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1. Introduction and preliminary
There were many generalizations of convexity, most of them are meaningful and useful. However, this paper

has a different approach-generalizes the definition of affine functions and finds out that the affineness and generalized
affinenesses are also interesting, meaningful, and useful. The author is the first one to generalize the affineness.

Let Y be a topological vector space. A subset Y+of Y is called a cone if λy ∈Y+ for all y ∈Y+ and λ ≥ 0. We denote
by 0Y the zero element in the topological vector space Y and simply by 0 if there is no confusion. A convex cone is one
for which λ1y1 +λ2y2 ∈ Y+ for ∀y1, y2 ∈ Y+ and ∀λ1, λ2 ≥ 0. A pointed cone is one for which Y+∩ (−Y+) = {0}.

A functional on the vector space Y is a real-valued function on Y . The set Y ∗ of all continuous linear functionals on
Y is called the topological dual of Y . The dual cone Y ∗

+ of Y+ is defined as

Y ∗
+ = {ξ ∈ Y ∗: ξ (y)≥ 0, ∀y ∈ Y+} .

Let Y be a topological vector space with pointed convex cone Y+. We denote the partial order induced by Y+ as
follows:
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y1 ≻ y2 iff y1 − y2 ∈ Y+, or, y1 ≺ y2 iff y1 − y2 ∈ −Y+;

y1 ≻ y2 iff y1 − y2 ∈ intY+, or y1 ≺≺ y2 iff y1 − y2 ∈ − intY+,

where int Y+denotes the topological interior of the set Y+.
It is known that, a function f : X → Y is called linear on D ⊆ X if

f (αx1 +βx2) = α f (x1)+β f (x2) ,

whenever x1, x2 ∈ D ⊆ X , α, β ∈ R;
A function f : X → Y is said to be affine on D ⊆ X if

f (αx1 +(1−α)x2) = α f (x1)+(1−α) f (x2)

whenever x1, x2 ∈ D ⊆ X , α ∈ R; and A function f is said to be Y+-convex on D ⊆ X if

α f (x1)+(1−α) f (x2)≺ f (αx1 +(1−α)x2)

whenever x1, x2 ∈ D ⊆ X , α ∈ [0, 1], Y+ is a pointed convex cone of Y .
It is true that linearity⇒ affineness⇒ convexity. A function is linear if and only if it is in the form of f (x) = ax. A

function is an affine function if and only it is in the form of f (x) = ax+b (a translation of a linear function).
In the next section, we will introduce some definitions of generalized affine functions.

2. Definitions of generalized affine functions
We introduce the definitions of generalized affine functions as follows.
Our generalized affineness can be used for many discussions in mathematics or applied mathematics wherever the

affineness is a condition.
Definition 1 A function f : D ⊆ X → Y is said to be affinelike on D if ∀x1, x2 ∈ D, ∀α ∈ R, ∃x3 ∈ D such that

α f (x1)+(1−α) f (x2) = f (x3) .

Definition 2 A function f : D ⊆ X →Y is said to be preaffinelike on D if ∀x1, x2 ∈ D, ∀α ∈ R, ∃x3 ∈ D, ∃τ ∈ R\{0}
such that

α f (x1)+(1−α) f (x2) = τ f (x3) .

In the following Definitions 3 and 4, Y+ is a pointed convex cone of Y and τ ̸= 0 is a scalar.
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Definition 3 A function f : D ⊆ X → Y is said to be generalized Y+-affinelike on D if ∀x1, x2 ∈ D, ∀α ∈ R, ∃x3 ∈
D, ∃u ∈ Y+, such that

u+α f (x1)+(1−α) f (x2) = f (x3) .

Definition 4 A function f : D ⊆ X →Y is said to be generalized Y+-preaffinelike on D if ∀x1, x2 ∈ D, ∀α ∈ R, ∃x3 ∈
D, ∃u ∈ Y+, ∃τ ∈ R\{0} such that

u+α f (x1)+(1−α) f (x2) = τ f (x3) .

The following Example 1 shows that our definition of generalized Y+preaffineness is non-trivial. The generalized
Y+-preaffineness is the weakest definition of generalized affine functions introduced in this article.

Example 1 Given the function f (x, y) =
(
x2, y2

)
, x, y ∈ R, and assume that Y+ = {(x, −y): x, y ≥ 0}.

Take α = 5, (x1, y1) = (1, 0), (x2, y2) = (0, 1), then

α f (x1, y1)+(1−α) f (x2, y2) = (5, −4).

So, ∀u = (x, −y) ∈ Y+ one has

u+α f (x1, y1)+(1−α) f (x2, y2) = (x+5, −y−4),

where x+5 > 0, −y−4 < 0. Due to the fact that f (x3, y3) =
(
x2

3, y2
3
)
≻ 0, ∀(x3, y3) ∈ R2 one gets

u+α f (x1, y1)+(1−α) f (x2, y2) ̸= τ f (x3, y3) , ∀u ∈ Y+, ∀τ ̸= 0.

Therefore, f (x, y) =
(
x2, y2

)
, x, y ∈ Ris not a generalized Y+-preaffinelike function.

We are going to present some examples to prove the following diagram.

generalized preaffinelike

affine

not true

not true not true

not true

not true

not truenot true

true

true

true

true

true

affinelike preaffinelike

generalized affinelike

Example 2 “Affinelike” does not imply “affine”.
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Given the function f (x) = tanx, x ∈ R.
Since an affine function is in the form of f (x) = ax+b, therefore f (x) = tanx, x ∈ R is not affine.
However, f is alffinelike. ∀x1, x2 ∈ R, ∀α ∈ R, taking

x3 = tan−1 [α tanx1 +(1−α) tanx2] ,

then α f (x1)+(1−α) f (x2) = f (x3).
Example 3 “Preaffinelike” does not imply “affinelike”.
Given the function f (x) =

√
x, x ∈ R+ = [0, +∞).

Take x1 = 0, x2 = 1, α = 2, then α f (x1)+(1−α) f (x2) =−1; but

∀x3 ∈ [0, +∞), f (x3) =
√

x3 ≥ 0.

Therefore α f (x1)+(1−α) f (x2) ̸= f (x3) , ∀x3 ∈ R. So f is not affinelike.
But f is an preaffinelike function. For ∀x1, x2 ∈ R+, ∀α ∈ R, taking τ = 1 if α f (x1)+(1−α) f (x2)≥ 0, τ =−1 if

α f (x1)+(1−α) f (x2)< 0, then

α f (x1)+(1−α) f (x2) = τ f (x3) ,

where x3 = [α f (x1)+(1−α) f (x2)]
2.

Example 4 “Generalized affinelike” does not imply “affinelike”.
Consider the function f (x) = x3, x ∈ D = [0, 1], and the pointed convex cone Y+ = R+. ∀x1, x2 ∈ D = [0, 1], ∀α ∈ R,

take u ∈ Y+such that 0 ≤ u+α f (x1)+(1−α) f (x2)≤ 1, then

u+α f (x1)+(1−α) f (x2) = f (x3) ,

where x3 = [u+α f (x1)+(1−α) f (x2)]
1/3. Therefore f (x) = x3, x ∈ [0, 1] is generalized Y+-affinelike on D = [0, 1].

f (x) = x3, x ∈ [0, 1] is not affinelike on D = [0, 1]. Actually, for α =−1 ∈ R, x1 = 1 ∈ D, x2 = 0 ∈ D = [0, 1], one
has α f (x1)+(1−α) f (x2) =−1, but

f (x3) = x3
3 ̸=−1, ∀x ∈ [0, 1],

hence

α f (x1)+(1−α) f (x2) ̸= f (x3) , ∀x3 ∈ D = [0, 1].

Example 5 “Generalized preaffinelike” does not imply “preaffinelike”.
Given f (x) = x2, x ∈ D = (0, +∞), and Y+ = R+.
∀x1, x2 ∈ D = (0, +∞), ∀α ∈ R, we may take u ∈ Y+large enough such that u+α f (x1)+ (1−α) f (x2) > 0, and

take τ = 1, then
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u+α f (x1)+(1−α) f (x2) = τ f (x3) ,

where x3 = [u+α f (x1)+(1−α) f (x2)]
1/2. Therefore f (x) = x2, x ∈ D = [0, +∞), is generalized Y+-preaffinelike.

However, for α =−1 ∈ R, x1 = 1 ∈ D, x2 =
√

1/2 one has

α f (x1)+(1−α) f (x2) = 0,

but f (x3) = x2
3 ̸= 0, ∀x ∈ (0, +∞). Hence

α f (x1)+(1−α) f (x2) ̸= τ f (x3) , ∀x3 ∈ (0, +∞), ∀τ ̸= 0.

This shows that the function f is not preaffinelike.
Example 6 “Generalized preaffinelike” does not imply “generalized affinelike”.
Given f (x, y) =

(
x2, y6

)
, x, y ∈ R, and Y+ = {(x, y): x ≤ 0, y ≤ 0, x, y ∈ R}

Let α = 2, (x1, y1) = (0, 0), (x2, y2) = (1, 1), then

α f (x1, y1)+(1−α) f (x2, y2) = (−1, −1).

Therefore, ∀u = (x, y) ∈ Y+ one has

u+α f (x1, y1)+(1−α) f (x2, y2) = (x−1, y−1) ̸= f (x3, y3) =
(

x2
3, y6

3

)
,

since (x−1, y−1)≺ (−1, −1)≺≺ 0. And so, f (x, y) =
(
x2, y6

)
, x, y ∈ R is not generalized Y+-affinelike.

However, f (x, y) =
(
x2, y6

)
, x, y ∈ R is generalized Y+-preaffinelike.

∀x1, x2 ∈ [0, 1], ∀α ∈ R, we may choose u = (x, y) ∈ Y+such that

x+αx2
1 +(1−α)x2

2 < 0, y+αy6
1 +(1−α)y6

2 < 0.

Let τ =−1, then

u+α f (x1, y1)+(1−α) f (x2, y2)

=
(

x+αx2
1 +(1−α)x2

2, y+αy6
1 +(1−α)y6

2

)

=τ
(

x2
3, y6

3

)

Contemporary Mathematics 2994 | Renying Zeng



i.e.,

u+α f (x1, y1)+(1−α) f (x2, y2) = τ f (x3, y3) ,

where

x3 =
∣∣x+αx2

1 +(1−α)x2
2
∣∣1/2

, y3 =
∣∣∣y+αy6

1 +(1−α)y6
2

∣∣∣1/6
.

Example 7 “Preaffinelike” does not imply “generalized affinelike”.
Given the function f (x, y, z) =

(
x2, −x2, x2

)
, x, y, z ∈ R, and

Y+ = {(x, y, z): x ≤ 0, y ≥ 0, z ≤ 0, x, y, z ∈ R}.

Let(x1, y1, z1) = (1, 1, 1), (x2, y2, z2) = (0, 1, 1), α =−2, then

α f (x1, y1, z1)+(1−α) f (x2, y2, z2)

=
(
αx2

1 +(1−α)x2
2, −

(
αx2

2 +(1−α)x2
2
)
, αx2

1 +(1−α)x2
2
)
.

=(−2, 2, −2).

So, ∀u = (x, y, z) ∈ Y+, one has

u+α f (x1, y1, z1)+(1−α) f (x2, y2, z2) = (x−2, y+2, z−2) ̸=
(
x2

3, −x2
3, x2

3
)
,

since x−2 < 0, y+2 > 0, z−2 < 0 but x2
3 ≥ 0, −y2

3 ≤ 0, z2
3 ≥ 0.

Consequently, f (x, y, z) =
(
x2, −x2, x2

)
, x, y, z ∈ R is not generalized Y+-affinelike.

On the other hand, ∀x1, x2 ∈ R, ∀α ∈ R, let τ = 1 if αx2
1 +(1−α)x2

2 ≥ 0; or τ =−1 if αx2
1 +(1−α)x2

2 < 0, then

α f (x1, y1, z1)+(1−α) f (x2, y2, z2)

=
(
αx2

1 +(1−α)x2
2, −

(
αx2

1 +(1−α)x2
2
)
, αx2

1 +(1−α)x2
2
)

=τ
(
x2

3, −x2
3, x2

3
)

=τ f (x3, y3, z3)

where x3 =
∣∣αx2

1 +(1−α)x2
2

∣∣1/2.
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Therefore, f (x, y, z) =
(
x2, −x2, x2

)
, x, y, z ∈ R is preaffinelike.

Example 8 “Generalized affinelike” does not imply “preaffinelike”.
Given the function f (x, y) =

(
x2, y2

)
, x, y ∈ R, and

Y+ = {(x, y): x ≥ 0, y ≥ 0, x, y ∈ R} |

Let (x1, y1) = (1, 1), (x2, y2) = (0, 1), α =−1, then

α f (x1, y1)+(1−α) f (x2, y2) =
(
αx2

1 +(1−α)x2
2, αy2

1 +(1−α)y2
2
)
= (−1, 1)

̸=τ f (x3, y3) = τ
(
x2

3, y2
3
)
,

since either τx2
3 and τy2

3 are both negative or both non-negative, ∀τ ̸= 0.
Therefore, f (x, y) =

(
x2, y2

)
is not preaffinelike.

However, f (x, y) =
(
x2, y2

)
, x, y ∈ R is generalized Y+-affinelike.

In fact, ∀x1, x2 ∈ R, ∀α ∈ R, we may choose u = (x, y) ∈ Y+such that

u+α f (x1, y1)+(1−α) f (x2, y2) =
(
x+αx2

1 +(1−α)x2
2, y+αy2

1 +(1−α)y2
2
)
≻ 0.

Then,

u+α f (x1, y1)+(1−α) f (x2, y2) = f (x3, y3) ,

where x3 =
(
x+αx2

1 +(1−α)x2
2
)1/2 and y3 =

(
y+αy2

1 +(1−α)y2
2
))1/2.

3. Theorem of alternative and scalarization
This section proves a theorem of alternative and a scalarization theorem in vector optimization, which are examples

of the applications of our generalized affinenesses.
Our generalized affinenesses can be used for not only scalarizations but also many other aspects of optimization. Our

generalized affineness can be used for many other discussions in mathematics or applied mathematics wherever affineness
is a condition.

Consider the following vector optimization problem:

(VP)

Y+−min f (x)
gi(x)≺ 0, i = 1, 2, · · · , m;
h j(x) = 0, j = 1, 2, · · · , n;
x ∈ D,

where f : X → Y, gi: X → Zi, and h j: X → Wj, Y+, Zi+ are closed convex cones in Y and Zi, respectively, and D is a
nonempty subset of X .

Contemporary Mathematics 2996 | Renying Zeng



Definition 5 A function f : D ⊆ X → Y is said to be generalized Y+-preconvexlike on D if ∀u ∈ intY+, ∀x1, x2 ∈
D, ∀α ∈ R, ∃x3 ∈ D, ∃τ > 0 such that

u+α f (x1)+(1−α) f (x2)≺ τ f (x3) .

In this section, we assume that f , gi are generalized preconvexlike, h j are preaffinelike (this article introduces the
assumption of preaffinelikeness for the equality constraints h j of an optimization problem), i.e., the following condition
(A) is satisfied.

(A) ∀u0 ∈ intY+, ∀ui ∈ intZi+, ∀x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x′, x′′, x′′′ ∈ D, ∃τi > 0(i = 0, 1, 2, · · · , m), ∃t j ̸= 0( j =
1, 2, · · · , n) such that

u0 +α f (x1)+(1−α) f (x2)≺ τ0 f
(
x′
)

ui +αgi (x1)+(1−α)gi (x2)≺ τigi
(
x′′
)

αh j (x1)+(1−α)h j (x2) = t jh j
(
x′′
)
,

where τi, t j are real scalars.
(B) int h j(D) ̸=∅, ( j = 1, 2, . . . , n);
Let F be the feasible set of (VP), i.e.,

F : =
{

x ∈ D: gi(x)≺ 0, i = 1, 2, · · · , m; h j(x) = 0, j = 1, 2, · · · , n
}
.

Theorem 1 (Theorem of Alternative) Let (i) and (ii) denote the systems
(i) ∃x ∈ D, s.t., f (x)≺≺ 0, gi(x)≺ 0, (i = 1, 2, · · · , m); h j(x) = 0, ( j = 1, 2, · · · , n);
(ii) ∃(ξ , η , ζ ) ∈

(
Y ∗
+×Z∗

+×W ∗)\{(0Y , 0Z , 0W )} such that

ξ ( f (x))+η(g(x))+ ς(h(x))≥ 0, ∀x ∈ D.

If (i) has no solutions then (ii) has a solution.
If (ii) has a solution (ξ , η , ς) with ξ ̸= 0Y then (i) has no solutions.
Proof. It is easy to prove that

B =

(⋃
t>0

(t f (D)+ intY+)×

(⋃
t>0

(tg(D)+ intZ+)×

(⋃
t ̸=0

th(D)

)
.

is a convex set. From the assumption (B), int B ̸=∅. We also have (0Y , 0Z , 0W ) /∈ B since (i) has no solution. Therefore,
according to the separation theorem of convex sets of topological linear space, there exists a nonzero vector (ξ , η , ς) ∈
Y ∗×Z∗×W ∗ such that
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ξ
(
τ0 f (x)+ y0)+ηi

(
τigi(x)+ z0

i
)
+ ς j (t jh j(x))≥ 0,

for ∀x ∈ D, ∀y0 ∈ intY+, ∀z0
i ∈ intZi+, ∀τi > 0(i = 0, 1, · · · , m), ∀t j ̸= 0( j = 1, 2, · · · , n)

Since intY+, intZi+ are convex cones, one gets

ξ
(
τ0 f (x)+λ0y0)+ηi

(
τigi(x)+λiz0

i
)
+ ς j (t jh j(x))≥ 0,

for ∀x ∈ D, ∀y0 ∈ intY+, ∀z0
i ∈ intZi+, ∀λi > 0(i = 0, 1, · · · , m), ∀t j ̸= 0( j = 1, 2, · · · , n).

Let τ0 = 1, τi → 0(i = 1, 2, · · · , m), λi → 0(i = 1, 2, · · · , m), t j → 0( j = 1, 2, · · · , n) one has

ξ
(
y0)≥ 0, ∀y0 ∈ intY+.

Therefore ξ (y)≥ 0, ∀y ∈ Y+. Hence ξ ∈ Y ∗
+. Similarly, ηi ∈ Z∗

i+. And one has

ξ ( f (x))+η(g(x))+ ς(h(x))≥ 0, x ∈ D,

which means that (ii) has solutions.
On the other hand, suppose that (ii) has a solution (ξ , η , ς) with ξ ̸= 0Y ∗

+
. If the system (ii) had a solution x ∈ D,

there would hold

f (x)≺≺ 0, gi(x)≺ 0, (i = 1, 2, · · · , m); h j(x) = 0, ( j = 1, 2, · · · , n),

since (B) states that int B ̸=∅. We complete the proof. □
Definition 6 x̄ ∈ D is said to be a weakly efficient solution of (VP) if there is no x ∈ D such that f (x̄)≻≻ f (x).
Definition 7 The problem (VP) is said to satisfy the Slater constraint qualification (SC) if ∀(η , ς)∈

(
Z∗
+×W ∗)\{O},

∃x ∈ D such that η(g(x))< 0 and ς(h(x))< 0.
Consider the scalar optimization problem

(VPS) min
x∈D

ξ ( f (x)).

Definition 8 x̄ ∈ D is said to be an optimal solution of the scalar optimization problem (VPS) if ξ ( f (x)) ≺
ξ ( f (x̄)), ∀x ∈ D.

Theorem 2 (Scalarization Theorem) Suppose x̄ ∈ D, and
(a) f , gi, h j satisfy Condition (A) in Theorem 1;
(b) (VP) satisfies the Slater constraint qualification (SC), then x̄ is a weakly efficient solution of (VP) if and only if

∃ξ ∈ Y ∗
+\{O} such that x̄ is an optimal solution of the scalar optimization problem (VPS).

Proof. Let ∃ξ ∈ Y ∗
+\{O}. If x̄ ∈ D is an optimal solution of the scalar optimization problem (VPS), then ξ ( f (x))≺

ξ ( f (x̄)), ∀x ∈ D. So, there is no x ∈ D such that
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f (x̄)≺≺ f (x).

Therefore x̄ is a weakly efficient solution of (VP).
On the other hand, suppose that x̄ is a weakly efficient solution of (VP).
From Theorem 1 ∃x̄ ∈ D such that the following system

f (x)≺≺ f (x̄), g(x)≺ 0, h(x) = 0

has no solutions for x ∈ D. Hence, ∃ξ ∈ Y ∗
+, η ∈ Z∗

+, ς ∈W ∗ with (ξ , η , ς) ̸= O such that

ξ ( f (x)− f (x̄))+η(g(x))+ ς(h(x))≥ 0, ∀x ∈ D.

i.e.,

ξ ( f (x))+η(g(x))+ ς(h(x))≥ ξ (x̄), ∀x ∈ D.

If ξ = O, then (ξ , η) ̸= O, and so

η(g(x))+ ς(h(x))≥ 0, ∀x ∈ D.

This is contradicting to the Slater constraint qualification (SC). Therefore ξ ̸= O. Therefore, from g(x)≺ 0, h(x) = 0
one has

ξ ( f (x))≥ ξ ( f (x̄)), ∀x ∈ D.

Which means x̄ is an optimal solution of (VPS). □

4. Conclusion
A function f : X → Y is called affine on D ⊆ X if

f (αx1 +(1−α)x2) = α f (x1)+(1−α) f (x2) ,

whenever x1, x2 ∈ D ⊆ X , α ∈ R. For the convexity, the above equality will be replaced by an inequality.
Although there are many different generalizations of the convexity (some of them are interesting and useful), the

author is the first one to generalize the definition of affine functions. Our generalizations are not difficult but interesting,
meaningful, and useful.
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In this article, we introduce the following definitions of generalized affine functions: affinelikeness, preaffinelikeness,
generalized affinelikeness, and generalized preaffinelikeness. We demonstrate that definitions of affine, affinelike,
preaffinelike, subaffinelike, and presubaffinelike functions are all different from each other. We also showed that our
weakest affineness-the generalized preaffineness-is non-trivial.

The last section of the article, “Theorem of the alternative and scalarization”, is just an example that our generalized
affineness could be used for vector optimization problems. For the optimization problems discussed here, we required
that the equality constraints are preaffinelike, i.e., ∀x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x3 ∈ D, ∃t j ̸= 0( j = 1, 2, · · · , n) such that

αh j (x1)+(1−α)h j (x2) = t jh j (x3) .

We might actually assume that the equality constraints are generalized preaffinelike (the proof would be different).
Actually, our generalized affinenesses can be used for not only scalarizations but also many other aspects of optimization,
e.g., generalizing the results about Lagrange multiplier in Donato [1], the results about duality in Guu et al. [2], the results
about constraints qualification in Zhao [3].

Our Theorem 1 is a generalization or a modification of the theorems of alternatives in [4–10], and our Theorem 2 is
a generalization or a modification of the scalarization theorems in [11–14].

Remark 1 This paper introduced the definitions of various generalized affinelikeness by use of “pointed convex
cones”, while [15] used “linear sets” to define generalized affinelikeness, both for vector-valued functions. Moreover,
[16] defined generalized affine maps for set-valued situations by using of “affine cones”. We demonstrated that the
definitions of corresponding generalized affineness by using of different “auxiliary sets”have similar properties and
may have different applications.

Remark 2 Our generalized affinenessmay be used formany other discussions inmathematics or appliedmathematics
wherever affineness is a condition.

Specially, we may discuss generalized affine optimization problems for saddle points, Lagrangian multipliers, proper-
effective solutions, etc., our theorem of alternative and scalarization theorem in this article just two working examples.
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