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Abstract: In this article, first we introduce and study a Yosida Quasi-inverse variational inequality problem (in short,
YQIVI) in Hilbert space and then developed a new fractional differential dynamical system for the YQIVI. We prove the
existence and uniqueness of solution for the suggested dynamical system. Further, using the Lyapunov function we also
prove the asymptotic stability of the new dynamical system at the equilibrium point. Furthermore, using Rothe’s time
discretization method we investigate existence and uniqueness of solution of the proposed dynamical system. Finally, we
provide a numerical example to demonstrate the credibility and efficacy of the dynamical system in solving the YQIVI.
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1. Introduction
The variational inequality problem (see, [1]) is a very essential useful tool for addressing a variety of optimisation

problems, including ODE, PDEs, complementarity problems, systems of linear or non-linear equations. In 1988, Noor
[2] introduced Quasi variational inequality and in 2003, Noor [3] discussed the well-posedness of variational inequality.
Facchinei et al. [4] studied variational inequalities with complementarity problems in finite dimensional space. A variety
of generalizations have been made about it, for more details see [5–7]. Additionally, numerous analytical and numerical
methods have been developed to solve problems in variational inequality. In 2011, Censor et al. [8, 9] obtained the
solution of variational inequality by subgradient and extragradient method. The projection and contraction algorithm
for solving variational inequality problems is given by Dong et al. [10–12]. In 2019, Ahmad et al. [13] proved strong
convergence results of three-step iterative algorithm for generalized mixed ordered quasi-inclusion problem. See [14, 15]
for the hybrid steepest descent method, and references therein. The mixed quasi variational inequality problem is one of
the most significant generalization of variational inequality problem, and it is defined as:

LetM : H→H be a set-valuedmapping andF : H→H be a single-valuedmapping. The quasi variational inequality
problem (QVIP) is to find a point p∗ ∈ M (p∗) such that
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⟨F (p∗), w−p∗⟩+ϕ(w)−ϕ(p∗)≥ 0, ∀ w ∈ M (p∗), (1)

whereψ: H→R∪{+∞} is a proper convex lower semi-continuous functional. Clearly, in the above equation ifM (p∗) =
K and ϕ(p∗) = 0, ∀p∗ ∈ H, then MQVIP (1) will convert into the classical variational inequality problem studied by
Stampacchia [16].

The problem where to find p∗ ∈H such that

F (p∗) ∈ K and ⟨p∗, w−F (p∗)⟩ ≥ 0, ∀ w ∈H, (2)

is known as inverse variational inequality (IVI), where F : H→ H is a mapping and K ⊆ H is a closed convex subset
of H. Inverse variational inequalities are used frequently in transportation networks and economic equilibrium problems
[17, 18]. It is simple to see that, if the inverse of the mapping F exists, then IVI (2) can be transformed into classical
variational inequality problem.

Numerous applications of IVI problems can be found in science and engineering, see for details [19–21]. Several
problems with normative flow control that arise in the transport and telecommunications networks could be reduces to
IVI problems in addition to the economics problem of market equilibrium.

In 2016, Zou et al. [22] proved that the following projected equation in finite dimensional space represents IVI (2)
as its equivalent:

F (p∗) = PK (F (p∗)−α p∗), (3)

where α > 0 is a constant and PK : Rn → K is the projection mapping defined by

PK (p∗): = arg min
w∈K

∥p∗−w∥, p∗ ∈ Rn.

However, there are only a few numerical techniques available for solving IVI problems, see [23–25] and references
therein.

To address the IVI problem, Zou et al. [22] presented a single-layer recurrent neural network (4), which is defined
as:

ṗ = λ {PK (F (p)−αp)−F (p)} , (4)

where ṗ =
dp
dt

and λ > 0 is a fixed constant.
Due of their applications in numerous disciplines, some researchers have shown their interest in them. They also

characterised them in a variety of ways, see for example [17, 26, 27] and references therein.
It is important to note that the Yosida approximation notion allows monotone mappings on Hilbert spaces to be

regularised into single-valued, nonexpansive, Lipschitz continuous monotone mappings. Because of their importance in
convex analysis, partial differential equations, variable inclusions, etc., these operators have been extensively researched.
The Yosida approximation strategy serves as the foundation for yet another potential method of resolving elliptic boundary
value problems, which are multi-valued differential equations. For reference, using the Yosida approximation method,
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Petterson [28] demonstrated the existence of multi-valued stochastic differential equations with a maximal monotone
operator in 1995.

Motivated and influenced by the aforementionedwork, in this article, we consider the followingYosida Quasi-inverse
Variational Inequality Problem (YQIVIP) in Hilbert space. To find p∗ ∈ M (p∗) such that,

J(p∗) ∈ M (p∗), ⟨p∗, w− J(p∗)⟩+ϕ(w)−ϕ(J(p∗))≥ 0, ∀ w ∈ M (p∗), (5)

where J: H→H is Yosida operator which is defined in (9) and ϕ : H→R∪{+∞} is proper convex lower semi-continuous
functional.

If a convex closed valued set K (U)’s indicator function is ϕ(·) in H, that is,

ϕ(p) =

{
0, p ∈ K (p),

+∞, otherwise

and J(p) = F (p), then (5) is similar to find p∗ ∈ M (p∗) such that,
f (p∗) ∈ M (p∗), ⟨p∗, w− f (p∗)⟩ ≥ 0, ∀ w ∈ M (p∗) which is studied in [23]. Similarly, by suitable choices of

mappings involved in (5) one can obtain many existing problems in the literature.
Proposition 1 The element p ∈H is a solution of (5) if and only if p satisfies the following equation

J(p) = R∂Ψ[J(p)−αp]. (6)

Proof. Let p ∈H satisfies (6), then

J(p) = R∂Ψ[J(p)−ρp]

J(p) = [I +ρ∂ψ ]−1[J(p)−ρp]

J(p)+ρ∂ψ(J(p)) = J(p)−ρp

which implies that p ∈ ∂ψ(J(p)). That is,

⟨p∗, w− J(p∗)⟩+ϕ(w)−ϕ(J(p∗))≥ 0, ∀ w ∈ M (p∗),

hence, p ∈H is a solution of (5). □
Based on Proposition 1, we suggest the following fractional dynamical system for solving YQIVI defined in (5),

CDα p(t) = λ
{

R∂Ψ(p)[J(p)−αp]− J(p)
}
= Q(p(t)), (7)
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where CDα (0 < α < 1) is the α fractional order’s Caputo derivative, λ > 0 is a scaling factor and R∂Ψ is the resolvent
operator (8).

Our paper is structured as follows. In Section 2, we are presented several fundamental definitions and findings that
can be used in following sections. We prove the existence and uniqueness of a solution to YQIVI (5) in Section 3. In
Section 4, we look at the neural network’s overall stability, including global exponential and global asymptotic stability.
We discretize the system (7) in Section 5 and determine the neural network’s existence and uniqueness by using the Rothe’s
method. We give a numerical example to demonstrate the neural network’s efficiency in solving YQIVI (5). Finally, we
present our analysis’s conclusion in Section 6.

Remark 1 The dynamical system can be presented as single-layer recurrent neural network in Rn. Here, λ > 0 is a
scaling factor and R∂ψ can be apply by using piece-wise activation function. Neural Network’s Architecture of Dynamical
System (7) in Rn is given in Figure 1.
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Figure 1. Neural Network’s Architecture of Dynamical System (7) in Rn

2. Methods and materials
In this section, we present some fundamental definitions and lemmas that are utilized to prove the main results of

our article. For more details, we refer to see [29–31].
Notations: Throughout this article, the Hilbert space over the space of reals with the standard inner product ⟨·, ·⟩

and norm ∥.∥ is represented by the symbol H .
Definition 1 ([32]) Let ψ: H→R∪{+∞} be a proper convex lower semcontinuous functional and I: H→H be an

identity operator, then the proximal operator R∂ψ : H→H associated with ψ is defined as

R∂ψ(p) = [I +α∂ψ ]−1(p), ∀ p ∈H, (8)

where α > 0 is a constant.
Definition 2 ([32]) The Yosida approximation operator J: H→H of ψ associated with R∂ψ is defined by
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J(p) =
1
α
[I −R∂ψ ](p), ∀ p ∈H, (9)

here α > 0 is a constant.
Proposition 2 ([32]) The proximal operator R∂ψ associated with subdifferential of proper lower semicontinuous

functional ψ is θ -Lipschitz continuous, where θ > 0 is a constant.
Proposition 3 ([32]) The Yosida approximation operator J is 1+θ

α -Lipschitz continuous.
Definition 3 ([33]) The integral of p(t) of fractional order α > 0 is defined by

CD−α p(t): =
1

Γ(α)

∫ t

0
(t − s)α−1p(s)ds, t > 0, (10)

and the Caputo fractional derivative CDα p(t) is defined by

CDα p(t): =
1

Γ(n−α)

∫ t

0
(t − s)n−α−1p(n)(s)ds, t > 0, (11)

here Γ(α) represents the gamma function.
Proposition 4 (Gronwall’s inequality) ([33]) Let p̂ and ŵ be real-valued nonnegative continuous functions, for

t ≥ t0. Let a(t) = a0(|t − t0|), where a0 is a monotonically increasing function,

p̂(t)≤ a(t)+
∫ t

t0
p̂(s)ŵ(s)ds,

then

p̂(t)≤ a(t)e
∫ t
t0

ŵ(s)ds
.

Lemma 1 ([33]) If {pn}, {wn} and {zn} are nonnegative sequences and

pn ≤ wn + ∑
0≤k<n

zkpk for n ≥ 0,

then

pn ≤ wn + ∑
0≤k<n

wkzk( ∑
k< j<n

g j), for n ≥ 0.

3. Existence result
This main aim of this section is to derive some sufficient conditions for the solution of the system (7).
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Theorem 1 [23, 22] If there is a constant µ > 0 such that

∥R∂Ψ(p)(p)−R∂Ψ(w)(p)∥ ≤ µ∥p−w∥, (12)

then there exists a unique dynamical system (7)’s continuous solution , for each p ∈H, in whole interval [0, ∞).

Proof. Let p: [0, T ]→H, such that

Q(p) = λ
{

R∂Ψ(p)[J(p)−αp]− J(p)
}
. (13)

For any p, w ∈H, we have

∥Q(p)−Q(w)∥ ≤ λ∥R∂Ψ(p)[J(p)−αp]−R∂Ψ(w)[J(w)−αw]∥+λ∥J(p)− J(w)∥

≤ λ∥R∂Ψ(p)[J(p)−αp]−R∂Ψ(p)[J(w)−αw]∥

+λ∥R∂Ψ(p)[J(w)−αw]−R∂Ψ(w)[J(w)−αw]∥+λ∥J(p)− J(w)∥.

Since R∂Ψ(p) is θ−Lipschitz continuous and using (12), we have

∥Q(p)−Q(w)∥ ≤ λθ∥J(p)− J(w)∥+λθα∥p−w∥+λ µ∥p−w∥+λ∥J(p)− J(w)∥

= λ (1+θ)∥J(p)− J(w)∥+λ (θα +µ)∥p−w∥.

Using Lipschitz continuity of Yosida operator, we have

∥Q(p)−Q(w)∥ ≤ λ
[
(1+θ)2/λ +(θα +µ)

]
∥p−w∥.

⇐⇒ ∥Q(p)−Q(w)∥ ≤ K∥p−w∥, where K = λ
[
(1+θ)2/λ +(θα +µ)

]
.

This shows that, Q(p) is locally Lipschitz continuous in H. Now, we have

∥Q(p)||= ∥λ
{

R∂Ψ(p)[J(p)−αp]− J(p)
}
||

≤ λ
[
∥R∂Ψ[J(p)−αp]−R∂Ψ(p)[J(p)]∥+∥R∂Ψ(p)[J(p)]−R∂Ψ(0)[J(p)]∥

+∥R∂Ψ(0)[J(p)]−R∂Ψ(0)(0)∥+∥R∂Ψ(0)(0)∥+∥J(p)∥
]
.
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Using Lipschitz continuity of R∂Ψ and (12), we have

∥Q(p)∥ ≤ λ
[
θ∥J(p)−αp− J(p)∥+µ∥p∥+θ∥J(p)∥+∥R∂Ψ(0)(0)+∥J(p)∥

]
= λ [θα∥p∥+µ∥p∥+(1+θ)∥J(p)∥+∥R∂Ψ(0)(0)∥],

(14)

and

∥J(p)∥=
∥∥∥∥ 1

λ
(p−R∂Ψ(p)(p))

∥∥∥∥
≤ 1

λ
[∥p∥+∥R∂Ψ(p)(p)−R∂Ψ(p)(0)∥+∥R∂Ψ(p)(0)−R∂Ψ(0)(0)∥+∥R∂Ψ(0)(0)∥]

≤ 1
λ
[
∥p∥+θ∥p∥+µ∥p∥+∥R∂Ψ(0)(0)∥

]

=
1
λ
[
(1+θ +µ)∥p∥+∥R∂Ψ(0)(0)∥

]
.

(15)

Using (15) in (14), we have

∥Q(p)∥ ≤ λ [θα∥p∥+µ∥p∥+ (1+θ)
λ

[
(1+θ +µ)∥p∥+∥R∂Ψ(0)(0)∥

]
+∥R∂Ψ(0)(0)∥],

that is,

∥Q(p)∥ ≤ λ (θα +µ)∥p∥+(1+θ)(1+θ +µ)∥p∥+(θ +2)∥R∂Ψ(0)(0)∥,

∥Q(p)∥ ≤ M∥p∥+(θ +2)∥R∂Ψ(0)(0)∥,
(16)

where M = λ (θα +µ)+(1+θ)(1+θ +µ).
The dynamical system is

CDα p(t) = λ {R∂Ψ[J(p)−αp]− J(p)}= Q(p),

which implies that,

p(t) = p0 +
1

Γ(α)

t∫
0

(t − s)α−1Q(p(s))ds.
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Taking norm on both sides, we have

∥p(t)∥ ≤ ∥p0∥+
1

Γ(α)

t∫
0

(t − s)α−1∥Q(p(s))∥ds.

Using (16), the above inequality reduce to

∥p(t)∥ ≤ ∥p0∥+
1

Γ(α)

t∫
0

(t − s)α−1[M∥p(s)∥+(θ +2)∥R∂Ψ(0)(0)∥]ds

≤ ∥p0∥+
(θ +2)∥R∂Ψ(0)(0)∥

Γ(α)

tα

α
+

M
Γ(α)

t∫
0

(t − s)α−1∥p(s)∥ds.

Let h(t) = ∥p0∥+
(θ+2)∥R∂Ψ(0)(0)∥

αΓ(α) tα and β = M
Γ(α) , then above inequality reduce to

∥p(t)∥ ≤ h(t)+β
t∫

0

(t − s)α−1∥p(s)∥ds.

By Gronwall’s inequality, we have

∥p(t)∥ ≤ h(t)e(β t).

Therefore, it is clearly indicate that, p(t) is bounded on any bounded interval [0, T ]. By the functional differential
equations’s continuation theorem a single continuous solution p(t) exists over the entire range [0, ∞). □

4. Stability result
In this section we are presented the global asymptotic stability of the dynamical system (7).
Theorem 2 [22, 23] Let M: H→ 2H be a multi-valued mapping with non-empty, convex and closed values, and let

J: H→H be a Yosida approximation operator. Assume that

Θ = [−β +(θ +µ)(1+θ)]λ ≤ 0. (17)

Then, the dynamical system (7) is asymptotically stable.
Proof. Let p∗ be the unique solution of YQIVI (5). Now at the equilibrium point p∗ we will demonstrate that the

system’s trajectories is globally asymptotically stable. For this, consider the Lyapunov function,

L(p) = ∥p−p∗∥2.

Contemporary Mathematics 4168 | Faizan Ahmad Khan, et al.



Then, by using (7), we obtain

CDα L(p)≤2⟨p−p∗, CDα p(t)⟩

=2⟨p−p∗, λ{R∂Ψ(p)[J(p)−αp]− J(p)}⟩

=2⟨p−p∗, λ{R∂Ψ(p)[J(p)−αp]− J(p)}−λ{R∂Ψ[J(p
∗)−αp∗]− J(p∗)}⟩

=−2λ ⟨p−p∗, J(p)− J(p∗)⟩+2λ ⟨p−p∗, R∂Ψ(p)[J(p)−αp]−R∂Ψ(p∗)[J(p
∗)−αp∗]⟩

=−2λ ⟨p−p∗, J(p)− J(p∗)⟩+2λ ⟨p−p∗, R∂Ψ(p)[J(p)−αp]−R∂Ψ(p)[J(p
∗)−αp∗]⟩

+2λ ⟨p−p∗, R∂Ψ(p)[J(p
∗)−αp∗]−R∂Ψ(p∗)[J(p

∗)−αp∗]⟩.

Using Caucy-Schwarz inequality and β -strongly monotonicity of Yosida approximation operator, we have

CDα L(p)≤−2λβ∥p−p∗∥2 +2λ∥p−p∗∥ ∥R∂Ψ(p)[J(p)−αp]−R∂Ψ(p)[J(p
∗)−αp∗]∥

+2λ∥p−p∗∥ ∥R∂Ψ(p)[J(p
∗)−αp∗]−R∂Ψ(p∗)[J(p

∗)−αp∗]∥.

Since R∂Ψ is θ−Lipschitz continuous, we have

CDα L(p)≤−2λβ∥p−p∗∥2 +2λθ∥p−p∗∥ [∥J(p)− J(p∗)∥+α∥p−p∗∥]+2λ µ∥p−p∗∥2

≤−2λβ∥p−p∗∥2 +2λθ(1+θ)∥p−p∗∥2 +2λθα∥p−p∗∥2 +2λ µ∥p−p∗∥2

=−2λ {−β +θ(1+θ)+θα +µ}∥p−p∗∥2.

(18)

Let Θ = λ {−β +θ(1+θ)+θα +µ} . Then, we obtain

CDα L(p)≤ 2ΘL(p). (19)

Taking Laplace transform of (19), we have

Volume 5 Issue 4|2024| 4169 Contemporary Mathematics



sα L(p(s))− sα−1L(p(0))≤ 2ΘL(p(s))

(sα −2Θ)L(p(s))≤ sα−1L(p0)

=⇒ L(p(s))≤
(

sα−1

sα −2Θ

)
L(p0).

Taking inverse Laplace transform, we have

L(p(t))≤ L(p0)Eα, 1(2Θtα)

⇐⇒∥p−p∗∥ ≤ ∥p−p0∥Eα, 1(2Θtα).

By (17), Θ < 0. Clearly, letting t → ∞, we get ∥p−p∗∥→ 0. This implies that, the considered dynamical system (7)
at the equilibrium point p∗ is asymptotically stable. □

5. The system’s discretization
Here, we examine the discretization approach to solve the dynamical system (7) and prove its convergence under

certain conditions.
We divide the range [0, T ] into n sub-intervals of length hn =

T
n
to use Rothe’s method of time discretization. For

j = 1, 2, · · · , n, we denote tn
j = jhn. At t = tn

j basically, we approximate the Caputo derivative as,

CDα p(tn
j )≈

1
Γ(2−α)

j

∑
i=1

b j−i
pn

i −pn
i−1

hn
h1−α

n

=
j

∑
i=1

(pn
i −pn

i−1)a
j, n
i ,

(20)

where bk = (k+1)1−α −k1−α and a j, n
i = b j−i

h−α
n

Γ(2−α)
.At t = tn

j , we replace equation (7) by the following approximation

scheme:

1
Γ(2−α)

j

∑
i=1

b j−i

(
pn

i −pn
i−1

hα
n

)
= λ

{
R∂Ψ(pn

j )
[J(pn

j)−αpn
j ]− J(pn

j)
}
= Q(pn

j). (21)

Lemma 2 If all the mappings and conditions are same as in the Theorem 2 and additionally if the following condition
holds

M = 1−{λ (θα +µ)+(1+θ)(1+θ +µ)}> 0,
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then there exists a constant δ1 > 0 such that,

∥pn
j∥< δ1, j = 0, 1, 2, · · · .

Proof. For j = 1, equation (21) reduces to

1
Γ(2−α)

pn
1 −pn

0
hα

n
= λ

{
R∂Ψ(pn

1)
[J(pn

1)−αpn
1]− J(pn

1)
}
.

Since pn
0 = 0, we have

1
Γ(2−α)

∥pn
1∥ ≤ λhα

n ∥R∂Ψ(pn
1)
[J(pn

1)−αpn
1]− J(pn

1)∥. (22)

From (16), we have

∥R∂Ψ(pn
1)
[J(pn

1)−αpn
1]− J(pn

1)∥ ≤ ∥R∂Ψ(pn
1)
[J(pn

1)−αpn
1]∥+∥J(pn

1)∥

≤ λ (θα +µ)+(1+θ)(1+θ +µ)
λ

∥pn
1∥

+

(
1+λ +θ

λ

)
∥R∂Ψ(0)(0)∥.

(23)

Using (23) in (22), we have

[
1

Γ(2−α)
−hα

n λ (θα +µ)−hα
n (1+θ)(1+θ +µ)

]
∥pn

1∥ ≤ (1+λ +θ)∥R∂Ψ(0)(0)∥,

which implies that,

∥pn
1∥ ≤

Γ(2−α)(1+λ +θ)∥R∂Ψ(0)(0)∥
1−Γ(2−α)hα

n [λ (θα +µ)+(1+θ)(1+θ +µ)]
.

For j ≥ 1, applying (20) in (21), we get

j

∑
i=1

(pn
i −pn

i−1)a
j, n
i = λ

{
R∂Ψ(pn

j )
[J(pn

j)−αpn
j ]− J(pn

j)
}
,

this implies that,
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a j, n
j pn

j =
j−1

∑
i=1

(a j, n
i+1 −a j, n

i )p j, n
i +λ

{
R∂Ψ(pn

j )
[J(pn

j)−αpn
j ]− J(pn

j)
}
.

Using (16) and the fact that ∥pn
j∥ ≤ a j, n

j ∥pn
j∥, we have

∥pn
j∥ ≤

j−1

∑
i=1

(a j, n
i+1 −a j, n

i )∥pn
i ∥+(λ (θα +µ)+(1+θ)(1+θ +µ))∥pn

j∥+(1+λ +θ)∥R∂Ψ(0)(0)∥

[1− (λ (θα +µ)+(1+θ)(1+θ +µ))]∥pn
j∥ ≤

j−1

∑
i=1

(a j, n
i+1 −a j, n

i )∥pn
i ∥+(1+λ +θ)∥R∂Ψ(0)(0)∥.

Set M = 1− (λ (θα +µ)+(1+θ)(1+θ +µ)). By the hypothesis that M > 0, we have

∥pn
j∥ ≤

j−1

∑
i=1

(
a j, n

i+1 −a j, n
i

M

)
∥pn

i ∥+
(

1+λ +θ
M

)
∥R∂Ψ(0)(0)∥.

By Lemma 1, there exists a constant δ1 > 0 such that,

∥pn
j∥ ≤ δ1, ∀ j = 0, 1, 2, . . . .

□
Define ∇pn

i =
pn

i −pn
i−1

hn
, for i = 1, 2, . . . , n.

Lemma 3 Suppose that all the mappings and conditions are same as in Lemma 2 then ∥∇pn
i ∥≤ δ2, for i= 1, 2, . . . , n.

Proof. For j = 1, (21) can be written as

1
Γ(2−α)

b0
pn

1 −pn
0

hα
n

= λ
{

R∂Ψ(pn
1)
[J(pn

1)−αpn
1]− J(pn

1)
}
.

By using (16), we obtain

∥
pn

1 −pn
0

hn
∥ ≤ Γ(2−α)

h1−α
n

[M∥p1∥+(θ +2)∥R∂ψ(0)(0)∥],

that is,

∥
pn

1 −pn
0

hn
∥ ≤ δ3, where δ3 =

Γ(2−α)

h1−α
n

[M∥p1∥+(θ +2)∥R∂ψ(0)(0)∥].

For j ≥ 2, subtracting (21) for j−1 from (21) for j, we have
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1
Γ(2−α)

j

∑
i=1

b j−i

(
pn

i −pn
i−1

hn

)
h1−α

n − 1
Γ(2−α)

j−1

∑
i=1

b j−i−1

(
pn

i −pn
i−1

hn

)
h1−α

n = Q(pn
j)−Q(pn

j−1)

1
Γ(2−α)

[b0(
p j −p j−1

hn
)+

j−1

∑
i=1

(b j−i −b j−i−1).(
pi −pi−1

hn
)] =

1
h1−α

n
[Q(pn

j)−Q(pn
j−1)]

p j −p j−1

hn
=

j−1

∑
i=1

(b j−i−1 −b j−i).(
pi −pi−1

hn
)]+

Γ(2−α)

h1−α
n

[Q(pn
j)−Q(pn

j−1)],

which implies that,

∥
p j −p j−1

hn
∥ ≤

j−1

∑
i=1

(b j−i−1 −b j−i)∥
pi −pi−1

hn
∥+ Γ(2−α)

h1−α
n

[∥Q(pn
j)∥+∥Q(pn

j−1)∥],

∥∇pn
j∥ ≤

j−1

∑
i=1

(b j−i−1 −b j−i)∥∇pn
i ∥+

λΓ(2−α)

h1−α
n

{M||pn
j ||

+(θ +2)∥R∂Ψ(0)(0)∥+M||pn
j−1||+(θ +2)||R∂Ψ(0)(0)|}

≤
j−1

∑
i=1

(b j−i−1 −b j−i)∥∇pn
i ∥+

λΓ(2−α)

h1−α
n

{M(∥pn
j∥+∥pn

j−1∥)

+2(θ +2)∥R∂Ψ(0)(0)∥},

using Lemma 2 and Grownwall’s inequality, we have

∥∇pn
j∥ ≤

j−1

∑
i=1

(b j−i−1 −b j−i)∥∇pn
i ∥+

λΓ(2−α)

h1−α
n

δ4,

that is,

∥∇pn
j∥ ≤ δ5, where δ4 = 2M[δ1 +(θ +2)∥R∂Ψ(0)(0)∥].

□
Lemma 4 ([33]) Assume that all the conditions of Lemma 3 are satisfied. Then

∥CDα pn
j∥ ≤ δ6,
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where δ6 > 0 is a constant.
Proof. For the proof see [33]. □
For a given n, we introduce Rothe’s sequence Pn(t) and a piecewise constant interpolation function P as follows

Pn(t) =

{
p0, t = 0,

pn
j−1 +

t−tn
j−1

hn
(pn

j −p j−1), t ∈ (tn
j−1, tn

j ],

and

P =

{
0, t = 0,

pn
j , t ∈ (tn

j−1, tn
j ].

Lemma 5 ([33]) There is a subsequence {Pnk} of {Pn} such that CDα Pnk → CDα p in L2([0, T ], H), as n → ∞.

Proof. For the proof see Lemma-10 in [33]. □
Theorem 3 Suppose all the mappings and conditions are same as in Lemmas 2, 3, 4 and 5. Then the dynamical

system (7) has the unique strong solution.
Proof. For any p∗ ∈H, we have

∫ t

0
⟨CDα pn(s), p∗⟩ds =

∫ t

0
⟨Qn(s), p∗⟩ds.

For the subsequence, we have

∫ t

0
⟨CDα pnk(s), p∗⟩ds =

∫ t

0
⟨Q(pnk(s), p∗⟩ds.

By applying the bounded convergence theorem, Lemma 2 with k → ∞, we obtain

∫ t

0
⟨CDα p(s), p∗⟩ds =

∫ t

0
⟨Q(p(s)), p∗⟩ds. (24)

Since

∫ t

0
⟨CDα p(s), p∗⟩ds = ⟨I1−α p(t), p∗⟩,

then (24) becomes

⟨I1−α p(t), p∗⟩=
∫ t

0
⟨Q(p(s)), p∗⟩ds. (25)
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Due to the coninuous and uniformly bounded integrand on right hand side for any fixed p∗ ∈ H, ⟨I1−α p(t), p∗⟩, is
continuously differentiable, that is,

CDα p(t) = Q(p(t)),

therefore, p(t) is the strong solution of the dynamical system (7).
Now it only remains to prove that p(t) is unique. For this let p1(t) and p2(t) be two solutions of the dynamical system

(7), then we have

p1(t) = p0 +
1

Γ(α)

∫ t

0
Q(p1(s))ds,

and

p2(t) = p0 +
1

Γ(α)

∫ t

0
Q(p2(s))ds,

which implies that

u(t) =
1

Γ(α)

∫ t

0
(Q(p1(s))−Q(p2(s))ds,

where u(t) = p1(t)−p2(t). Using Lipschitz continuity of Q(p(t)), we have

∥u(t)∥2 ≤ K2

Γ(α)

∫ t

0
∥u(s)∥2

s ds,

Gronwall’s inequality gives us

∥u∥t = 0, t ∈ [0, T ].

Hence u(t) = 0. This completes the proof. □
Example 1 Let ψ: R3 → R∪{+∞} is defined by ψ(p) = ∥p∥1. Then subdifferential operator ∂ψ is defined by

{
∑3

i=1 sgn(pi)ei, if p ̸= 0,

K , if p = 0,

where sgn(pi) is the sign of the i-th slot of p, and e1, e2, e3 are the standard basis inR3, andK is the set of all non-negative
convex combination vectors forming by the standard basis vectors.

Then, the corresponding resolvent operator and Yosida approximation operators are as follows:
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R∂ψ(p) =
(

|p1|
1+2ρ

)
sgn(p1)e1 +

(
|p2|

1+2ρ

)
sgn(p2)e2 +

(
|p3|

1+2ρ

)
sgn(p3)e3, (26)

J(p) =
(

p1e1

ρ +2|p1|

)
+

(
p2e2

ρ +2|p2|

)
+

(
p3e3

ρ +2|p3|

)
, (27)

for p = (p1, p2, p3) ∈ R3 and a positive constant ρ > 0.
Then, the dynamical system (7) has unique equilibrium point (0, 0, 0), that is YQIVI has unique solution (0, 0, 0).

By theorem 2, at (0, 0, 0) the dynamical system is asymptotically and exponentially stable. The Figure 2 shows global
convergence to the optimal solution (0, 0, 0) of the trajectories of (5) with initial point at t0 = 0.

0 1 2 3 4 65 7 8 9 10
Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
p1(t)
p2(t)
p3(t)

p i
(t)

Figure 2. The dynamical system (7)’s transient behavior at three distinct points p1 = [2/3.5, 1/5, 3/4.5], p2 = [−1/1.2, 0.4, −0.5] and p3 =
[1/7, −0.3, −0.13] of R3

6. Conclusion and future directions
This article introduces a Yosida inverse variational inequality problem and for its solution a dynamical system is

developed with detorsion simple single-layer structures and cheap implementation complexity. We established its global
convergence, asymptotic stability, and exponentiality using the functional differential equation theory and the Lyapunov
function. Under some simple assumptions, we determine the existence of a unique solution for our new dynamical system
by using the Rothe’s approach. Finally, we have given one numerical example to demonstrate the dynamical system’s
efficiency in solving YQIVI (5). It is noted that some of the stability conditions for the Lipschitz constant K in this paper
can be difficult and expensive to achieve in practical implementations. Therefore, additional research is needed to obtain
more endurable conditions on the stability result of the proposed system.
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