . < 𝑖𝑠 , 0 ≤ 𝑠 ≤ 𝑛  with even or 

odd s forms a basis of 𝐶+(𝐸) or 𝐶−(𝐸) respectively. Thus, Clifford Algebra is the direct sum 

of even part 𝐶+(𝐸) and odd 𝐶−(𝐸), i.e, 

                                                                    𝐶(𝐸) = 𝐶+(𝐸)⨁𝐶−(𝐸)                                       

(6)                                                            
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The even part is not only a subspace but also a sub-algebra of C(E) which we call Even Clifford 

Algebra [5,7,10]. 

2.5 Arbitrary Element of Clifford Algebra: 

         The following formal polynomial represents an arbitrary element 𝒜  in  the Clifford 

Algebra 𝐶𝑙(𝑝,𝑞): 

                   

𝒜 = 𝑎0𝜎0 + ∑  𝑛
𝑖=1 𝑎𝑖𝜎𝑖 + ∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 𝑎𝑖𝑗𝜎𝑖𝑗 + ⋯ + ∑  𝑛

𝑖1=1 … ∑  𝑛
𝑖𝑘=1 𝑎𝑖1…𝑖𝑘𝜎𝑖1…𝑖𝑘

+

+ ⋯ + 𝑎12…𝑛𝜎12…𝑛 = ∑  𝑛
𝑘=0 𝑎𝑖1𝑖2…𝑖𝑘𝜎𝑖1𝑖2…𝑖𝑘

               (7)                 

2.6 Fundamental Automorphism of Clifford Algebra: 

        Clifford Algebra 𝐶𝑙(𝑝,𝑞) has four fundamental automorphism, which are as follows [7, 11, 

12]: 

2.6.1 Identity: 

              Let 𝒜 be any random element of Clifford Algebra 𝐶𝑙(𝑝,𝑞), the Identity automorphism 

from 𝒜 → 𝒜 is one which carries 𝜎𝑖 → 𝜎𝑖. 

  

2.6.2 Involution: 

              Let 𝒜 = 𝒜′ + 𝒜′′ be the decomposition of an element of Clifford Algebra 𝐶𝑙(𝑝,𝑞), 

where 𝒜′  and 𝒜′′  contains homogeneous odd and even components individually, then 

automorphism 𝒜 → 𝒜∗ is the Involution so that the sign of the elements of 𝒜′′ doesn’t change 

and the sign of elements of 𝒜′ changes, i.e, 

𝒜∗ = −𝒜′ + 𝒜′′ 

In general Involution automorphism caries 𝜎𝑖 → −𝜎𝑖, for any element of 𝒜. 

The Involution automorphism can also be expressed with the help of the volume element 𝜔, i.e 

𝜔 = 𝜎𝑖1𝑖2
… .𝑖𝑝+𝑞

 , such that, 𝒜 = 𝜔𝒜𝜔−1, where  𝜔−1 = (−1)
(𝑝+𝑞)(𝑝+𝑞−1)

2 𝜔 . [1, 11] 

 

2.6.3 Reversion: 

              The Reversion of any element of Clifford Algebra 𝐶𝑙(𝑝,𝑞) is the Antiautomorphism 

from 𝒜 → 𝒜̃, that is an alternative to any basis element 𝜎𝑖1𝑖2
… .𝑖𝑘

∈ 𝒜  by an element of  

𝜎𝑖𝑘𝑖𝑘−1
… .𝑖1

, such that: 

                                                             𝜎𝑖1𝑖2
… .𝑖𝑘

= (−1)
𝑘(𝑘−1)

2 𝜎𝑖𝑘𝑖𝑘−1
… .𝑖1

, 

Hence for any element 𝒜 of Clifford Algebra 𝐶𝑙(𝑝,𝑞), 

𝒜̃ = (−1)
𝑘(𝑘−1)

2 𝒜 

2.6.4 Conjugation: 

              The Conjugation of any element 𝒜  of Clifford Algebra 𝐶𝑙(𝑝,𝑞)  is the 

Antiautomorphism from 𝒜 → 𝒜̃ * which is the composition of Involution and Reversion 

Automorphism, [11] such that  

                                                                         𝒜̃* = (−1)
𝑘(𝑘−1)

2 𝒜 
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3. The Lattice Structure of finite sub-group of Clifford Algebra: 
 

         In this section, we give the classification of finite sub-groups of Clifford Algebra. The 

hierarchy of sub groups is represented in the lattice structure format which is given in the Figure 

2. 

 

 

 

 

 
Figure 2: Lattice Structure of Clifford Algebra 
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4. Group action: 
 

Let G be a set of any elements and a binary operation (*) together satisfied the Closure 

law, Associative law, and if there exist Unit element and Inverse of that element then we say 

that the set G is a group under the operation (*). If the above group G also satisfied the 

commutative law then we called it as Abelian group [13]. 

 

        Similarly, we can easily define the Subgroup, Normal group, Permutation group etc, for 

clarity refer [13,14]. Here our main aim is to explain the Group Action which we will explain 

below. 

 

       Cayley’s theorem states that it is possible to find a subgroup of the Permutations group 

S(X ), which is isomorphic to any given group . Let G be a subgroup of S(X ). Then, for any 

element 𝑎 ∈ 𝐺 and any element 𝑥 ∈ 𝑋 , there exists an element 𝑎(𝑥) ∈ 𝑋, and this relationship 

satisfies certain conditions. 

 

• 𝑒(𝑥) = 𝑥, where e embodies the identity in G, 

• (𝑎, 𝑏)(𝑥) = 𝑎(𝑏(𝑥)),   ∀𝑥 ∈ 𝑋  & 𝑎, 𝑏 ∈ 𝐺, 

 

The definition that follows abstracts this. 

If X is any non-empty set, then let G be a group. Any mapping 𝜃: 𝐺 × 𝑋 → 𝑋 that satisfies the 

following criteria is an action of G on X  [15]. 

1. 𝜃(𝑒, 𝑥) = 𝑥  ∀𝑥 ∈ 𝑋 , where e embodies the identity in G 

2. 𝜃(𝑎𝑏, 𝑥) = 𝜃(𝑎, 𝜃(𝑏, 𝑥))   ∀ 𝑎, 𝑏 ∈ 𝐺. 

 

If there exists a situation where G performs an action on X , it can be said that G acts on X . We 

study the finite groups and their action on various subgroup E of C (E) and their subgroups 

which in turn are subgroups of C (E). 

 

Let us consider the following finite subgroup with respect to the operation geometric product. 

 

                       𝐵3 = {±1, ±𝜎1, ±𝜎2, ±𝜎3, ±𝜎1𝜎2, ±𝜎1𝜎3, ±𝜎2𝜎3, ±𝜎1𝜎2𝜎3}                             (8) 

 

The composition table given in the Table 1 shows the action of 𝐵3  on itself defined by: 

𝜑: 𝐵3 × 𝐵3 → 𝐵3 so that 𝜑(𝑥, 𝑦) = 𝑥𝑦  ∀ 𝑥, 𝑦 ∈ 𝐵3 and the subgroup is,  

 

                                            𝐵3 = ±1, ±𝜎1, ±𝜎2, ±𝜎1𝜎2                                                           (9) 

 

It can be verified that 𝜑 represents a group action on 𝐵3. 
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Table 1: Composition table 
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. The key findings from Table 1 are summarized as follows: 

1. 𝐵3 is non Abelian Group. 

2. All the finite sub-groups of 𝐵3 are: 

 

{±1}, {1, 𝜎1}, {1, −𝜎1}, {1, 𝜎2}, {1, −𝜎2}, {1, 𝜎3}, {1, −𝜎3}, {±1, ±𝜎1}, {±1, ±𝜎2}, {±1, ±𝜎3} , 

{±1, ±𝜎1𝜎2}, {±1, ±𝜎1𝜎3}, {±1, ±𝜎2𝜎3}, {±1, ±𝜎1𝜎2𝜎3}, {±1, ±𝜎1𝜎2, ±𝜎1𝜎3, ±𝜎2𝜎3}, 

{±1, ±𝜎1, ±𝜎2, ±𝜎1𝜎2}, {±1, ±𝜎2, ±𝜎3, ±𝜎2𝜎3}, {±1, ±𝜎1, ±𝜎3, ±𝜎1𝜎3}, 𝐺 

 

3. We define a relation ~ in 𝐵3 such that 𝑥~𝑦 if and only if  ∃ 𝑔 ∈ 𝐵3 such that 𝑔𝑥 = 𝑦. 

Clearly ∼ is an equivalence relation. Hence it forms a partition on 𝐵3. 

4. Orbit of 𝑥 = {𝑦 ∈ 𝐵3: 𝑦~𝑥}.               

Thus the Orbits are equivalence classes. 

5. 𝐵3contains only one equivalence class. 

6. The action of 𝐵3 on itself or any other subgroup of it are: 

a) Sharply transitive as for every pair of element 𝑥, 𝑦 ∈ 𝐵3 ∃ a unique 𝑔 ∈ 𝐵3 such 

that 𝑔𝑥 = 𝑦. 

b) Faithful or Effective as different elements of 𝐵3 induce different permutations 

of 𝐵3. 

c) Free or semi-regular as 𝑔𝑥 = 𝑥 for some 𝑥 ∈ 𝐵3, then 𝑔 = 𝑒 = 1. 

 

  i.e, the stabilizer of 𝑥 = 𝐵𝑥 = {𝑔 ∈ 𝐵3 /𝑔𝑥 = 𝑥} = {𝑒 = 1} , The kernel ‘k’of the 

homomorphism 𝜙: 𝐵3 → 𝐵3   is given by the intersection of the stabilizers 𝐵𝑥  for all 𝑥 ∈ 𝐵 

which is the trivial subgroup {1}. 

 

Note: Every free action on a non-empty set is faithful. As subgroup (subset) of 𝐵3 is both 

transitive and regular, it is called a principle homogeneous space 

. 

5. Conjugate table of the subgroup 𝑩𝟑:  

 

Further, we can draw conclusions on the action of 𝐵3on all its subgroups. We define the 

operation by conjugation, i.e  Ψ: 𝐵3 × 𝐵3 → 𝐵3 such that Ψ(𝑥, 𝑦) = 𝑦𝑥 = 𝑥−1𝑦𝑥.  

We can see that, the following are satisfied [16]: 

1. 𝑦𝑒 = 𝑦 

2. (𝑦𝑥)𝑧
= 𝑧−1(𝑥−1𝑦𝑥)𝑧 = (𝑥𝑧)−1𝑦(𝑥𝑧) = 𝑦𝑥𝑧 

which shows that Ψ also is a group action. 

The group action of 𝐵3 on its subgroups has some important properties which we shall discuss 

with the help of the conjugacy table from Table 2. 
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Table 2: Conjugate table 
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The key findings from Table 2 are outlined as follows: 

Let 𝐵3 = G, 

1. The Normal subgroup are,  

 

{±1}, {±1, ±𝜎1}, {±1, ±𝜎2}, {±1, ±𝜎3} , {±1, ±𝜎1𝜎2}, {±1, ±𝜎1𝜎3}, {±1, ±𝜎2𝜎3}, 
{±1, ±𝜎1𝜎2𝜎3}, {±1, ±𝜎1𝜎2, ±𝜎1𝜎3, ±𝜎2𝜎3}, {±1, ±𝜎1, ±𝜎2, ±𝜎1𝜎2}, 
{±1, ±𝜎2, ±𝜎3, ±𝜎2𝜎3}, {±1, ±𝜎1, ±𝜎3, ±𝜎1𝜎3} 

 

2. The Subnormal series of the above group have isomorphic refinement. 

• {1} ⊂ {±1}  ⊂ {±1, ±𝜎1}  ⊂  {±1, ±𝜎1, ±𝜎2, ±𝜎1𝜎2} ⊂ G 

• {1} ⊂ {±1}  ⊂ {±1, ±𝜎2}  ⊂  {±1, ±𝜎1, ±𝜎2, ±𝜎1𝜎2} ⊂ G 

• {1} ⊂ {±1}  ⊂ {±1, ±𝜎1}  ⊂  {±1, ±𝜎1, ±𝜎3, ±𝜎1𝜎3} ⊂ G 

• {1} ⊂ {±1}  ⊂ {±1, ±𝜎3}  ⊂  {±1, ±𝜎1, ±𝜎3, ±𝜎1𝜎3} ⊂ G 

• {1} ⊂ {±1}  ⊂ {±1, ±𝜎2}  ⊂  {±1, ±𝜎2, ±𝜎3, ±𝜎2𝜎3} ⊂ G 

• {1} ⊂ {±1}  ⊂ {±1, ±𝜎3}  ⊂  {±1, ±𝜎2, ±𝜎3, ±𝜎2𝜎3} ⊂ G 

These are a few examples of many. 

3. This shows that G is not a Simple Group as it has Normal subgroups. 

4. G is Solvable. 

 

6. Conclusion: 
 

In this paper,we have shown the total number of Normal subgroup and subnormal series of the 

subgroup 𝐵3 of Clifford Algebra and by using group action and conjugation operation we given 

that the given subgroup 𝐵3 is Solvable. we have taken C(E), an algebra known as Clifford 

Algebra is constructed over a vector space E that has n-dimensions and have investigated by 

Group Actions the nature of its subgroups. The subgroup 𝐵3 is a non-abelian group which has 

seventeen non-trivial finite subgroups with only one equivalence class and the Kernel of the 

homomorphism 𝜙: 𝐵3 → 𝐵3 is the trivial subgroup {1}. 

 

The Action of the subgroup 𝐵3with the conjugation, i.e, Ψ: 𝐵3 × 𝐵3 → 𝐵3 such that Ψ(𝑥, 𝑦) =

𝑦𝑥 = 𝑥−1𝑦𝑥 has twelve Normal subgroup which implies that the subgorup 𝐵3 is not a Simple 

group, further we establish that it has a subnormal series, hence we show that the subgorup 𝐵3 

is a Solvable group. 
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