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Abstract: This paper deals with an M/G/1 feedback retrial G-queue and delayed repair incorporating Bernoulli working
vacation. Arrivals of both favorable and unfavorable consumers are two independent Poisson processes. The server is
subjected to breakdown during the regular busy period due to the arrival of unfavorable customers and then the server will
be down for a short period of time. Further, the concept of delay time is also discussed. After the fulfillment of regular
service, the dissatisfied consumer may re-join the orbit to receive another service as a feedback consumer. During the
working vacation period, the server provides the service to consumers at a reduced rate. By applying the supplementary
variable technique (SVT), we have analyzed the steady-state probability generating function (PGF) for the system size
and orbit size. In addition, we have presented the system performance, reliability indicators, and stochastic decomposition
property. Finally, we provided numerical examples to illustrate our model’s mathematical results.
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1. Introduction
Queueing theory can be utilized as a mathematical framework to successfully analyze a wide range of practical

applications in realistic circumstances. The queueing theory has been used to address issues in a variety of industries,
including production methods, wireless communications, IT, and control of traffic, as well as domains that require the
provision of services in unpredictable demand situations. Furthermore, the queuing theory (QT) might be beneficial in
two areas: planning and management. 

The study of retrial queues has been conducted due to their application in a multitude of disciplines, namely service
centers, switching systems for telephones, and retransmission connectivity in internet-based telephone systems. The retrial
queueing model is required for consumers to receive their service. For example, if arriving consumers find all servers
occupied or breakdown, they will join the retrial group (referred to as retrial orbit) and try to get service after a certain
amount of time (referred to as retrial time). Falin’s [1] survey article, as well as the manuscript by Artalejo [2] and Falin
[3] provide a comprehensive summary of the main results and methodologies for the retrial queuing model. Manoharan
and Subathra [4] have explored the balking behavior of consumers with working vacation (WV) incorporating the non-
Markovian retrial queue model. Micheal and Indhira [5] have examined a retrial queue with Bernoulli working vacation
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(BWV) and they validated their model by introducing adaptive neuro-fuzzy inference system (ANFIS) computing and cost
optimization of nonlinear metaheuristics. They also compared the outcomes by various approaches like particle swarm
optimization, genetic algorithm, and artificial bee colony.

Many academicians have analyzed the arrival of favorable and unfavorable consumers into the queueing model
during the past two decades owing to their extensive utilization across various domains such as computers, telephones,
and production lines. Van Do [6] has obtained a survey of G-network queueing systems, unfavorable consumers, and
applications. Krishnakumar et al. [7], Gao and Wang [8] have recently investigated several techniques of queueing
models that operate with the appearance of unfavorable entries. Murugan et al. [9] have explored single-server queues
incorporating the concept of G-queue. Agarwal et al. [10], have analyzed the bulk arrival retrial queue, including the
concept of priority G-queue with WV. Gupta et al. [11] investigated a queueing structure by introducing BWV with
interruption and dissatisfied consumers in the process of classical retrial policy.

The entry of an unfavorable consumer who doesn’t receive service removes the favorable consumer and causes the
server to crash. Once the server faced a problem, it was taken for repair. The process of making repairs does not start
right away and requires some time. Malik et al. [12] investigated M[X]/G/1 retrial queue delayed repair with negative
consumers, incorporating maximum entropy results and particle swarm optimization. Singh et al. [13] have examined
Bulk arrival retrial G-queue, optional additional services include the concept of delayed repair. Recently, many authors
have analyzed the delayed repair from diverse perspectives [14–16] alongwith references to them. There are some queuing
scenarios in which consumers are served multiple times for a particular cause until they receive a satisfied service. This
type is known as a feedback queueing model. Ke and Chang [17] have examinedM/G/1 retrial queue underdoing feedback
along consumers in a different situation. Ayyappan [18] has proposed the model of a single server queue with immediate
feedback. Varalakshmi [19] explored M/G/1 model accompanied by immediate feedback from Bernoulli. Madhu Jain
[20] investigated the bulk arrival retrial queue with Bernoulli feedback. Recently, Niranjan and Latha [21] have explored
two-phase essential services and breakdowns in two phases, and feedback incorporating server vacation.

The server will take a WV once the orbit is empty. During the WV period, the server will supply the consumer with
service at a slower rate than usual. This approach to the queueingmodel is applicable in a broad variety of contexts, such as
communication networks, software platforms, data transfer services, and email service providers. AWV is the first use of
theMarkovian queueingmodel, initially presented by Servi and Finn [22]. Jain et al. [23] have investigated theMarkovian
queue with disaster failure and MWVs. In further development of the M/M/1/WV queueing model, Wu and Takagi [24]
have constructed anM/G/1model that established aWVextension. Bharathy and Saravanarajan [25] investigate unreliable
retrial queues by includingWV. Bouchentouf et al. [26] have investigated finite capacity Markovian queues with different
WV. Liu et al. [27] have presented the Markovian queue with preemptive priority and WV interruption. Yang [28] has
established the retrial queue with WVs together with the starting fail server. The M/G/1 retrial queueing system (RQS)
with preemptive priority consumers under working breakdown has been researched by Ammar and Rajadurai [29]. 

1.1 Motivation

This article investigates a non-Markovian retrial G-queue along feedback consumers, delayed repair under Bernoulli
working vacation (BWV). The motivation of this study is that such retrial queues occur in a multitude of practical sectors,
including telecommunication networks and industrial management. It characterizes not only the retrial phenomenon
among consumers but also considers delayed repairs towards unforeseen failures. Anothermotive to take into account such
a retrial model is to obtain an analytical solution in terms of closed-form expression using the procedure of supplementary
variables and to assess the performancemetrics and reliability of the system under consideration, whichmay be appropriate
in several communication networks.  

The significance of this proposed queuing model when compared to existing litertures is that, in our model both
feedback and delayed repair with BWV in the presence of G-queue are considered. Also, the proposed method discusses
non-Markovian queues with general retrial times with BWV, which is also a unique characteristic that has not been
discussed in any of the past literature. This methodology has notable applications in computer processing systems,
production systems and medical care telephone consultation systems. 
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The objective of this research is to investigate the performance of a retrial queue systemwith a single server assuming
both positive and negative consumers, along with delayed repair and breakdown cases. In addition, the study also aims to
analyze the impact of feedback and BWVs on the system’s behavior.

Sections of the study are as follows: Section 2 provides a thorough illustration of the proposed model, Section
3 presents the Steady State probabilities, Section 4 discusses the performance characteristics of the model, Section 5
examines special cases, Section 6 provides numerical illustrations on the effect of various system performance. Finally,
Section 7 presents the article’s conclusion.

2. Formulation of the model
In this section, we present the description of the M/G/1 retrial G-queue with WV under delayed repair along with its

real-time implementation in the computer processing system. Also, the model’s transition diagram is given in Figure 1.

Figure 1. The state diagram in our proposed model

The detailed model description is as follows:
• Characteristics of consumers: Two types of consumers called favorable and unfavorable are considered for

our model. The favorable consumer joins the queue and gets service when the server is unoccupied. Unlike favorable
consumer, the unfavorable consumer will not get service rather they will breakdown the server by interrupting the process.

•Arrival rule: When the server is unoccupied, the favorable consumers enter the system based on the Poisson arrival
rate λP.

• The retrial rule: If a favorable consumer arrives and discovers that the server is available, the server will start
serving right away. Conversely, if the server is occupied, breakdown, or on vacation, the consumer may enter the orbit’s
retrial group and retry for service after a random interval of time. Inter-retrial period has the distribution function A(t)
and Laplace Stieltjes Transform (LST) as A∗(ϑ).

• Normal service rule: When a new favorable consumer or a retry consumer comes to the service station while
the server is unoccupied, the server instantly begins normal busy service to the consumers. The service time follows a
general distribution and it is considered by the random variable (RV) Bb with the distribution function Bb(t) and the LST
as B∗

b(ϑ).
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• Feedback rule: After each consumer’s service is completed, clients who are dissatisfied may re-enter the orbit
as feedback consumers to obtain repeated service along with the prob. f (0 ≤ f ≤ 1) else they will probably leave the
system, f = 1− f .

• Bernoulli working vacation rule: If the orbit seems to be unoccupied, the server begins his WV, and the period of
vacation assumes to be exponentially distributed along with the parameter η . If a consumer appears during vacation time,
the server offers the service at slow rates. During WV, if the orbit contains any consumer, the server will end its vacation
and resume normal operations, causing the vacation to be interrupted. When there are no consumers on the system at the
end of a vacation, the server either remains to service prospective consumers with the prob. r (Single WV) or going on
one more WV with prob. l = 1− r (Multi-WVs). The lower service period considers a distribution Bv(t) and LST as
B∗

v(ϑ) .
• The removal and repair rule: The unfavourable consumers enter from ouside of the system based an Poisson

arrival rate λN . These unfavorable consumers only enter during the usual service period of favorable consumers. The
arrival of an unfavorable consumer removes the favorable consumer in the system and causes the server to crash. As
soon as the server fails, it is sent for repair and stops serving consumers during the waiting period, this amount of time is
referred to as the server’s waiting time. We define the amount of time spent waiting is referred to be delayed period. The
delay times with function of distribution Dy(t) and Dy∗(ς) be its LST, and the first and second moments bew(1) andw(2)

respectively. The repair times are considered with distribution function G(t) and LST as G∗(ς), and the first two moments
be g(1)and g(2).

2.1 Real-life application of the method

Our model serves as an efficient practical application in the domain of a computer processing system. The buffer
size (orbit), which assists in accumulating messages, is finite and the messages (favorable consume) enter into the system
one by one in a computer processing system. The processor (server) takes on the role of performing the messages. The
viruses (unfavorable consumer) can affect the working mail server and the system may be subjected to an electronic fault
(breakdown) during the normal service period. After the breakdown, the server will stop its service and sent to repair
then the maintanance task take some time (called a delay). If the processor is accessible by not engaging with some other
tasks, a message will be processed. By the rule of first-come, first-served (FCFS), the messages will be stored for a short
time in the buffer to be processed sometime later (retrial time) if the processor is inaccessible. If any failures occur in the
previous process, the internet service may require the same service from the processor (the feedback) a number of times
after the message processing is completed. When there is no arrival of new consumers after processing all the received
messages, the processor is committed to operating specific maintenance jobs in sequence, like scanning the virus (WVs) to
enhance the performance of the computer. The system can reduce the cost by having the processor deal with the messages
at a slower rate during the maintenance period (WV period). The processor verifies the messages on every completion
of maintenance to determine whether or not to restart the ordinary service rate (first WV). The processor will perform
another maintenance activity (multiple WVs) when the messages are not received in the system. Such WV discipline is a
proficient approximation in computer processing systems. 

3. Steady-state probabilities
In this section, we formulate the steady-state governing equations (Eqs) by treating the elapsed times of retrial, service,

WV, delayed and repair as supplementary variables (SVs). The PGF for the server-states and for the no. of consumers in
the orbit and system are obtained.

We consider that A(0) = 0, A(∞) = 1, Bb(0) = 0, Bb(∞) = 1, Bv(0) = 0, Bv(∞) = 1, are continuous at and ϑ = 0,
Wy(0) = 0,Wy(∞) = 1 and G(0) = 0, G(∞) = 1 are continuous at ς = 0. We assume that the hazard rate functions as ȧ(ϑ),
βb(ϑ), βv(ϑ), χ(ς), and γ(ς) for retrial, regular service, slow rate service, delay repair and for the maintainance in that
order respectively.
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ȧ(ϑ) d(ϑ) =
d(A(ϑ))

(1−A(ϑ))
; βb(ϑ)dϑ =

d(Bb(ϑ))

(1−Bb(ϑ))
; βv(ϑ)dϑ =

d (Bv(ϑ))

(1−Bv(ϑ))
;

χ(ς)dς =
d(W (ς))

(1−W (ς))
; γ(ς)dς =

d(G(ς))
(1−G(ς))

.

In addition, let A0, B0
b, B0

v , G0 andW 0 be the expired retrial, busy, working vacation (WV), delay to repair and repair
times are shown at period t. We also assume the random variable (RV),

H(t)=



0, server is unoccupied and in the lower service mode,
1, server is unoccupied and in normal service mode,
2, server is occupied and in normol service mode
3, server is occupied and in lower service mode
4, server is under delayed repair
5, the server is undergoing maintenance.

Further, bivariate Markov process {H(t), Y (t); t ≥ 0}, such as Y (t) is the no. of consumers in the orbit at time t,
H(t) represents the server’s states as (0, 1, 2, 3, 4, 5) depending on whether the server is unoccupied, regular busy, WV
period, delayed repair, and repair period. Let us consider the limiting probabilitiesV0(t) = P{H(t) = 0,Y (t) = 0}; I0(t) =

P{H(t) = 0, Y (t) = 0} and the probability (prob.) densities are

In(ϑ , t)dϑ = lim
t→∞

Prob.{H(t) = 1, Y (t) = n, ϑ ≤ A0(t)< ϑ +dϑ}

Ξb,n(ϑ , t)dϑ = lim
t→∞

Prob.{H(t) = 2, Y (t) = n, ϑ ≤ B0
b(t)< ϑ +dϑ}

Φv,n(ϑ , t)dϑ = lim
t→∞

Prob.{H(t) = 3, Y (t) = n, ϑ ≤ B0
v(t)< ϑ +dϑ}

ωn(ϑ , ς , t)dϑ = lim
t→∞

Prob.{H(t) = 4, Y (t) = n, ς ≤W 0(t)< ς +dς/B0
b(t) = ϑ}

Θ(ϑ , ς , t)dϑ = lim
t→∞

Prob.{H(t) = 5, Y (t) = n, ς ≤ G0(t)< ς +dς/B0
b(t) = ϑ}

∀ t≥ 1, ϑ ≥ 1, n≥ 1.

The time (tn; n = 1, 2, ...) indicate the series of epoch correlating to WV completion times, or the conclusion of the
delay repaired and repair period. AMarkov-chain is formed by the collection of random vectors ψn = {H(tn+), Y (tn+)}
and is embedded in the retrial queueing (RQ) system.

3.1 Notations and probabilities

We defined following notation and probabilities in our model:
ȧ(ϑ) −→ the hazard rate for retrial of A(ϑ).
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βb(ϑ) −→ the hazard rate for service of Bb(ϑ).
βv(ϑ) −→ the hazard rate for slow rate service of Bv(ϑ).
χ(ς) −→ the hazard rate delayed repair ofW (ς).
γ(ς) −→ the hazard rate for repair of G(ς).
A0 −→ the elapsed retrial time.
B0

b −→ the elapsed service time.
B0

v −→ the elapsed slow rate service time.
W 0 −→ the elapsed delay time.
G0 −→ the elapsed repair time.
Y (t) −→ the no. of consumers in the orbit at time t.
H(t) −→ the server states at time t.
V0(t) −→ the prob. that the system’s unoccupied at period t and the server is on WV.
I0(t) −→ the prob. that the system’s unoccupied at period t and the server is in a normal service period.
In(ϑ , t) −→ the prob. that at the period t there are n consumers in the waiting space, with each consumer’s elapsed

retrial time occurring between (b/w) ϑ and ϑ +dϑ .
Ξb,n(ϑ , t)−→ the prob. that at the period t there are n consumers in the waiting space, with each consumer’s elapsed

normal service period occurring b/w ϑ and ϑ +dϑ .
Φv,n(ϑ , t)−→ the prob. that at the period t there are n consumers in the waiting space, with each consumer’s elapsed

slower service period occuring b/w ϑ and ϑ +dϑ .
ωn(ϑ , ς , t) −→ the prob. that at the period t there are n consumers in the waiting space with the elapsed service

time of the test consumer undergoing service is ϑ and the server’s elapsed delay period is ς .
Θ(ϑ , ς , t)−→ the prob. that at the period t there are n consumers in the waiting space with the elapsed service time

of the test consumer undergoing service is ϑ and the server’s elapsed repair period is ς .

Theorem 1 The Embedded Markov-Chain {ψn;n ∈ N} is Ergodic if and only if Γ < A∗(λP), where Γ = (
λP

λN
)(1−

B∗
b(λN))(1+λN(g

(1)+w(1)))+ f B∗
b(λN).

proof. It is really convenient to use Foster’s criterion to demonstrate the sufficient condition of ergodicity (Pakes
[30]), this specifies the chain {ψn;n ∈ N} irreducibility and aperiodicityMarkov-Chain is ergodic if ∃ a function f ( j)≥ 0,
j ∈N and ∀ε > 0, such that mean drift ϕ j = E[ f (ψn+1)− f (ψn)/ψn = j]< ∞, ∀ j ∈N and ϕj ≤−ε∀ j ∈N. We assume
the function as f ( j) = j. then we get

ϕj =

{
Γ−1, j= 0

Γ−A(∗)(λP), j= 1, 2, 3, ...

It is obvious that the inequality Γ < A∗(λP) is a sufficient condition for Ergodicity.
The Markov-chain {ψn;n≥ 1} fulfills Kaplan’s condition. It is used to establish the necessary condition, as

mentioned in [31], if ϕj < ∞, ∀j ≥ 0 and ∃ j0 ∈ N in such a way that ϕj ≥ 0 for j ≥ j0, then Γ ≥ A∗(λP) implies that
Non-Ergodicity of the Markov-Chain.

3.2 Steady-state conditions

In this section, we generate the system of governing equations for this approach by using the SVT as follows:

λPI0 = ηr V0 (1)
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(λP +η)V0 = η lV0 + f
(∫ ∞

0
Ξb,0(ϑ)βb(ϑ)dϑ +

∫ ∞

0
Φv,0(ϑ)βv(ϑ)dϑ

)
(2)

+
∫ ∞

0
Θ0(ϑ)γ(ϑ)dϑ

d
dϑ

In(ϑ) =−[λP + ȧ(ϑ)]In(ϑ), n≥ 1 (3)

d
dϑ

Ξb,0(ϑ) =−[λP +λN +βb(ϑ)]Ξb,0(ϑ), n= 0 (4)

d
dϑ

Ξb,n(ϑ) =−[λP +λN +βb(ϑ)]Ξb,n(ϑ)+λPΞb,n−1(ϑ), n≥ 1 (5)

d
dϑ

Φv,0(ϑ) =−[λP +η +βv(ϑ)]Φv,0(ϑ), n= 0 (6)

d
dϑ

Φv,n(ϑ) =−[λP +η +βv(ϑ)]Φv,n(ϑ)+λPΦv,n−1(ϑ), n≥ 1 (7)

d
dς

ω0(ϑ , ς) =−[λP +χ(ς)]ω0(ϑ , ς), n= 0 (8)

d
dς

ωn(ϑ , ς) =−[λP +χ(ς)]ωn(ϑ , ς)+λPωn−1(ϑ , ς), n≥ 1 (9)

d
dς

Θ0(ϑ , ς) =−(λP + γ(ς))Θ0(ϑ , ς), n= 0 (10)

d
dς

Θn(ϑ , ς) =−[λP + γ(ς)]Θn(ϑ , ς)+λPΘn−1(ϑ , ς), n≥ 1 (11)

To solve Eqs (3) to (11), steady state boundary conditions at ϑ = 0 and ς = 0 are given below:

In(0) = f
(∫ ∞

0
Ξb,n(ϑ)βb(ϑ)dϑ +

∫ ∞

0
Φv,n(ϑ)βv(ϑ)dϑ

)

+ f
(∫ ∞

0
Ξb,n−1(ϑ)βb(ϑ)dϑ +

∫ ∞

0
Φv,n−1(ϑ)βv(ϑ)dϑ

)
+
∫ ∞

0
Θn(ϑ)γ(ϑ)dϑ , n≥ 1

(12)
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Ξb,0(0) =
(∫ ∞

0
I1(ϑ)ȧ(ϑ)dϑ +η

∫ ∞

0
Φv,0(ϑ)dϑ +λPI0

)
, n= 0 (13)

Ξb,n(0) =
(∫ ∞

0
In+1(ϑ)ȧ(ϑ)dϑ +λP

∫ ∞

0
In(ϑ)dϑ +η

∫ ∞

0
Φv,n(ϑ)dϑ

)
, n≥ 1 (14)

Φv,n(0) =


λPV0, n= 0

0, n≥ 1

(15)

ωy,n(ϑ ,0) = λN

∫ ∞

0
Ξb,n(ϑ)dϑ , n≥ 0 (16)

Θn(ϑ ,0) =
∫ ∞

0
ωy,n(ς)γ(ϑ)dϑ , n≥ 0 (17)

The system’s normalizing condition is given by

I0 +V0 +
∞

∑
n=1

∫ ∞

0
In(ϑ)dϑ

+
∞

∑
n=0

(∫ ∞

0
Ξb,n(ϑ)dϑ +

∫ ∞

0
Φv,n(ϑ)dϑ +

∫ ∞

0

∫ ∞

0
Θn(ϑ , ς)dϑdς +

∫ ∞

0

∫ ∞

0
ωy,n(ϑ , ς)dϑdς

)
= 1

(18)

3.3 Steady-state solution

Using the PGFs technique, we create the equation of steady-state to the RQ model. As a result, the PGFs utilized to
solve the equations above are defined for |τ| ≤ 1 as follows:
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I(ϑ , τ) =
∞

∑
n=1

In(ϑ) τn; I(0, τ) =
∞

∑
n=1

In(0) τn

Ξb(ϑ , τ) =
∞

∑
n=0

Ξb,n(ϑ) τn; Ξb(0, τ) =
∞

∑
n=0

Ξb,n(0) τn

Φv(ϑ , τ) =
∞

∑
n=0

Φv,n(ϑ) τn; Φv(0, τ) =
∞

∑
n=0

Φv,n(0) τn

ωy(ϑ , ς , τ) =
∞

∑
n=0

ωy,n(ϑ , ς) τn; ωy(ϑ , 0, τ) =
∞

∑
n=0

ωy,n(ϑ , 0) τn

Θ(ϑ , ς , τ) =
∞

∑
n=0

Θn(ϑ , ς) τn; Θ(ϑ , 0, τ) =
∞

∑
n=0

Θn(ϑ , 0) τn

On multiplying the Eqs (2) to (17) by τn and then summing over n, (n = 0, 1, 2, ...), we get

∂
∂ϑ

I(ϑ , τ) =−[λP + ȧ(ϑ)] I(ϑ , τ) (19)

∂
∂ϑ

Ξb(ϑ , τ) =−[λP(1− τ)+λN +βb(ϑ)] Ξb(ϑ , τ) (20)

∂
∂ϑ

Φv(ϑ , τ) =−[λP(1− τ)+η +βv(ϑ)] Φv(ϑ , τ) (21)

∂
∂ς

ωy(ϑ , ς , τ) =−[λP(1− τ)+ χ(ς)] ωy(ϑ , ς , τ) (22)

∂
∂ς

Θ(ϑ , ς , τ) =−[λP(1− τ)+ γ(ς)] Θ(ϑ , ς , τ) (23)

I(0, τ) = ( f τ + f )
(∫ ∞

0
Ξb(ϑ , τ)βb(ϑ)dϑ +

∫ ∞

0
Φv(ϑ , τ)βv(ϑ)dϑ

)
(24)

+
∫ ∞

0
Θ(ϑ , τ)γ(ϑ)dϑ − ((λP +η)V0 −η lV0)
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Ξb(0, τ) =
1
τ

∫ ∞

0
I(ϑ , τ)ȧ(ϑ)dϑ +λP

∫ ∞

0
I(ϑ , τ)dϑ +η

∫ ∞

0
Φv(ϑ , τ)dϑ +λPI0 (25)

Φv(0, τ) = λPV0 (26)

ωy(ϑ , 0, τ) = λN

∫ ∞

0
Ξb(ϑ , τ)dϑ (27)

Θn(ϑ , 0, τ) =
∫ ∞

0
ωy,n(ϑ , ς , τ)(ϑ)γ(ς)dς (28)

Solving the partial differential Eqs (19) to (23), we get

I(ϑ , τ) = I(0, τ) [1−A(ϑ)] exp{−λPϑ} (29)

Ξb(ϑ , τ) = Ξb(0, τ) [1−Bb(ϑ)] exp{−Ab(τ)ϑ} (30)

Φv(ϑ , τ) = Φv(0, τ) [1−Bv(ϑ)] exp{−Av(τ)ϑ} (31)

Θ(ϑ , ς , τ) =Θ(ϑ , 0, τ) [1−G(ϑ)] exp{−b(τ)ς} (32)

ωy(ϑ , ς , τ) = ωy(ϑ , 0, τ) [1−W (ϑ)] exp{−h(τ)ς} (33)

where Ab(τ) = (λN +λP (1− τ)), Av(τ) = (η +λP (1− τ)), b(τ) = λP (1− τ) and h(τ) = λP (1− τ).
Inserting Eqs (29) to (33) in (25) and then making few modulation, we obtain as,

Ξb(0, τ) = (I(0, τ)/τ)(A∗(λP)+ τ (1−A∗(λP)))+λPI0 +λPV0V (τ) (34)

where, V (τ) =
η [1−B∗

v (Av(τ))]
η +(1− τ)

.

Using Eqs (30) to (33) in (24), which gives

I(0, τ) = ( f τ + f )(Ξb(0, τ) B∗
b (Ab(τ))+Φv(0, τ) B∗

v (Av(τ)))+Θ(0, τ) G∗(b(τ))− (λP + rη)V0 (35)

Using Eq (30) in Eq (27), we get

ωy(ϑ , 0, τ) = λNΞb(0, τ)
(

1−Bb (Ab(τ))
Ab(τ)

)
(36)
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Using the Eq (33) in Eq (28), we have

Θ(ϑ , 0, τ) = ωy(ϑ , 0, τ)(χ∗(h(τ))) (37)

Using Eqs (26), (33) and (34) in Eq (35), we get

I(0, τ) =
Nu(τ)
De(τ)

(38)

Nu(τ) = τV0 ×


(
λP
(
( f τ + f )B∗

v (Av(τ))−1
)
−ηr

)
+(λPV (τ)+ηr)(

( f τ + f )B∗
b(Ab(τ))+

λNG∗(b(τ))W ∗(h(τ))(1−B∗
b(Ab(τ)))

Ab(τ)

)


De(τ) =


τ − (A∗(λP)+ τ (1−A∗(λP)))(
( f τ + f )B∗

b (Ab(τ))+
λNG∗(b(τ))W ∗(h(τ))

(
1−B∗

b (Ab(τ))
)

Ab(τ)

)


Using Eq (38) in Eq (34), we get

Ξb(0, τ) =
V0

De(τ)

{
λP
(
( f τ + f )B∗

v (Av(τ))−1
)
−ηr (A∗(λ )+ τ (1−A∗(λP)))+ τ(λPV (τ)+ηr)

}
(39)

Using the Eq (39) in Eq (36), we get

ωy(ϑ , 0, τ) =
λNV0

(
1−B∗

b (Ab(τ))
)

Ab(τ)×De(τ)
×


(
λP
(
( f τ + f )B∗

v (Aν(τ))−1
)
−ηr

)
(A∗(λP)+ τ (1−A∗(λP)))+ τ(λPV (τ)+ηr)

 (40)

Using the Eq (40) in Eq (37), we get

Θ(ϑ , 0, τ) =
λNV0

(
1−B∗

b (Ab(τ))
)

W ∗(h(τ))
Ab(τ)×De(τ)

×


(
λP
(
( f τ + f )B∗

v (Aν(τ))−1
)
−ηr

)
(A∗(λP)+ τ (1−A∗(λP)))+ τ(λPV (τ)+ηr)

 (41)

Similarly, the Eq (26) and Eq (38) to (41) substitute in Eqs (29) to (33) then, we obtain the results for the subsequent
PGFs as I(ϑ , τ), Ξb(ϑ , τ), Φv(ϑ , τ), ωy(ϑ , τ) andΘ(ϑ , τ).

Theorem 2 The stationary joint distributions of the no. of consumers consumers in the orbit when the server is
unoccupied, occupied, on WV, delay, and under repair are provided by stability condition Γ < 1 is given by
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I(τ) =
Nu(τ)
De(τ)

(42)

Nr(τ) = τV0

(
1−A∗(λP)

λP

)
×


(
λP
(
( f τ + f )B∗

v (Av(τ))−1
)
−ηr

)
+(λPV (τ)+ηr)(

( f τ + f )B∗
b (Ab(τ))+

λNG∗(b(τ))W ∗(h(τ))
(
1−B∗

b (Ab(τ))
)

Ab(τ)

)


De(τ) =


τ − (A∗(λP)+ τ (1−A∗(λP)))(
( f τ + f )B∗

b (Ab(τ))+
λNG∗b(τ)W ∗h(τ)

(
1−B∗

b (Ab(τ))
)

Ab(τ)

)


Ξb(τ) =
V0(1−B∗

b(Ab(τ)))
Ab(τ)De(τ)

×


(λP(( f τ + f )B∗

v(Av(τ))−1)−ηr)(A∗(λP)

+τ(1−A∗(λP)))+ τ(λPV (τ)+ηr)

 (43)

Φv(τ) = {λPV0V (τ)/η} (44)

ωy(τ) =
(
λNV0(1−W ∗(h(τ)))

(
1−B∗

b (Ab(τ))
))

h(τ)Ab(τ)De(τ)
(45)

×
{(

λP
(
( f τ + f )B∗

v (Aν(τ))−1
)
−ηr

)
(A∗(λP)+ τ (1−A∗(λP)))+ τ(λPV (τ)+ηr)

}

Θ(τ) =
(
λNV0

(
1−B∗

b (Ab(τ))
)
(1−G∗(b(τ)))W ∗(h(τ))

)
b(τ)Ab(τ)De(τ)

×
{(

λP
(
( f τ + f )B∗

v (Aν(τ))−1
)
−ηr

)
(A∗(λP)+ τ (1−A∗(λP)))+ τ(λPV (τ)+ηr)

}
(46)

where

V0 =
A∗(λP)−Γ

{(λP/η)(1−B∗
v(η))+A∗(λP)(1+(ηr/λP))−ΓB∗

v(η)}
(47)

I0 =
ηr (A∗(λP)−Γ)

λP {(λP/η)(1−B∗
v(η))+A∗(λP)(1+(ηr/λP))−ΓB∗

v(η)}
(48)

Γ = (λP/λN)(1−B∗
b(λN))

(
1+λN(g

(1)+w(1))
)
+ f B∗

b(λN)
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proof. Integrating the Eqs (29) to (33) with respect to ϑ , we define the PGFs as,

I(τ) =
∫ ∞

0
I(ϑ , τ)dϑ , Ξb(τ) =

∫ ∞

0
Ξb(ϑ , τ)dϑ , Φv(τ) =

∫ ∞

0
Φv(ϑ , τ)dϑ ,

Θ(τ) =
∫ ∞

0

∫ ∞

0
Θ(ϑ , ς , τ)dϑdς , ωy(τ) =

∫ ∞

0

∫ ∞

0
ωy(ϑ , ς , τ)dϑdς

We can compute the prob. that the server is unoccopaid I0 by utilizing the normalized condition. Thus, by applying
τ = 1 in the Eqs (42) to (46) and using L-Hospital’s wherever applicable, we obtain

I0 +V0 + I(1)+Ξb(1)+Φv(1)+Θ(1)+ω(1) = 1.

3.4 Corollary

Under the condition of stability Γ < 1, the PGF of no. of consumers in the orbit size Ko(τ) and system size Ks(τ)
distribution at stationary point of time is

Ko(τ) =
Nu0(τ)
Des(τ)

= I0 +V0 + I(τ)+Ξb(τ)+Φv(τ)+Θ(τ)+ω(τ) (49)

Where,

Nu0(τ) =



V0(1− τ)





(λP/η)((η +λPV (τ))+ηr)


τAb(τ)− [A∗(λP)+ τ(1−A∗(λP))]

(
Ab(τ)B∗

b(Ab(τ))+λNG∗(b(τ))W ∗(h(τ))(1−B∗
b(Ab(τ)))

)




+ τ(1−A∗(λP))


(λPV (τ)+ηr)


Ab(τ)B∗

b(Ab(τ))

+λPG∗(b(τ))W ∗(h(τ))(1−B∗
b(Ab(τ)))



+Ab(τ)(λP(B∗
v(Av(τ))−1)−ηr)





+V0


(1−B∗

b)(Ab(τ))(b(τ)+λN(1−G∗(b(τ))))W ∗(h(τ))

{(λP(B∗
v(Av(τ))−1)−ηr)(A∗(λP))+ τ(1−A∗(λP))+ τ(λPV (τ)+ηr)}





Contemporary Mathematics 2458 | Nandhini S, et al.



Des(τ) = b(τ)×


τAb(τ)− (A∗(λP)+ τ(1−A∗(λP)))

(Ab(τ)(B∗
v(Av(τ)))+λNG∗(b(τ))W ∗(h(τ))(1−B∗

b(Ab(τ))))


Ks(τ) =

Nus(τ)
Des(τ)

= I0 +V0 + I(τ)+ τ(Ξb(τ)+Φv(τ))+Θ(τ)+ω(τ) (50)

Where,

Nus(τ) =



V0(1− τ)





τ(λP/η)((η +λPV (τ))+ηr)


τAb(τ)− [A∗(λP)+ τ(1−A∗(λP))]

(
Ab(τ)B∗

b(Ab(τ))+λNG∗(b(τ))W ∗(h(τ))(1−B∗
b(Ab(τ)))

)




+ τ(1−A∗(λP))


(λPV (τ)+ηr)


Ab(τ)B∗

b(Ab(τ))

+λPG∗(b(τ))W ∗(h(τ))(1−B∗
b(Ab(τ)))



+Ab(τ)(λP(B∗
v(Av(τ))−1)−ηr)





+V0


(1−B∗

b)(Ab(τ))(τb(τ)+λN(1−G∗(b(τ))))W ∗(h(τ))

{(λP(B∗
v(Av(τ))−1)−ηr)(A∗(λP))+ τ(1−A∗(λP))+ τ(λPV (τ)+ηr)}





4. Performance characteristic
This section evaluates the various system probabilities, the avarage no. of consumers in the orbit and system,

reliability indicators, mean occupied time, and average busy cycle of our system.

4.1 Probabilities of the system state

We determine some probabilities for the system in various states and assess metrics for the model’s system
performance. The following outcomes are obtained from Eqs (42) to (46) by applying τ → 1 then using L-Hospital’s
wherever appropriate.

1. The prob. that the server will be available for the retrial period:
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I(1) =V0 (1−A∗(λP))×



(λP/η)(1−Bv(η))+


(λP (1−Bv(η))+ηr)

(
(1−B∗

b(λN))
(

1+λN(g
(1)+w(1))

)
/λN + f B∗

b(λN)
)


A∗(λP)−
(
λP
(
1−B∗

b(λN)
)(

1+λN(g(1)+w(1))
)
/λN

)
+ f B∗

b(λN)


(51)

2. The prob. when the service is regular busy:

Ξb(1) =
V0((1−B∗

b(λN))

λN

{
((λP)

2/η)(1−B∗
b(λN))+A∗(λP)(λP (1−B∗

v(η))+ηr)+λP f B∗
v(η)

A∗(λP)− (λP(1−B∗
b(λN))(1+λN(g(1)+w(1)))/λN)+ f B∗

b(λN)

}
(52)

3. The prob. when the server is on a slow service rate:

Φv(1) = {λPV0(1−B∗
v(η))/η} (53)

4. The prob. when the server is undergoing delayed repair:

ωy(1) = V0 ((1−B∗
b(λN)))w

(1)×

{(
(λP)

2/η
)
(1−B∗

v(η))+A∗(λP)(λP (1−B∗
v(η))+ηr)+ f λPB∗

v(η)

A∗(λP)−
(
λP
(
1−B∗

b(λN)
)(

1+λP(g(1)+w(1))
)
/λN

)
+ f B∗

b(λN)

} (54)

5. The server’s prob. under repair is given by:

Θ(1) = V0 ((1−B∗
b(λN)))g

(1)×

{(
(λP)

2/η
)
(1−B∗

v(η))+A∗(λP)(λP (1−B∗
v(η))+ηr)+ f λPB∗

v(η)

A∗(λP)−
(
λP
(
1−B∗

b(λN)
)(

1+λN(g(1)+w(1))
)
/λN

)
+ f B∗

b(λN)

} (55)

4.2 Average orbit size and system size

i) Differentiate Eq (49) with respect to τ and calculate at τ = 1, we determine the number of consumers in the orbit
Lq as below.
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Lq = K
′
0(1) = lim

ς→1
K

′
0(τ) =V0

[
Nu

′′′
q (1)De

′′
q(1)−De

′′′
q (1)Nu

′′
q(1)

3(De′′
q(1))2

]
(56)

Nu
′′
q(1) =−2



(λP)
2(1−B∗

b(λN))
{
(1−B∗

v(η))− (1+λN(g
(1)+w(1))B∗

v(η))
}
+λNA∗(λP)(λP +ηr)

+
λN(λP)

2

η
(1−B∗

v(η))+(1−B∗
b(λN))λP f B∗

v(η)(λP(1+λN(g
(1)+w(1))))

−λN f B∗
b(λN)((1−A∗)(λP +λ 2

P/η(1−B∗
v(η))+η p))



Nu
′′′
q (1) = 6

(
(

λP

η
)(η +λP(1−Bv(η))+ηr)

)

−6(1−A∗(λP))
(
−λP(1−Bb(λN))+λNλP(g

(1)+w(1))(1−Bb(λN))
)

[
λPV (τ)− ((

λP

η
)(η +λP(1−Bv(η))+ηr))

]

−6(λP)
2
(
(

λN

η
)
(
V

′
(1)+(1−A∗(λP))(1−Bv(η))

))

−6(λP)
3B∗′

v (η)(1−A∗(λP))−6λP(1−B∗
b(λN))(1−A∗(λP))(1+λN(g

(1)+w(1)))

×
(
ηr+λP(1−B∗

v(η))
)
+6(λP)

3B∗′
b (λN)B∗

v(η)(1+λN(g
(1)+w(1)))

−6
(
(λP)

3

η
(1−Bb(λN))((1+λN(g

(1)+w(1))))

)(
(1−Bv(η))+ηA∗(λP)B∗′

v (η)

)

+3λN(λP)
2(g(2)+w(2))(1−Bb(λN))B∗

v(η)+6(λP)
3g(1)w(1)(1−Bb(λN))Bv(η)

where,

V
′
(1) = λ 2

(
2

(
B∗′

v (η)

η
+

(1−B∗
v(η))

η2

)
−B∗′′

v (η)

)
, B∗′

v

∫ ∞

0
ϑe−η dBv(ϑ), B∗′

b

∫ ∞

0
ϑe−λN dBb(ϑ)

De
′′
q(1) =−2λPλN(A∗(λP)−Γ) (57)
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De
′′′
q (1) = 3λP

(
(λP)

2(2B∗′
b (λN)(1+λN(g

(1)+w(1))))+λN(1+g(2)w(2))(1−B∗′
b (λN))+2λPλNΓ

)

−6λPA∗(λP)×
(
(λNλP(g

(1)+w(1)))(1−B∗′
b (λN)−λPB∗

b(λN))

)

+6(λP)
3λNg

(1)w(1)× (1−B∗
b(λN))

−6λPA∗(λP)λN f B∗
b(λN)−6λ 2

P f B∗
b(λN)+6λ 2

PλN f B∗′
b (λN)

where, Γ = (λP/λN)
(
1−B∗

b(λN)
)(

1+λN(g
(1)+w(1))

)
+ f B∗

b(λN).

ii) Differentiate Eq (49) with respect to τ and calculate at τ = 1, we determine the no. of consumers in the system Ls

as below.

Ls = K
′
s(1) = lim

τ→1
K

′
s(τ) =V0

[
Nu

′′′
s (1)De

′′
q(1)−De

′′′
q (1)Nu

′′
q(1)

3(De′′
q(1))2

]
(58)

Nu
′′′
s (1) = Nu

′′′
q (1)+6(

λ 3
P

η
)λN(g

(1)+ω(1))(1−B∗
b(λN))(1−B∗

v(η))−6λP(1−A∗(λP))

× (1−B∗
b(λN))(λP((1−B∗

v(η))(η))+ηr)−6(1−A∗(λP)
λ 2

PλN

η
(1−B∗

v)(η))

4.3 Reliability measures

In a queueing system with an unreliable server, reliability metrics give the data needed for the improvement of the
system. To create an understanding of and evaluate the model of analytical results, the availability measures (SAv) and
failure incidence (Fail f ) are derived as follows:

1. The server’s steady-state stability is described as follows:

SAv = 1− lim
τ→1

(ωy(τ)+Θ(τ)) = 1− (ωy(1)+Θ(1))

= 1−


(g(1)+w(1))×

((
1−B∗

b(λN)
)
/λN

)
×

{(
(λP)

2/η
)
(1−B∗

v(η))+A∗(λP)(λP (1−B∗
v(η))+ηr)+ f λPB∗

v(η)

{(λP/η)(1−B∗
v(η))+A∗(λP)(1+(ηr/λP))−ΓB∗

v(η)}


2. The steady-state system failure occurrence as follows:
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Fail f = λN ∗Ξb(1)

=

{
V0(1−B∗

b(η))

{
(λP)

2/η(1−B∗
v(η))+A∗(λP)(λP (1−B∗

v(η))+ηr)+ f λPB∗
v(η)

A∗(λP)− (λP(1−B∗
b(λN))(1+λN(g(1)+w(1)))/λN)

}}

4.4 Average busy time and the busy cycle

Let the average length of the busy cycle and busy period M(Tbp) and M(Tbc) respectively. Using the explanation for
an alternate renewal approach, as in [32], yields the findings in a direct manner,

I0 =
M(T0)

M(T0)+M(Tbp)
; M(Tbp) =

1
λP

(
1
I0
−1
)
and M(Tbc) =

1
(λP)I0

= M(T0)+M(Tbp) (59)

where the length of the system is unoccupied state denoted by T0, and M(T0) = (1/λP). By substituting the Eq (48) in
(49), we get the expected result to be

M(Tbp) =

{
((λP/η)(1−B∗

v(η))+A∗(λP)−ϒ)
ηr (A∗(λP)−Γ)

}
(60)

Where, ϒ = ((1−B∗
b(λN))/λN)(1+λN(g

(1)+w(1)))(λPB∗
v(η)+ηr)

M (Tbc) =

{
((λP/η)(1−B∗

v(η))+A∗(λP)(1+(ηr/λP))−B∗
v(η) Γ)

ηr(A∗(λP)−Γ)

}
(61)

4.5 Stochastic decomposition (SD) of system size distribution

This section examines, the system size distribution’s SD property. Fuhrman and Cooper [33] have mentioned the
process of SD among types of M/G/1 queues along server vacations. A significant result from this investigation is the
distribution of no. of consumers in the system during steady-state at a random point of time can be represented as the sum
of two independent RVs. The first variable represents no. of consumers in a normal queueingmodel in absents of vacations.
The second variable, however, varies in its probabilistic interpretations depending on the specific scheduling of vacations.
Let φ(τ) represent the PGF of the no. of consumers in the normal busy or on WV in the model steady-state at random
intervals of time, ψ(τ) represents the PGF of the no. of consumers in the retrial area while it is unoccupied, or under
maintenance, and ŜD(τ) the PGF of the no. of consumers of the given system to be decomposed. ŠD(τ) = ψ(τ)×φ(τ)
has been used to represent the SD procedure.

ŠD(τ) = ψ(τ)×φ(τ)

ψ(τ) =
V0(1+

η p
λP
)+ I(τ)+Θ(τ)+ω(τ)

V0(1+
η p
λ p )+ I(1)+Θ(1)+ω(1)

(62)
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Using the Eqs (42), (45), (46), (47) and also the Eqs (51), (54), (55) substitute in Eq (62), we get

ψ(τ) =



(1+
η p
λP

)(λ (1− τ))


τAb(τ)− (A∗(λP)+ τ (1−A∗(λP)))

(Ab(τ)( f τ + f )B∗
b (Ab(τ))+λNG∗b(τ)W ∗h(τ)(1−B∗

b (Ab(τ)))



+ τ(λP(1− τ))
(1−A∗(λP))

λP



(
Ab(τ)λP

(
( f τ + f )B∗

v (Av(τ))−1
)
−ηr

)

+(λPV (τ)+ηr)


( f τ + f )B∗

b (Ab(τ))+λNG∗(b(τ))

W ∗(h(τ))(1−B∗
b (Ab(τ)))




+(λN (1−B∗

b (Ab(τ)))((1−G∗(b(τ)))W ∗(h(τ))+(1−W ∗(h(τ)))))

{(
λP
(
( f τ + f )B∗

v (Aν(τ))−1
)
−ηr

)
(A∗(λP)+ τ (1−A∗(λP)))+ τ(λPV (τ)+ηr)

}


×A∗(λP)−

(
λP (1−B∗

b(λN))
(

1+λN(g
(1)+w(1))

)
/λN

)
+ f B∗

b(λP)
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

(1+
η p
λ

)
(

A∗(λP)−
(

λP (1−B∗
b(λN))

(
1+λN(g

(1)+w(1))
)
/λN

)
+ f B∗

b(λP)
)

+

(λP/η)(1−Bv(η))+


(λP (1−Bv(η))+ηr)

(
(1−B∗

b(λN))
(

1+λN(g
(1)+w(1))

)
/λN + f B∗

b(λP)
)



+((1−B∗
b(λN)))g

(1)+w(1)×


(
(λP)

2/η
)
(1−B∗

v(η))+A∗(λP)

(λP (1−B∗
v(η))+ηr)+ f λPB∗

v(η)





×


τAb(τ)− (A∗(λP)+ τ (1−A∗(λP)))

(
Ab(τ)( f τ + f )B∗

b (Ab(τ))+λNG∗b(τ)W ∗h(τ)(1−B∗
b (Ab(τ)))

)


φ(τ) =
Ξb(τ)+Φv(τ)
Ξb(1)+Φv(1)

(63)

Using the Eqs (43), (44), (52) and (53) in Eq (63), we get

φ(τ) =



(1−B∗
b(Ab(τ)))


(λP(( f τ + f )B∗

v(Av(τ))−1)−ηr)

(A∗(λP)+ τ(1−A∗(λP)))+ τ(λPV (τ)+ηr)



+(λPV (τ)/η)


τAb(τ)− (A∗(λP)+ τ (1−A∗(λP)))

(
Ab(τ)( f τ + f )B∗

b (Ab(τ))+λNG∗b(τ)W ∗h(τ)(1−B∗
b (Ab(τ)))

)



×
{

A∗(λP)−
(

λP (1−B∗
b(λN))

(
1+λN(g

(1)+w(1))
)
/λN

)
+ f B∗

b(λP)
}
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
((1−B∗

b(λN))/δ )
{
((λP)

2/η)(1−B∗
b(η))+A∗(λP)(λP (1−B∗

v(η))+ηr)+λP f B∗
v(η)

}
+(λP(1−B∗

v(η))/η)
{

A∗(λP)−
(

λP (1−B∗
b(λN))

(
1+λN(g

(1)+w(1))
)
/λN

)
+ f B∗

b(λP)
}


×

τAb(τ)− (A∗(λP)+ τ (1−A∗(λP)))


Ab(τ)( f τ + f )B∗

b (Ab(τ))+λNG∗b(τ)

W ∗h(τ)(1−B∗
b (Ab(τ)))




5. Special cases
In this section, we examine a few specific instances of ourmodel that coincide with the existing collection of literature.
Case (i): No unfavorable arrival, no delay repair, and with multiple WV. We consider that (λN , ω)→(0, 0). Our

model reduced to an SRQ with Bernoulli WV and vacations interruption (VI) concepts. Here, Ks(τ) indicates the PGF
of the no. of consumers in the system, whereas (K0) indicates the PGF of no. of the consumers in the orbit. The average
length of the system and orbit was assumed respectively Ls and Lq.

Ks(τ) =

I0





(1− τ) (λP/η)((η +λPτV (τ))+ηr)


τ − [A∗(λP)+ τ(1−A∗(λP))]

(B∗
b(Ab(τ)))




+(1− τ) τ(1−A∗(λP))


(λPV (τ)+ηr)(B∗

b(Ab(τ)))

+(λP(B∗
v(Av(τ))−1)−ηr)




+ϖ


Ab(τ)

{
τ − (A∗(λP)+ τ(1−A∗(λP)))+ τ(λPV (τ)+ηr)

} (64)

where,

ϖ = τ(1−B∗
b(Ab(τ))){(λP(B∗

v(Av(τ))−1)−ηr)(A∗(λP)+ τ(1−A∗(λP)))+ τ(λPV (τ)+ηr)}

This matches the outcome obtained by Rajadurai et al. [34].
Case (ii): No arrival of unfavorable consumer and MWV. Let λN = r = 0, our approach can be simplified to a M/G/1

RQ with general retrial times, WVs and VI. Here Ks(τ) was resulted as
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Ks(τ) =

I0


(1− τ)



{(
τ − [A∗(λP)+ τ(1−A∗(λP))](B∗

b(Ab(τ)))
)}

+ τ(1−A∗(λP))

{
(B∗

v(Av(τ)))+(V (τ)(B∗
b(Ab(τ))−1))

}
+ϖ1


Ab(τ)

{
τ − (A∗(λP)+ τ (1−A∗(λP)))+ τ(λPV (τ))

} (65)

ϖ1 = (1−B∗
b(Ab(τ))) {(λP(B∗

v(Av(τ))−1)) (A∗(λP)+ τ(1−A∗(λP)))+ τ (V (τ))}

This matches the outcome obtained by Gao et al. [35].
Case (iii): When there is no arrival of unfavorable consumer no vacation interruption andWV. Let λN = η = 0. Our

approach can be simplified to a M/G/1 retrial queue with WV. Here Ks(τ) was resulted as

Ks(τ) =

[
I0 {[τ +(1− τ)A∗(λN)] [1−B∗

v(λP(1− τ))]+A∗(λP)B∗
v(λP) (1− τ)}

B∗
v(λP)

{
[τ +(1− τ)A∗(λP)] B∗

b(λP(1− τ))− τ
} ]

B∗
b(λP(1− τ)) (66)

This matches the outcome obtained by Arivudainambi et al. [36].

6. Numerical example
In this section, we examined the effect that a number of various variables have on the system efficiency indicators

of our system using a number of different numerical demonstrations. The examples are based on the assumption that
all retrial instances, periods of service, slow-rate service periods, delay, and maintenance times follow an exponentially,
and Erlangianly distributed. Consequently, the parameters are chosen with arbitrary values which satisfying the stability
condition. The findings are numerically illustrated using MATLAB software. It is worth noting that the equation f (ϑ) =

νe−νϑ , ϑ > 0 is exponential distribution and Erlang-2 stage distribution is f (ϑ) = ν2ϑe−νϑ , ϑ > 0.
Table 1, displays that when the repeated attempts rate ȧ grows, the probability of the orbit size Lq, the prob. of the

server is being unoccupied while retrial time I, and the average waiting time in the orbitWq is fall consistently. while the
prob. of the server unoccopaid I0 also grows. For the values of λP = 2; η = 3; Bb = 8; r = 0.5; χ = 4; γ = 4; λN = 0.3;
f = 0.2; Bv = 4. Table 2, the impacts of the prob. on the performance metrics of the system for the value of λP = 2; η = 3;
Bb = 8; r = 0.5; χ = 4; γ = 4; ȧ = 5; Bv = 4; f = 0.2 are outlined and reported. It has been brought to our attention that
the prob. of unfavorable rate λN steadily rises as the value of the prob. of orbit size Lq, the prob. of server unoccopaid rate
I, the average waiting time Wq, and the server failure frequency f ail f rises. The tendencies that are shown by the tables
are consistent with what was anticipated. Table 3 indicates when the lower service rate Bv rises, then server unoccopaid
I0 and length of the orbit Lq rise, prob. that the server is on slow service or WV (Φv) and expected waiting time Wq is
declines. For the values of λP = 2; λN = 0.3; Bb = 8; r = 0.5; χ = 4; γ = 4; ȧ = 5; η = 3; f = 0.2.

Table 4: When the feedback rate f rises, then average length of the orbit Lq, server unoccopaid during retrial period
I, and expected waiting time Wq rise, and server unoccopaid I0 declines. For the values of λP = 2; λN = 0.3; Bb = 8;
r = 0.5; χ = 4; γ = 4; ȧ = 5; η = 3.

Volume 5 Issue 2|2024| 2467 Contemporary Mathematics



Table 1. The impact of retrial rate ȧ on IO, Lq, I, andWq

Retrial rate Exponential Erlang 2 stage

ȧ I0 Lq I Wq I0 Lq I Wq

6 0.2566 2.7193 0.2857 1.3596 0.0645 3.0620 0.1874 1.5310
7 0.2674 2.4992 0.2444 1.2496 0.0823 2.9011 0.1597 1.4505
8 0.2726 2.3292 0.2136 1.1646 0.0958 2.7652 0.1392 1.3826
9 0.2784 2.1937 0.1897 1.0968 0.1064 2.6490 0.1233 1.3245
10 0.2831 2.0832 0.1707 1.0416 0.1149 2.5483 0.1106 1.2741

Table 2. The impact of unfavorable consumer arrival rate λN on Lq, I, Fail f , andWq

unfavorable rate Exponential Erlang 2 stage

λN Lq I Fail f Wq Lq I Fail f Wq

0.20 1.0329 0.3809 0.0805 0.4198 0.8322 0.6696 0.0833 0.4161
0.30 1.1491 0.3958 0.1180 0.9562 0.8719 0.6849 0.1284 0.4359
0.40 1.2635 0.4116 0.1588 1.3701 0.9331 0.7033 0.1760 0.4665
0.50 1.3821 0.4284 0.2506 1.7843 1.0365 0.7264 0.2262 0.5325
0.60 1.5090 0.4463 0.3018 2.2658 1.2396 0.7575 0.2791 0.6198

Table 3. The impact of WV period Bv on I0, Lq, Φv, andWq

Slow service rate Exponential Erlang 2 stage

Bv I0 Lq Φv Wq I0 Lq Φv Wq

4 0.2414 1.9125 0.0313 0.9562 0.0402 3.9413 0.0278 1.9706
5 0.2522 1.8184 0.0292 0.9092 0.0441 3.8617 0.0267 1.9308
6 0.2613 1.7342 0.0273 0.8671 0.0477 3.7939 0.0257 1.8969
7 0.2691 1.6588 0.0257 0.8294 0.0512 3.7360 0.0248 1.8680
8 0.2759 1.5914 0.0243 0.7957 0.0544 3.6864 0.0239 1.8432

Table 4. The impact of feedback rate f on I0, Lq, I, andWq

Feedback rate Exponential Erlang 2 stage

f I0 Lq I Wq I0 Lq I Wq

0.01 0.2684 1.7605 0.1224 0.8802 1.1074 2.6436 0.1219 1.3218
0.02 0.2673 1.8056 0.1306 0.9028 0.1046 2.6683 0.1265 1.3341
0.03 0.2663 1.8525 0.1390 0.9262 0.1018 2.6936 0.1313 1.3468
0.04 0.2652 1.9015 0.1477 0.9507 0.0989 2.7195 0.1361 1.3597
0.05 0.2641 1.9525 0.1568 0.9762 0.0959 2.7459 0.1410 1.3729
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Figure 2. Lq versus λP and λN

Figure 2-6 depict the influence of the variables λP, λN , r, ȧ, η , Bb, and Bv on the 3-D graph based on system
performance metrics.

Figure 3. Lq versus Bv and ȧ
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Figure 4. I0 versus r and η

In Figure 2, the surface exhibits a steadily increasing pattern as it increases the rate of the favorable consumer λP

and the rate of the arrival of unfavorable consumer λN against the average orbit size (Lq). In Figure 3, the average orbit
size (Lq) declines when the lower service rate Bv and the rate of retrial ȧ grows. Figure 4 shows the unoccupied prob.
(I0) increases as the single WV probability (r) and rate of the vacation (η) is increase. In Figure 5, the unoccupied prob.
(I0) increases when the server gives the rate of the slower service Bv and rate of the normal service Bb also increases. In
Figure 6, the unoccupied prob. (I0) increases when the server gives the rate of the WV rate η and rate of the delay on χ
also decreases. Figure 7-10 depict the influence of the variables λP, λN , r, ȧ, η , Bb, and Bv on the 2-D graph based on
system performance metrics. Note that the exponential distribution is f (ϑ) = νe−νϑ , ϑ > 0, Erlang-2 stage distribution
is f (ϑ) = ν2ϑe−νϑ , ϑ > 0 and hyper-exponential distribution is f (ϑ) = cνe−νϑ +(1− c)ν2e−ν2ϑ , ϑ > 0. Figure 7
shows that when the probability p rises, the average size of the orbit Lq grows. Figure 8 displays that the average size of
orbit Lq declines for the rising value of the retrial rate ȧ. Figure 9 displays that the average size of orbit Lq declines for the
growing value of the WV rate η . Figure 10 displays that the unoccupied prob. I0 rises for escalating value of the delay
rate χ .
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Figure 5. I0 versus Bv and Bb

Figure 6. I0 versus η and χ

The data visualizations below demonstrate the impact of the characteristics on system performance metrics, and it is
clear that the results apply to real-world situations.
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Figure 7. Lq versus p

Figure 8. Lq versus ȧ

7. Conclusion
In this research, we have investigated a single server feedback retrial queue and delayed repair with Bernoulli working

vacation. We have derived the probability-generating function of the average number of consumers in the system and orbit
by using the supplementary variable method. The implementation of our proposed model can enhance the performance
of various systems by providing explicit data for the measurement of various system parameters such as queue length,
waiting time of the consumer and the system capacity. The application of this model can be extended to various other
fields such as computer processing, manufacturing process and communication channels. Our future work is focused on
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extension of the proposed model by augmenting bulk arrival, optional phase services, re-service, and starting failure to
the existing model.

Figure 9. Lq versus η

Figure 10. I0 versus χ
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