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Abstract: Diffie-Hellman (DH) is the reason for the existence of a solution to the key distribution problem, where two
parties canmutually set up a shared secret key over an insecure channel without any previous communication. In this study,
a novel key exchange protocol based on the difficulty of the Discrete Logarithm Problem with Factor Problem (DLPFP)
utilizing matrices in non-commutative semigroup over semiring is proposed. The security and complexity analyses of
the protocol are discussed. Also, an ElGamal cryptosystem based on a group of invertible matrices and DLPFP over a
semiring to encrypt the Sensitive Health Information (SHI) in healthcare systems is suggested.
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1. Introduction
Cryptography is the study of private and confidential communicationmechanisms that restrict the sender and intended

recipient’s access to a message’s particulars. Recent years have seen the creation of a high volume of data from numerous
sources, necessitating secure processing and storage. Personal information about the user and also ubiquitous data
collected from many “everyday” gadgets that belong to the cyber world are included in this data. In the healthcare system,
due to the ease of combining a variety of health information sources to build a centralized patient record that is quickly
accessible, Sensitive Health Information (SHI) has gained popularity among users as a patient-centric model of health
information sharing. A patient can create, maintain, and have control over all of her personal health information through
a SHI service, which has improved the efficiency of data storage, retrieval, and sharing. The data owner has full control
over the SHI. They can also make their health information available to a variety of consumers. A number of privacy and
security issues arise during the sharing process, potentially preventing its widespread adoption. The privacy of users is in
jeopardy if SHI is kept on a server operated by an unreliable third party. Therefore, encrypting the data is vital. Figure 1
shows the scenario for the healthcare system.
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Figure 1. The healthcare system

In the communication between the sender and the receiver, the key exchange algorithm is used to generate the secret
key. The safe and secure transfer of the key between the entities is the most difficult task. While exchanging the keys,
unauthorized users should not be able to access the information. Whitfield Diffie Hellman and Martin Hellman developed
the Diffie-Hellman (DH) algorithm in 1976, which facilitated the exchange of private keys between the parties. This
algorithm employs the platform group F∗p , which is the group of integers modulo p under multiplication, where p is prime.
It has been proposed that the Discrete Logarithm Problem (DLP) and subsequent integer factorization problems are key
exchange protocols with essential structures that are quite similar to the DH technique previously outlined.

The intractability of problems related to number theory forms the foundation for all of these cryptosystems. Despite
their widespread use, these public key techniques suffer from two major flaws. The first is quantum computing’s rapid
advancement. The creation of a reasonably powerful quantum computer will render certain frequently used public key
algorithms, like the Rivest Shamir and Adleman (RSA) algorithm, ElGamal, and elliptic curve cryptosystems, no longer
secure. The second issue arises from the incompatibility of these number theory-based approaches with small computer
hardware, like card readers with low processing speeds.

Despite the fact that quantum computers are still many generations away from being a reality, the cryptography
community will soon be on guard against them. As a result, developing faster and more secure non-numerical theory-
based cryptographic systems and key exchange methods is critical. In [1], a more effective new type of elliptic curve
public key cryptosystem featuring quicker key generation calculations is presented. The Conjugacy Search Problem
(CSP) [2] over a set of invertible matrices for groups and semigroups is one instance of a challenge that has inspired
multiple attempts to build different public key cryptosystems.

In [3], a novel hill cipher is suggested based on vector spaces over non-singular (invertible) matrices. It resolves
the known plaintext attack issue. A message exchange protocol based on finite associative-commutative rings with unity
characteristics is described in [4]. For the digital signature system described in [5, 6], the general linear group over Zn and
the non-commutative ring are the building blocks. A public key symmetric cipher approach that uses semiring action is
proposed in [7]. However, the authors do not explicitly state the security of this scheme. Stickel’s key exchange protocol in
tropical algebra was updated by the authors [8] utilizing commuting matrices, and they also proposed additional protocols.
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The basis for our study is a non-commutative group of invertible matrices over semirings. As a result of including all the
highlights, our suggested scheme’s security has improved.

Based on the premise of a strong computational DH without sacrificing security, [9] offers a tight security key
exchange technique. A new modified and enhanced DH non-commutative key exchange mechanism is proposed in [10].
It protects against linear algebra attacks as well as both linear and non-linear decomposition attacks. For increased data
privacy and integrity, a revised encryption technique built on the DH approach is suggested in [11]. It protects against
man-in-the-middle attacks and discrete logarithm attacks. Only a few known attacks explain the security of these schemes,
as they fail to overcome many others.

In [12, 13], a modified algorithm based on the ElGamal and Cramer-Shoups cryptosystems is presented. In [14], a
simple, lightweight, and efficient encryption scheme is given. An updatable ElGamal encryption scheme that achieves
forward and backward security for cloud storage is proposed in [15]. In [16–18], an ElGamal scheme and key exchange
protocols for the Internet of Things environment are designed. In [19, 20], cryptosystems using blockchain are proposed.
Some encryption schemes for enhancing the security of healthcare systems are given in [21–24].

Our protocol is based on a set of invertible matrices over a finite field. A non-invertible key exchange protocol over a
ring is suggested by the author in [25] and affirms that it takes less time thanDH, ElGamal, and RSA. In the view of [2, 26],
theDLP onGLn(Fr) is converted into a basic factoring issue or aDLP over finite fields [26] due to attacks like determinant
attack, eigenvalue attack, and the Cayley-Hamilton attack. A platform is suggested to get around this conversion problem.
It is made up of the semigroup of matrices over group ring Mn × n(Fr[Sr]) under normal matrix multiplication [27] and
the group of invertible matrices over group ring GLn(Fr[Sr]) [28]. [29] claims that the “semi-simple algebra” structure
of group rings can decipher the key exchange protocols based on DLP. [30] suggests a Factorization Discrete Logarithm
Problem (FDLP)-based key exchange protocol and analyses the security and complexity. Also, an ElGamal cryptosystem
is proposed. In [31], this protocol’s security is examined thoroughly. A modified RSA algorithm to encrypt the SHI
is proposed in [32]. Our approach is based on a group of invertible matrices over semiring, which is a more feasible
generalization of the group ring. Our approach fixes the flaws in the previously discussed systems.

Recently, several attempts were made to secure the SHI by using cryptographic protocols. However, to our best
knowledge, a few of them have provided these protocols based on ElGamal cryptosystems and mathematical hard
problems. In [30], a protocol based on the group of invertible matrices over group rings is presented. Semiring is a
generalized concept of group rings. This motivates us to design a new problem, Discrete Logarithm Problem with Factor
Problem (DLPFP), upon which we construct a key exchange protocol and an ElGamal cryptosystem using matrices in
the non-commutative semigroup over semiring to secure the SHI. The proposed protocol is more secure but has the same
time complexity. Also, we have enhanced our scheme by concealing the subsemigroup.

In this study, we attach a hidden parameter to the ideas of the DLP and Factor problem (FP) over a non-commutative
semigroup Mn × n(Rs), which becomes the DLPFP problem. Using the above-given attacks does not reveal the secret
key, making the suggested protocol more efficient than previously published protocols. Then, a key exchange protocol
is proposed based on this DLPFP. We have presented the protocol’s complexity and security measures. Also, based on
DLPFP over a group of invertible matrices, an ElGamal cryptosystem for encrypting the data in the healthcare system is
proposed.

The order of the paper’s sections is as follows: The terms DLP, FP, DLPFP, centralizer, and semiring are defined,
and the model, structure, flow, and security goals of the system and the list of notations used are given in Section 2.
In Section 3, a key exchange protocol based on DLPFP is proposed along with a theorem. In Section 4, the proposed
protocol’s security and complexity are evaluated. Using the group of invertible matrices over a semiring, an ElGamal
cryptosystem for SHI is proposed, with an example in Section 5. Lastly, in Section 6, the paper is concluded.

2. Preliminaries
In this section, DLP, FP, DLPFP, Centralizer, and Semiring are defined [30, 33, 34], and the model, structure, flow,

and security goals of the system are given.
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2.1 Basic definitions
Definition 1 (DLP [30]) Let p be a prime and given an element β ∈ F∗p where F∗p is a cyclic group of order p− 1

generated by α , find an integer e, 0≤ e≤ p−1 such that αe ≡ β mod p.
Definition 2 (FP [30]) Given an element g from non-abelian semigroup G and two subsemigroup of G namely H1,

and H2, find two elements h1 ∈ H1 and h2 ∈ H2 such that g = h1.h2.
Definition 3 (DLPFP) Given an element g from non-commutative semigroup G and two subsemigroup of G namely

H1, and H2, find three elements h2 ∈ H2 and t, s ∈ Z∗r where r is an integer such that g = ht
1.h

s
2.

Example Let GL3(Z) be a non-abelian semigroup and the subsemigroup of GL3(Z) be the set of all 3×3 diagonal
matrices. Also, let Z∗r be Z∗11. Consider the equation g = ht

1.h
s
2 where the given values are t = 2, s = 3,

g =

733 1,253 1,238
420 700 704
207 355 350

 ∈ GL3(Z),

h1 =

3 4 1
1 4 0
1 1 0

 ∈ GL3(Z),

h2 =

2 5 3
1 0 1
0 1 1

 ∈ GL3(Z).

Now, the problem is to find the values of h2, t, and s from the above equation.
Definition 4 [33] For an element g ∈ G, let C(g) be the set of elements that commute with g, i.e., C(g) = {a ∈ G :

ga = ag}. C(g) is called the centralizer of g in G.
Definition 5 [34] A non-empty set Rs is called a semiring if the operations of addition and multiplication are defined

in the following ways:
(i) (Rs, +) is a semigroup;
(ii) (Rs,·) is a semigroup;
(iii) a(b+ c) = ab+ac and (b+ c)a = ba+ ca for every a, b, c ∈ Rs.

2.2 System model

The proposed system model consists of the data owner, i.e., the Patient (Pa), Personal Domain (PeD), Public Domain
(PuD), Administrator (Ad), and Big Data Server (S). The categorizations of the model are given in Figure 2 and are
described as follows:

Pa: The details of Pa like name, date of birth, gender, address, contact number, disease, etc., are registered in the
system and are stored in S.

PeD: The domain includes family members and friends who are very close to Pa. They are granted access rights by
Pa in accordance with the required conditions.

PuD: The domain includes parties like insurance providers, additional hospitals, etc. The parties cannot access the
SHI until Pa gives permission.

Ad : First, when Pa enters the hospital for treatment or consultation, he or she is asked to provide the details for their
profile and also register. The registration ID and private key (updated each time) are provided to Pa by Ad .
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S: The SHI of Pa is stored here. S makes storing, processing, and analyzing enormous amounts of data simple. 
In this paper, the server is considered semi-honest.

Figure 2. The system model

2.3 Structure and flow of the proposed protocol

Three roles are specified for handling Pa health data: a doctor, a nurse, and a staff member. A doctor has the ability
to add, edit, or remove the treatment records of Pa. He or she is granted access to the entire medical records (SHI) of
the Pas that are allocated to them. A nurse also has access to and control over SHI, but with fewer privileges this time.
In particular, a nurse is able to add information to the SHI. However, their access to the visit histories of Pa is limited,
preventing them from viewing specific medical records of doctors assigned to them. The third role owner, i.e., the staff
member, can view the basic information, including his identity, visit date, time, and cost. The staff allocates the Pa to a
suitable and accessible healthcare professional and keeps track of how long they wait. The Ad is in charge of creating
roles, assigning users to these jobs, and handling role granting and revocation, for example, by recruiting or firing doctors,
nurses, and other staff members. The workflow of the proposed protocol is described as follows:

During the first visit, Pa provides Ad with profile details. Ad uploads it in S. When registering, Pa specifies the
members of PeD. The access privileges of PeD members are specified by Pa. Pa also clearly knows about the individuals
who have access to PuD. If someone wants to access SHI, then a secret key request is sent to Pa, and he or she approves
or declines the request. The SHI is encrypted under a domain-based access policy and stored in S. It is decrypted by Pa,
or the authorized user with the private key. The users are those who are specified in the public or private domain with
access rights. The individuals from PeD are close friends and family members. Therefore, Pa allows them to access the
data with respect to their relationship.

Volume 5 Issue 2|2024| 2495 Contemporary Mathematics



2.4 Security goals
The main aim of the patient-centered scheme is that the Pa should have control over his or her SHI. In order to

achieve this, the system needs to maintain data confidentiality, integrity, adaptability, scalability, and efficiency. They are
described as follows:

1. Confidentiality: The decryption of the SHI file is done only by authorized individuals, as mentioned by Pa.
Unauthorized individuals lacking the necessary access privileges cannot decrypt the SHI.

2. Integrity: Preventing unauthorized individuals from gaining access to modify the data.
3. Adaptability: It is necessary for the access policy to be flexible when it is characterized by constant change.
4. Scalability: The system must encourage the PeD and PuD users. Even if the size of the PuD increases, the system

must support it. Also, high adaptability and applicability are required.
5. Efficiency: It is necessary to minimize the effort required to handle the clients and keys.

3. A key exchange protocol based on DLPFP
In this section, a DLPFP-based key exchange protocol that employs matrices over semiring is proposed, and a

theorem is established.
The Protocol: Assume that under multiplication, A = Mn × n(Rs) is a finite non-commutative semigroup. Let B be

a commutative subsemigroup of A, and F∗r = {1, 2, 3, . . . , r−1}, where r is a big positive integer. Suppose a ∈ A and
CA(a) is the centralizer of a in A. The public parameters are A, a, and r. Let the parties involved in the key exchange
protocol be Alice and Bob, who know the public information. The following is the proposed protocol:

(1) Alice computesC1 = aiy j, where the secret parameters i, j, and y are chosen from F∗r and B\CA(a), respectively.
B\CA(a) contains all the elements in B except the ones that commute with a. Alice sendsC1 to Bob.

(2) Bob computes C2 = akzl where the secret parameters k, l and z are chosen from F∗r and B \CA(a), respectively.
Bob sends C2 to Alice.

(3) Alice calculates K1 = aiC2y j.
(4) Bob calculates K2 = akC1zl .
The exchanged secret key (K) is K1 = aiC2y j = ai+kzly j = ak+iy jzl = akC1zl = K2 = K because of the commutative

property of y and z, that is, yz = zy in B.
In the healthcare system scenario, the key exchange takes place between thePa or the users from PuD or PeD (whoever

requests the SHI of Pa) and the Ad . The Pa or the users from PuD/PeD perform Alice’s part during the key exchange. Bob’s
part is done by the Ad . In order to create a different key each time, the matrix y is calculated as follows: The alphabets
in the Pa and the consulting doctor’s password are converted into numerical values, and the corresponding binary value
is calculated. Now, the first binary value of Pa’s password and the doctor’s password are added using the logical operator
⊕. Then, the resulting binary value is again converted into a numerical value, which is the first entry of the matrix y. 
The same method is followed to calculate each value. According to the size of the matrix (y), entries are added or deleted
randomly.

Remark The constraint that y and z do not commute with a cannot be modified since if ay = ya or az = za, then the
secret key is easily found by the adversary because

K1 = aiC2y j = aiakzly j = aiy jakzl =C1C2

or the other way, that is,

K2 = akC1zl = akaiy jzl = akzlaiy j =C2C1.
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This is because the values ofC1 andC2 are sent through an insecure channel.
Remark Let us assume that za = az and y, z ∈ B \CA(a). CA(a) is the centralizer of a in A, and it contains all the

elements in A that commute with a. Here, B \CA(a) contains all the elements in B except the ones that commute with
a. This contradicts our assumption. Therefore, za ̸= az. Also, y and z belong to B \CA(a), where B is a commutative
subsemigroup. Therefore, yz = zy.

Remark In the above protocol, another way of choosing y is fromA\CA(a) and proceedingwith anothermodification,
i.e., by selecting the secret polynomialsFq[x] such that f (x) and g(x) commutewith each other and the key is also calculated
in the same way, that is

C1 = ai f (y) j andC2 = akg(y)l .

Theorem 1 Let A = Mn × n(Rs) be a finite non-commutative semigroup under multiplication over semiring Rs and
let F∗r = {1, 2, 3, · · · , r− 1}, where r is a big positive integer. If the key exchange protocol is based on DLPFP, then
the keys are exchanged securely through the protocol when B is a commutative subsemigroup of A.

Proof. Given that A = Mn × n(Rs) is a finite non-commutative semigroup over semiring, under usual matrix
multiplication, and B is a subsemigroup of A, where B = {Nn × n(Rs)}. F∗r = {1, 2, 3, . . . , r− 1} where r is a big
positive integer and a ∈ A, and y, z ∈ B\CA(a).

To prove: The key exchange is securely done based on DLPFP when B is chosen as a commutative subsemigroup
of A and a ∈ A, and y, z ∈ B\CA(a).

According to the key exchange protocol, let a ∈ A andCA(a) be the centralizer of a in A. Now, the parameters in the
public domain are A, a, and r. Assume that the people transferring keys are Alice and Bob.

  The key exchange is as given in the above Key Exchange Protocol based on DLPFP. The exchanged secret key
K is K1 = aiC2y j = ai+kzly j, and K2 = akC1zl = ak+iy jzl . Therefore, K1 = K2 = K (since B is commutative). The key
exchange is successful.

 Let us assume that the key exchange is insecure, i.e., with knowledge of the exchanged values (C1, C2) and the
public parameters (A, a, and r), the adversary can deduce the secret keys. To compute the secret key K1 = aiakykzl with
the known values, the adversary calculates C1C2 = aiykakzl . To equate the values of C1C2 and K1, y must commute with
a. This, however, contradicts our assumption that ya ̸= ay. So even if the adversary intercepts the exchanged values and
knows the public parameters, deducing the secret keys remains infeasible due to the non-commutative property of the
elements involved. Therefore, the key exchange is secure.

4. The security analysis and complexity analysis
In this section, the security analysis of the DLPFP-based key exchange protocol is examined, and the number of

operations required to run this protocol is analyzed along with the time complexity graph.

4.1 The security analysis
The security and time complexity of the suggested DLPFP key exchange protocols are examined in this section.
Assuming that the above problem is computationally difficult, our Section 3 protocol is secure: It is difficult to

calculate the shared key K given the public data a, C1, and C2. This is the protocol’s computational assumption. The
tougher decisional version of this condition is: It is challenging to tell the shared key K from an arbitrary element of the
type akm given a, C1, and C2. The security evaluation of our protocol against many forms of attacks, some of which are
published in [2, 26, 29, 35], is provided below:

(i) Attacks by using matrices’ characteristics: FDLP is resistant to the Cayley-Hamilton attack [26], the determinant
attack [2], and the eigenvalue attack. The eigenvalue attack is irrelevant since a’s eigenvalues are identified but not those

Volume 5 Issue 2|2024| 2497 Contemporary Mathematics



of ai. The non-commutative determinant prevents the determinant attack from working [2]. In contrast to situations where
DLP is the root cause of the issue, det(aiy j) and det(a) are known, but currently, there are three unknown variables (i, j,
and y). Since y is unknown, this approach is not suitable to determine i or j. To use the Cayley-Hamilton attack, you must
know a, y ∈Mn × n(Rs) such that aiy j = g(a)h(y), such that g(x), h(x) ∈ Rs and

g(x) =
r−1

∑
i=0

biai, h(y) =
r−1

∑
i=0

ciyi.

Since y and j are not known, it is unattainable to detect h(y). Therefore, the Cayley-Hamilton attack cannot solve
this.

(ii) Attacks over DLP: To solve the DLP, numerous algorithms were introduced. Our underlying problem is DLP,
and the algorithms cannot be used in our protocol since in DLP, a is known and ai is unknown, so it was broken through
the algorithms. But, here, “i” is hidden using two parameters, y and j, which are confidential such thatC1 = aiy j and the
subsemigroup B is hidden as given in [33], which makes it more difficult for the adversary to attack.

(iii) Brute force attack: For given a1, a2, and a3 ∈ A and t, s ∈ F∗r , a1 = at
2 as

3 and in F∗r , r is a big positive integer,
where A = {d1, d2, . . . , dα} is a non-commutative semigroup of α elements. The elements of A are expressed as a1 = di1 ,
a2 = di2 , and a3 = di3 for some i1, i2, i3 ∈ {1, 2, . . . , α}. α is the number of options for a3, and r is the number of options
for a1 and a2. By brute force attack, to solve the DLPFP, the steps involved are O(αr) = αr bits, which is exponential.
αr = elogeαr = eloge2.log2αr = e f .size(αr) and f = loge2. This grows reasonably fast as the values of α and r increase.
Therefore, brute force attack is not possible.

Algorithm 1 Exhaustive search algorithm
Input: Let a ∈ A such that C1 = aiy j, and C2 = akzl

Output: Secret parameters: B⊂ A, y, z ∈ B\ cA(a), i, j, k, l ∈ F∗r , K1, and K2

for i← 1 to r−1 do
for j← 1 to r−1 do

K1 ← aiy j;
for k← 1 to r−1 do
for l← 1 to r−1 do

K2 ← akzl ;
compare K1 = K2;
if K1 = K2; then
return K1 = K2 & exit;

else
go to next step;

end if
end for i← i+1

end for j← j+1
end for k← k+1

end for l← l +1

For the key exchange protocol based on DLPFP, an exhaustive search method is provided in Algorithm 1.
(iv) Linear algebra attack: Only in the following way, our strategy is compatible with the linear algebra attack

described in [36]:
1. Find a matrix u with the property ua = au.
2. Find a matrix v with the condition vz = zv. Because it is abelian, such a matrix v is chosen from the hidden

subsemigroup B.
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3. C1, u, and v should satisfy the equationC1 = uv.
Then, the secret key can be evaluated as:

uC2v = uakzlv = akuvzl = akC1zl .

This value matches the secret key. At least one solution exists for this method, i.e., u = ai, v = y j. The solution for
the group of matrices over semirings is given below.

(1) To find u such that ua = au: Let us consider the set of all 2×2 matrices. Suppose the adversary knows the matrix

a =

[
a1 a2

a3 a4

]
and has to find the unknown matrix u =

[
u1 u2

u3 u4

]
so that it satisfies ua = au. Now, we have four equations

while solving ua = au, i.e., a1u1 + a2u3 = u1a1 + u2a3, a1u2 + a2u4 = u1a2 + u2a4, a3u1 + a4u3 = u3a1 + u4a3, and
a3u2 +a4u4 = u3a2 +u4a2. If the elements are taken from a commutative group, they are linear equations with variables
that are unknown, i.e., a2u3−u2a3 = 0, a1u2+(u4−u1)a2−u2a4 = 0, a3u1+(a4−a1)u3−u4a3 = 0, and a3u2−u3a2 = 0.
This reduces to qt = 0 for some matrix q and t = [u1u2 . . .un]

i where u1, u2, . . . , un ∈ u. If the elements are taken from
a non-commutative group, then it is not possible for the equations to be linear since ua ̸= au. As given in (iii) above, a
brute force attack is not applicable here, even if the equations are written in linear form, because by brute force attack, the
number of steps required is O(αr) bits (exponential), and it grows reasonably fast as the size of the platform increases.
Also, invertibility is not mandatory for the matrix q. The restrictions we have made disable the attacks on finding u. Also,
the basic platform where y, z is taken from B and is hidden. Therefore, the adversary remains unaware of the origin of
these matrices.

(2) To find v such that vz = zv: To find v from the hidden subsemigroup B is not possible as discussed in [30] and (1)
above. It will also not work out, as in the case of Remark 2, since the commutative subsemigroup B is hidden.

(3) Solving the equation C1 = uv: The known matrix is C1. The matrices u and v are unknown, where u = ai and
v = y j (sinceC1 = xiy j). The secret parameters are y, i, and j. It is considered a hard problem.

A system of quadratic equations is produced by solving the matrices, as shown in [30]. The only way to find the
resolution is by using a brute force attack. However, convincing evidence has demonstrated that the time complexity of
solving quadratic equations remains safe from this attack.

(v) Ciphertext only attack: The value of C2 = akzl is used as the ciphertext C2 in the ElGamal Public Key
Cryptosystem 5. Therefore, the ciphertext only attack can be used onC2 here. In the ciphertext only attack, the adversary
only knows C1 or C2. An adversary knows only the matrices C1, C2, and a, which are public parameters. To find the
plaintext o, he must first find the unknown matrices y, z, K1, and K2. He assumes random matrices y = y1 and z = z1.
Therefore, C1 = aiy j

1. In the same way, C2 = akzl
1. Here, he has a large system of nonlinear equations for the ciphertext

corresponding to each plaintext. He finds the corresponding solution, o = o′. Thus, for each fixed y = y1, the adversary
gets a number of (C′1, C′2, z1, o′). This process generates a large system of equations with a large number of unknowns. No
matter how an adversary rearranges these equations, the problem of having a product of two unknown matrices persists.
This solution becomes infeasible.

(vi) Known plaintext attack: Here, the adversary knows the ciphertext C = (C1, C2) corresponding to the plaintext
oi for (i = 2, 3, 4, ..., j). Let the plaintext-ciphertext pair be (o, C). He wants to find the next plaintext, o j + 1, that
corresponds to the ciphertext, C j + 1, from this plaintext-ciphertext pair. In the proposed public key cryptosystem, these
types of attacks are impossible because different keys are used to encrypt every new plaintext. Hence, it does not provide
any information about the next unknown plaintext-ciphertext pair. As a result, we have demonstrated that our proposed
cryptosystem is secure against known plaintext attack. As discussed earlier, brute force attack is also impossible.

(vii) Man in the middle attack: In [33], the man in the middle attack is beaten by two enrichments. We conceal the
subsemigroup B and discreetly select the matrix y from B and the matrix z from B, respectively, to enhance the security
of our proposed system. The location where y and z are selected from is not reflected here, making it challenging for the
foe to locate B. So, as previously described, it is a secure protocol.

Volume 5 Issue 2|2024| 2499 Contemporary Mathematics



4.2 The complexity analysis
The time taken to perform the DLPFP algorithm is evaluated in this subsection. The computational time to calculate

the shared key, i.e., the number of operations essential in bits, is determined as follows:
1. To multiply two matrices of rank n, O(n3) bit operations are required.
2. To calculate the matrix a raised to the power of i, it takes n3logr number of bit operations.
3. In order to determineC1 = aiy j, it is necessary to do n3logr+n3logr+n3 = 2n3logr+n3 bit operations.
4. To evaluate akC1zl , the number of bit operations needed is n3logr+2n3logr+n3 +n3logr+2n3 = 4n3logr+3n3.
5. To calculate the secret key, the total number of bit operations required is 2n3logr+n3+4n3logr+2n3 = 6n3logr+

3n3. 6n3logr+3n3 is proportionally equal to O(n3logr).
The time complexity to calculate the keyK in theDH process requiresO((log2r)3) bit operations where the elements

are taken from the commutative group F∗r . Here, the time complexity is O(n3logr) because the entries of the key are taken
from the semiring, and to evaluate the shared key, four matrices are to be multiplied. The semigroup Mn × n(Rs) has η
elements, and the matrices are simply raised to the powers of the Fr elements. So, the time complexity for an exhaustive
search is O(ηr). The protocol is strong enough to withstand attacks using eigenvalues and determinants [2] because it
employs the semigroup Mn × n(Rs).

The time complexity of the key exchange protocol based on DLPFP and FDLP [30] is compared in Figure 3. The
x-axis represents the order of the matrix (n). The y-axis represents the order of time complexity of the key exchange
protocol based on DLPFP (O(6n3logr + 3n3)) and FDLP (O(2n3logr + 3n3)). Here, r = 13. The red and blue curves
represent the time complexity of the key exchange protocol based on DLPFP and FDLP, respectively. As the order of
the matrix increases, the time complexity also increases. There is a minuscule difference in the slope of the curves, and it
is because of the coefficient present in the time complexity of both protocols. But the time complexity of both protocols
is proportional to O(n3logr).

The advantage of the proposed protocol is that the total operations needed to run the proposed program is the same
as the FDLP, and the security of the proposed key exchange protocol is more promising because of the inclusion of the
secret parameters i, j, y, z and the hidden commutative subsemigroup. Additionally, our protocol overcomes some attacks,
which makes it impossible to attack using the known methods.

Figure 3. Comparison between the time complexity of the Key exchange protocols based on DLPFP and FDLP
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5. ElGamal public key cryptosystem
This section introduces an ElGamal public key cryptosystem that is based on the suggested key exchange mechanism.

Also, a theorem is given stating that solving the DLP and this ElGamal cryptosystem are the same.
Let A = Mn × n(Rs) be a finite non-commutative semigroup under multiplication. Let B be a commutative

subsemigroup of A and F∗r = {1, 2, 3, . . . , r−1}, where r is a big positive integer. To encrypt and decrypt, the following
ElGamal cryptosystem is used. A flowchart for the proposed cryptosystem is given in Figure 4.

Figure 4. Flowchart for the proposed ElGamal cryptosystem

Setup Alice and Bob are the two classical entities taking part in the communication, and suppose a message is being
sent by Bob to Alice. First, Alice does the following to compute her public key: Alice chooses a ∈ A, such that aq = I,
where q is the order of a, and selects y ∈ B\CA(a) and i, j ∈ F∗r and calculates p = aiy j. Alice’s secret key is Sk = (i, j,
y), and her public key is Pk = (p, a).

Encryption Bob performs the following computations to encrypt the plaintext:
1. Bob chooses z ∈ B\CA(a) and k, l ∈ F∗r and keeps it secret. He computesC1 = akzl .
2. The original plaintext is given in the form of a matrix o ∈Mn × n(Rs).
3. C2 = ak pzlo is calculated by Bob, and the ciphertexts (C1,C2) are sent to Alice.
Note that the matrix o is chosen in such a way thatC2 is non-zero.
Decryption Alice decrypts the original plaintext message o by calculating

o = (aiC1y j)−1C2

since
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(aiC1y j)−1C2 = (aiakzly j)−1ak pzlo

= (ai+kzly j)−1ak pzlo

= (ak pzl)−1ak pzlo

= o.

The matrices a, y, and z are chosen in such a way that they are invertible. Therefore,C1 and aiC1y j are also invertible.
Hence, the original plaintext can be decrypted by using these invertible matrices.

Remark Clearly, to encrypt and decrypt, the matrix o need not be invertible.
In the case of healthcare systems, the encryption and decryption of SHI are as follows: The Pa gives the details, and

his or her profile is encrypted and uploaded in S by Ad . When the Pa gives the details, he/she also does the part of Alice
as given in Section 5. If the authorized users of PeD or the users of PuD request Pa’s SHI data, then they will do the part
of Alice. That is, the authorized users who want to decrypt the data do the work of Alice in Section 5, and Ad does the
work of Bob. Then, the Pa, or the authorized users, get to decrypt the SHI file.

Theorem 2 The Diffie-Hellman Problem (DHP) can be broken if the above mentioned ElGamal public key
cryptosystem can be cracked.

proof. We have to prove
(i) Solving the DHP is all that is required to crack the ElGamal public key cryptosystem.
(ii) To crack the DHP, it is enough to solve the ElGamal public key cryptosystem.
(i) Suppose, Eve is the attacker who can approach the DHP oracle, represented as DHPo.
Here, the values of p = aiy j andC1 = akzl are appealed to the DHPo by Eve. The oracle replies back with the value

K = ai+kzlyJ , that is,

DHPo(aiy j, akzl) = ai+kzlyJ .

Eve can decrypt and find the original plaintext message (o). The ElGamal cryptosystem can be broken, as the attacker
can calculate o = K−1C2 by computing K−1.

Therefore, it is sufficient to crack the DHP in order to crack the ElGamal cryptosystem.
(ii) In order to prove (ii), we assume that an attacker, Eve, who can access an ElGamal oracle exists. The oracle

reveals the value of o by taking the values of p,C1, andC2, where p = aiy j,C1 = akzl , andC2 = ak pzlo. Since

C2 = pC1o,

o =C2(pM1)
−1.

As, K = ai+kzlyJ = M2o−1.
The attacker computes K, as o is known [37].
Therefore, solving the DHP just requires breaking the ElGamal cryptosystem.
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5.1 A toy example

A toy example to illustrate our proposed public key cryptosystem is given in this subsection.
Let the semiring Rs = Z,

A = M4 × 4(Z) =




a b c d
e f g h
i j k l
m n o p

 : a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p ∈ Z

 ,

B =




q 0 0 0
0 r 0 0
0 0 s 0
0 0 0 t

 : q, r, s, t ∈ Z

 and F∗59 = {1, 2, ..., 58}.

Setup
1. Alice chooses

a =


5 7 2 4
3 1 1 1
1 2 1 1
1 1 1 4

 ∈ A, y =


2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 ∈ B\CA(a),

and i = 5, and j = 4 ∈ F∗59.
2. Alice calculates

p = aiy j =


701,360 45,643 1,665,279 43,184
290,208 18,833 688,095 17,812
173,648 11,306 412,290 10,691
208,000 13,533 498,474 13,073

 .

Encryption
1. Bob chooses

z =


5 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 ∈ B\CA(a), k = 2,

and l = 3 ∈ F∗59.
2. Bob calculates
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C1 = akzl =


6,500 50 621 45
2,500 25 243 18
1,625 12 162 11
1,625 14 216 22

 .

3. Suppose, Bob wants to send the message “BANK DETAILS OF A”, he converts it into the matrix

o =


1 0 13 10
3 4 19 0
8 11 18 14
5 0 0 0

 ∈ A

by assigning the values 0 to 25 to the alphabets A to Z.
4. Bob calculatesC2 = ak pzlo.

C2 =


41,103,545,785 45,431,974,062 178,939,755,459 138,219,991,524
16,986,320,616 18,774,671,941 73,951,226,769 57,122,774,666
10,177,629,323 11,249,372,353 44,307,321,432 34,224,688,538
12,240,965,335 13,532,352,165 53,271,243,335 4,114,887,449

 .

5. Bob sends the ciphertext (C1, C2) to Alice.
Decryption
1. Alice retains the original message matrix o by calculating o = (aiC1y j)−1C2.

o =


8,041,878,000 4,184,109 4,128,657,966 3,970,346
3,323,654,000 1,729,033 1,706,159,619 1,640,513
1,991,258,000 1,036,054 1,022,293,467 983,085
2,393,222,000 1,245,195 1,229,761,035 1,183,894


−1

×C2

o =


1 0 13 10
3 4 19 0
8 11 18 14
5 0 0 0

 .

2. Alice converts the matrix o into the message.
If B \CA(a) were empty, it would mean every element in B commutes with a (i.e., B ⊆ CA(a)). If all elements in

B commute with a, then the chosen secret elements (y and z) also commute with a. This compromises the security of
the protocol. The adversary could potentially calculate the secret key (K) from the intercepted messages (C1 and C2) by
exploiting commutativity.

Consider B as the set of all diagonal matrices. Due to matrix multiplication principles, the elements of B do not
commute with matrices in A that contain non-zero off-diagonal elements. Therefore, B\CA(a) is nonempty.

Let
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A = M4 × 4(Z) =




a b c d
e f g h
i j k l
m n o p

 : a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p ∈ Z

 ,

and

B =




q 0 0 0
0 r 0 0
0 0 s 0
0 0 0 t

 : q, r, s, t ∈ Z

 .

The centralizer of a (CA(a)) consists of all elements in A that commute with a (i.e., a
′
a = aa

′ for all a
′ in CA(a)).

Since elements in B have a zero in the bottom left corner, they cannot commute with a. Let

a =


5 7 2 4
3 1 1 1
1 2 1 1
1 1 1 4

 ∈ A, y =


2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 ∈ B\CA(a)

where ay ̸= ya. We can find other such matrices like


5 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 ,


6 0 0 0
0 7 0 0
0 0 3 0
0 0 0 1

 ,

and so on from B\CA(a). This ensures that B\CA(a) is non-empty.

6. Conclusion
In this paper, a key exchange protocol based on DLPFP under matrix multiplication is proposed. Additionally,

the protocol’s complexity and security are examined. Then, based on DLPFP, we have also suggested an ElGamal
cryptosystem for SHI in healthcare systems with improved security.

Acknowledgment
The authors are thankful to the reviewers and editorial members for their valuable suggestions and constructive

comments.

Volume 5 Issue 2|2024| 2505 Contemporary Mathematics



Conflict of interest
The authors declare that there is no conflict of interest.

References
[1] Aljamaly KT, Ajeena RK. The KR-elliptic curve public key cryptosystem. Journal of Physics: Conference Series.

2021; 1879(3): 032046. Available from: https://dx.doi.org/10.1088/1742-6596/1879/3/032046.
[2] Eftekhari M. A Diffie-Hellman key exchange protocol using matrices over noncommutative rings. Groups

Complexity Cryptology. 2012; 4(1): 167-176. Available from: https://doi.org/10.1515/gcc-2012-0001.
[3] Kumar S, Kumar S, Mittal G, Dharminder D, Narain S. Non-singular transformation based encryption scheme.

International Journal of Mathematical Sciences and Computing. 2021; 7(3): 32-40. Available from: https://doi.org/
10.5815/ijmsc.2021.03.04.

[4] Kryvyi SL, Opanasenko VN, Grinenko EA, Nortman YA. Symmetric information exchange system based on ring
isomorphism. Cybernetics and Systems Analysis. 2022; 58(5): 671-682. Available from: https://doi.org/10.1007/
s10559-022-00500-y.

[5] Gupta SC, Sanghi M. On an efficient RSA public key encryption scheme. Malaya Journal of Matematik. 2020; 8(3):
1138-1141. Available from: https://doi.org/10.26637/MJM0803/0069.

[6] Jalaja V, Anjaneyulu GS, Mohan LN. New digital signature scheme on non-commutative rings using double
conjugacy. Journal of Integrated Science and Technology. 2023; 11(2): 471.

[7] Nivetha S, Chandramouleeswaran M. Semiring actions for multiple key sharing in public key cryptography.
Advances in Mathematics: Scientific Journal. 2020; 9(3): 1271-1279. Available from: https://doi.org/10.37418/
amsj.9.3.71.

[8] Muanalifah A, Sergeev S. Modifying the tropical version of stickel’s key exchange protocol. Applications of
Mathematics. 2020; 65(6): 727-753. Available from: https://doi.org/10.21136/AM.2020.0325-19.

[9] Pan J, Qian C, Ringerud M. Signed (group) diffie-hellman key exchange with tight security. Journal of Cryptology.
2022; 35(4): 26. Available from: https://doi.org/10.1007/s00145-022-09438-y.

[10] Roman’kovV. An improvement of the Diffie-Hellman noncommutative protocol. Designs, Codes and Cryptography.
2022; 90(1): 139-153. Available from: https://doi.org/10.1007/s10623-021-00969-2.

[11] Kanagala P. An improvement of the Diffie-Hellman noncommutative protocol. Optik. 2023; 272: 170252. Available
from: https://doi.org/10.1016/j.ijleo.2022.170252.

[12] KoundinyaAK,GauthamSK. Two-layer encryption based on paillier and elgamal cryptosystem for privacy violation.
International Journal of Wireless and Microwave Technologies. 2021; 11(3): 9-15. Available from: https://doi.org/
10.5815/ijwmt.2021.03.02.

[13] Kim SR, Kyung R. Study on modified public key cryptosystem based on elgamal and cramer-shoup cryptosystems.
In 2023 IEEE 13th Annual Computing and Communication Workshop and Conference. Las Vegas, NV, USA: IEEE;
2023. p.280-284. Available from: https://doi.org/10.1109/CCWC57344.2023.10099297.

[14] Omran EH, Al-Janabi RJ. Modified elgamal algorithm using three paring functions. In Next Generation of Internet
of Things: Proceedings of ICNGIoT. Singapore: Springer Nature; 2022. p.405-413. Available from: https://doi.org/
10.1007/978-981-19-1412-6_35.

[15] Liu Z, Gong J, Ma Y, Niu Y,Wang B. Forward and backward secure updatable ElGamal encryption scheme for cloud
storage. Journal of Systems Architecture. 2023; 141: 102926. Available from: https://doi.org/10.1016/j.sysarc.2023.
102926.

[16] Annamalai C, Vijayakumaran C, Ponnusamy V, Kim H. Optimal ELGamal encryption with hybrid deep-learning-
based classification on secure internet of things environment. Sensors. 2023; 23(12): 5596. Available from: https:
//doi.org/10.3390/s23125596.

[17] Kanwal S, Inam S, Ali R, Cheikhrouhou O, Koubaa A. Lightweight noncommutative key exchange protocol for
IoT environments. Frontiers in Environmental Science. 2022; 10: 996296. Available from: https://doi.org/10.3389/
fenvs.2022.996296.

Contemporary Mathematics 2506 | Manimaran A, et al.

https://dx.doi.org/10.1088/1742-6596/1879/3/032046
https://doi.org/10.1515/gcc-2012-0001
https://doi.org/10.5815/ijmsc.2021.03.04
https://doi.org/10.5815/ijmsc.2021.03.04
https://doi.org/10.1007/s10559-022-00500-y
https://doi.org/10.1007/s10559-022-00500-y
https://doi.org/10.26637/MJM0803/0069
https://doi.org/10.37418/amsj.9.3.71
https://doi.org/10.37418/amsj.9.3.71
https://doi.org/10.21136/AM.2020.0325-19
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/s10623-021-00969-2
https://doi.org/10.1016/j.ijleo.2022.170252
https://doi.org/10.5815/ijwmt.2021.03.02
https://doi.org/10.5815/ijwmt.2021.03.02
https://doi.org/10.1109/CCWC57344.2023.10099297
https://doi.org/10.1007/978-981-19-1412-6_35
https://doi.org/10.1007/978-981-19-1412-6_35
https://doi.org/10.1016/j.sysarc.2023.102926
https://doi.org/10.1016/j.sysarc.2023.102926
https://doi.org/10.3390/s23125596
https://doi.org/10.3390/s23125596
https://doi.org/10.3389/fenvs.2022.996296
https://doi.org/10.3389/fenvs.2022.996296


[18] Seyhan K, Nguyen TN, Akleylek S, Cengiz K, Islam SH. Bi-GISIS KE: Modified key exchange protocol with
reusable keys for IoT security. Journal of Information Security and Applications. 2021; 58: 102788. Available from:
https://doi.org/10.1016/j.jisa.2021.102788.

[19] Mohit K, Hritu R, Nisha C, Sukhpal SG. Blockchain inspired secure and reliable data exchange architecture for
cyber-physical healthcare system 4.0. Internet of Things and Cyber-Physical Systems. 2023; 3: 309-322. Available
from: https://doi.org/10.1016/j.iotcps.2023.05.006.

[20] Pathak A. An approach for secure data exchange in medical field using block chain. Turkish Journal of Computer
and Mathematics Education. 2021; 12(7): 915-921.

[21] Al-Zubaidie M. Implication of lightweight and robust hash function to support key exchange in health sensor
networks. Symmetry. 2023; 15(1): 152. Available from: https://doi.org/10.3390/sym15010152.

[22] Prabhu AJ, Rajesh DH. Authentication ofWSN for securedmedical data transmission using diffie hellman algorithm.
Computer Systems Science and Engineering. 2023; 45(3): 2363-2376. Available from: https://doi.org/10.32604/csse.
2023.028089.

[23] Zhan Y, Xuan Z. Medical record encryption storage system based on internet of things. Wireless Communications
and Mobile Computing. 2021; 2021: 1-9. Available from: https://doi.org/10.1155/2021/2109267.

[24] Lu Y, Zhao D. A chaotic-map-based password-authenticated key exchange protocol for telecare medicine
information systems. Security and Communication Networks. 2021; 2021: 1-8. Available from: https://doi.org/
10.1155/2021/7568538.

[25] Lizama-Perez LA. Non-invertible key exchange protocol. SN Applied Sciences. 2020; 2(6): 1083. Available from:
https://doi.org/10.1007/s42452-020-2791-3.

[26] Micheli G. Cryptanalysis of a non-commutative key exchange protocol. Advances in Mathematics of
Communications. 2013; 9: 247-253. Available from: https://doi.org/10.48550/arXiv.1306.5326.

[27] Kahrobaei D, Koupparis C, Shpilrain V. Public key exchange using matrices over group rings. Groups-Complexity-
Cryptology. 2013; 5(1): 97-115. Available from: https://doi.org/10.1515/gcc-2013-0007.

[28] Inam S, Kanwal S, Ali R. A new encryption scheme based on groupring. Contemporary Mathematics. 2021; 2(2):
103-112. Available from: https://doi.org/10.37256/cm.222021611.

[29] Eftekhari M. Cryptanalysis of some protocols using matrices over group rings. In: Joye M, Nitaj A. (eds.) Progress
in Cryptology-AFRICACRYPT 2017. Cham: Springer International Publishing; 2017. p.223-229. Available from:
https://doi.org/10.1007/978-3-319-57339-7_13.

[30] Gupta I, Pandey A, Dubey MK. A key exchange protocol using matrices over group ring. Asian-European Journal
of Mathematics. 2019; 12(5): 1950075. Available from: https://doi.org/10.1142/S179355711950075X.

[31] Pandey A, Gupta I, Singh DK. On the security of DLCSP over GLn(Fq[Sr]). Applicable Algebra in
Engineering, Communication and Computing. 2023; 34(4): 619-628. Available from: https://doi.org/10.1007/
s00200-021-00523-6.

[32] SharmaK, Agrawal A, PandeyD, Khan R, Dinkar SK. RSA based encryption approach for preserving confidentiality
of big data. Journal of King SaudUniversity-Computer and Information Sciences. 2022; 34(5): 2088-2097. Available
from: https://doi.org/10.1016/j.jksuci.2019.10.006.

[33] Ezhilmaran D,Muthukumaran V. Key exchange protocol using decomposition problem in near-ring. Gazi University
Journal of Science. 2016; 29(1): 123-127.

[34] Chowdhury KR, Sultana A, Mitra NK, Khan AK. Some structural properties of semirings. Annals of Pure and
Applied Mathematics. 2014; 5(2): 158-167.

[35] Shpilrain V, Ushakov A. A new key exchange protocol based on the decomposition problem. Algebraic Methods in
Cryptography, Contemporary Mathematics. 2006; 418: 161-167. Available from: https://doi.org/10.48550/arXiv.
math/0512140.

[36] Shpilrain V. Cryptanalysis of Stickel’s key exchange scheme. In: Hirsch EA, Razborov AA, Semenov A, Slissenko
A. (eds.) Computer Science-Theory and Applications. Berlin, Heidelberg: Springer; 2008. p.283-288.

[37] Diffie W, Hellman ME. New directions in cryptography. In: Rebecca S. (ed.) Democratizing Cryptography: The
Work of Whitfield Diffie and Martin Hellman. New York, NY, United States: ACM; 2022. p.365-390. Available
from: https://doi.org/10.1145/3549993.3550007.

Volume 5 Issue 2|2024| 2507 Contemporary Mathematics

https://doi.org/10.1016/j.jisa.2021.102788
https://doi.org/10.1016/j.iotcps.2023.05.006
https://doi.org/10.3390/sym15010152
https://doi.org/10.32604/csse.2023.028089
https://doi.org/10.32604/csse.2023.028089
https://doi.org/10.1155/2021/2109267
https://doi.org/10.1155/2021/7568538
https://doi.org/10.1155/2021/7568538
https://doi.org/10.1007/s42452-020-2791-3
https://doi.org/10.48550/arXiv.1306.5326
https://doi.org/10.1515/gcc-2013-0007
https://doi.org/10.37256/cm.222021611
https://doi.org/10.1007/978-3-319-57339-7_13
https://doi.org/10.1142/S179355711950075X
https://doi.org/10.1007/s00200-021-00523-6
https://doi.org/10.1007/s00200-021-00523-6
https://doi.org/10.1016/j.jksuci.2019.10.006
https://doi.org/10.48550/arXiv.math/0512140
https://doi.org/10.48550/arXiv.math/0512140
https://doi.org/10.1145/3549993.3550007

	Introduction
	Preliminaries
	Basic definitions
	System model
	Structure and flow of the proposed protocol
	Security goals

	A key exchange protocol based on DLPFP
	The security analysis and complexity analysis
	The security analysis
	The complexity analysis

	ElGamal public key cryptosystem
	A toy example

	Conclusion

