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Abstract: This study describes how to represent xm pℓ(x), pℓ(x)qm(x) and
s

∏
j=1

pℓ j(x) in terms of shifted Jacobi polynomials

(SJPs) using computational methods, where pℓ(x) and qm(x) are polynomials of degrees ℓ and m, respectively. The
suggested problems are discussed when pℓ(x) and qm(x) are generalized Laguerre, Hermite, and SJPs. In particular, these
expansions are presented for the cases of shifted ultraspherical, shifted Legendre, and shifted Chebyshev polynomials of
the first and second kinds.
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1. Introduction
Many fields of applied sciences rely heavily on special functions. Special functions have a crucial role in numerous

domains, including quantum mechanics, numerical analysis, and approximation theory; see, for instance, [1–4]. Among
these functions are the several kinds of orthogonal polynomials (OPs). These polynomials provide the backbone for solving
solutions for distinct issues connected to diverse domains such as science, engineering, and mathematics; see, for example,
[5, 6]. We also note the widespread application of orthogonal polynomials in other fields like signal processing, probability
theory, and statistics; see [7–10]. Additionally, these polynomials are utilized in approximating integrals using techniques
like Gaussian quadrature [11].

Research on the various types of OPs, both theoretical and practical, has attracted the attention of several authors. For
example, Ahmed in [12–14] has studied some classical discrete OPs. Another study on Bessel polynomials was given in
[15]. There are other studies regarding the classical continuous OPs; see, for example, [16, 17]. Some formulas between
orthogonal polynomials and Fibonacci polynomials are developed in [18].

A large number of contributions were devoted to the utilization of the OPs in different applications. For example,
the authors of [19, 20] used an operational technique for handling some differential equations (DEs). The authors of [21]
applied a Galerkin algorithm to handle some partial DEs. In [22], the author used a shifted Jacobi operational matrix
of derivatives to solve some mult-term fractional differential equations. Other fractional DEs were treated in [23] using
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Chebyshev polynomials (CPs). Some generalized CPs were employed in [24] to solve multi-term fractional DES. Hermite
polynomials were used in [25] to treat some optimal control problems. Some fractional-integro-DEs were handled via
Laguerre polynomials in [26]. A finite OPs class was utilized in [27] to solve some fractional DEs.

One of the most influential families of OPs is the family of Jacobi polynomials (JPs). These polynomials were
widely used in different branches of mathematics. They are solutions to particular second-order DEs. They involve two
parameters, allowing for the generation of some well-known polynomials. Applications of JPs and their special classes
of polynomials have been the subject of several publications. For example, some combinations of Legendre polynomials
were utilized in [28] to treat some DEs. CPs were used in [29] to treat some singular DEs. Some generalized CPs were
used in [30] to solve other DEs. In [31–33], Jacobi polynomials were used to solve some fractional DEs. In [34], the
authors treated some partial DEs.

Addressing the linearization problems for various OPs is crucial. Their importance comes from their appearance in
physics and quantum chemistry applications. For example, they are useful in describing quantum-mechanical systems’
physical and chemical properties, [35]. They are also required to figure out the logarithmic potentials of OPs when figuring
out a quantum system’s position and momentum information entropies; see [36]. Furthermore, these formulas help in
treating some non-linear DEs; see, for example [37].

Generalized hypergeometric functions (GHFs) have vital roles within special functions. These functions also crop
up in other areas, such as combinatorics, probability theory, and mathematical physics. These functions are used to solve
several significant issues, including connection, duplication, and linearization. The authors in [17, 38, 39], solved many
linearization and connection problems. The connection and linearization coefficients often include GHFs functions that
can be reduced in particular cases.

For the polynomials pℓ(x) and qm(x) and the set of SJPs: P
(ν , θ)
M, i (x), i ≥ 0, we will address the more general

linearization problem (LP):

pℓ(x)qm(x) =
ℓ+m

∑
i=0

ci(ℓ, m)P
(ν , θ)
M, i (x), (1)

where the linearization coefficients ci(ℓ, m) to be determined. In addition, pℓ(x)and qm(x) ∈ T ={Jacobi, shifted Jacobi,
generalized Laguerre, and Hermite polynomials}. The presented approach is built on employing the closed formulas of
Dq pℓ(0) and Dqqm(0). Whenever feasible, we create closed representations for these coefficients using some algebraic
computations. The LPs have been presented in many investigations using different techniques [40–46]. Furthermore,
analyzing the positivity requirements of the coefficients ci(ℓ,m) is essential to solving the linearization issue. [47, Lecture
5 and 6].

In the current paper, we consider the following generalization of the problem 1:

s

∏
j=1

pℓ j(x) =
Ls

∑
i=0

ci(ℓ1, . . . , ℓs) P
(ν , θ)
M, i (x), Ls = ∑s

j=0 ℓ j, (2)

will be discussed. We will show that the linearization coefficients ci(ℓ1, . . . , ℓs) have forms that include GHFs of N
variables[48]. Several new closed forms will be obtained when pℓ j(x) ∈ T . Various applied problems use the products of
several classical OPs, see [49–51]. For instance [48, 52, 53], the problem

s

∏
j=1

L
(ν j)

ℓ j
(x) =

Ls

∑
i=0

ci(ℓ1, . . . , ℓs)L
(ν)

i (x), (3)

is gaining a lot of weight in nuclear and atomic shell theories.

Contemporary Mathematics 1868 | W. M. Abd-Elhameed, et al.



This article is structured as follows: Section 2 displays some fundamentals of the SJPs and some properties of the
computational tools used. In Sections 3-5, we show and prove three theorems that give new formulas for expanding
xm pℓ(x), pℓ(x)qm(x) and

s
∏
j=1

pℓ j(x) in terms of SJPs. We calculate the relevant expansions for these theorems when pℓ(x),

qm(x), and pℓ j(x) ∈ T . Ultimately, in Section 6, we provide a comprehensive overview and conclusive observations.

2. Some essentials of JPs
It is well-known that JPs {P(ν , θ)

ℓ (t)}∞
ℓ=0 for ν , θ >−1, satisfy the orthogonality relation [54, pp.300-301]

1∫
−1

(1− t)ν(1+ t)θ P
(ν , θ)
ℓ (t)P(ν , θ)

m (t)dt = 2λ hℓ δℓ, m, (4)

where

hℓ =
Γ(ℓ+ν +1)Γ(ℓ+θ +1)

ℓ!(2ℓ+λ )Γ(ℓ+λ )
, λ = ν +θ +1.

In addition, they may be constructed using the recurrence relation:

P
(ν , θ)
i (t) =

(λ +2i−2){ν2 −θ 2 + t (λ +2i−1)(λ +2i−3)}
2i(λ + i−1)(λ +2i−3)

P
(ν , θ)
i−1 (t)

− (ν + i−1)(θ + i−1)(λ +2i−1)
i(λ + i−1)(λ +2i−3)

P
(ν , θ)
i−2 (t), i = 2, 3, . . . ,

(5)

with

P
(ν , θ)
0 (t) = 1, P

(ν , θ)
1 (t) =

1
2
(λ +1)t +

1
2
(ν −θ).

By changing the variable: t =
2x
M

−1, these polynomials may be defined on the interval [0, M]. The new polynomials

is the so-called SJPs P
(ν , θ)
i (

2x
M

− 1) and be denoted by P
(ν , θ)
M, i (x). In view of the two relations (4) and (5), the

polynomials P
(ν , θ)
M, i (x) satisfy the following orthogonality relation:

M∫
0

xθ (M− x)νP
(ν , θ)
M, i (x)P(ν , θ)

M, j (x)dx = Mλ hi δi j, ν , θ >−1, (6)

and can be generated from
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P
(ν , θ)
M, i (x) =

(λ +2i−2){ν2 −θ 2 +( 2x
M −1)(λ +2i−1)(λ +2i−3)}

2i(λ + i−1)(λ +2i−3)
P

(ν , θ)
M, i−1(x)

− (ν + i−1)(θ + i−1)(λ +2i−1)
i(λ + i−1)(λ +2i−3)

P
(ν , θ)
M, i−2(x), i ≥ 2,

(7)

with the starting values:

P
(ν , θ)
M, 0 (x) = 1, P

(ν , θ)
M, 1 (x) =

1
2
(λ +1)

(
2x
M

−1
)
+

1
2
(ν −θ).

P
(ν , θ)
M, i (x) has the analytical form

P
(ν , θ)
M, i (x) = (−1)i (θ +1)i

i!

i

∑
k=0

(−i)k(i+λ )k

(θ +1)k

M−k

k!
xk,

which may be represented as:

P
(ν , θ)
M, i (x) = (−1)i (θ +1)i

i! 2F1

[
−i, i+λ
θ +1

∣∣∣∣∣ x
M

]
, (8)

where (d)k denotes the Pochhammer’s symbol and 2F1 is the known hypergeometic function. It is not hard to observe that:

DkP
(ν ,θ)
M,i (0) = (−1)i (θ +1)i(λ + i)k(−i)k

i!(θ +1)k
M−k, i ≥ k, k = 0,1,2, . . . . (9)

Lemma 1 Assume we have a polynomial Qℓ(x) of degree ℓ with the expansion

Qℓ(x) =
ℓ

∑
i=0

ai(ℓ) P
(ν , θ)
M, i (x), (10)

then ai(ℓ), i = 0, 1, . . . , ℓ, meet the following system:

ai(ℓ) =
Mi

(i+λ )i
Q(i)
ℓ (0)−

ℓ−i

∑
k=1

(−1)k (θ + i+1)k(λ +2i)k

k!(λ + i)k
ak+i(ℓ) , i = ℓ−1, . . . , 1, 0,

aℓ(ℓ) =
Mℓ

(ℓ+λ )ℓ
Q(ℓ)
ℓ (0),

(11)
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and they may be calculated using the following form

ai(ℓ) =
ℓ−i

∑
r=0

Ωr(i, ν , θ , M)Q(r+i)
ℓ (0), i = ℓ, ℓ−1, . . . , 0, (12)

where

Ωr(i, ν , θ , M) =
Mi+r(2i+λ )(θ +1)i+r(λ )i

r!(θ +1)i(λ )2i+r+1
.

Proof. By using (9) and (10), we have for i = 0, 1, . . . , ℓ,

Q(i)
ℓ (0) =

[
DiQℓ(x)

]
x=0 =

ℓ

∑
k=i

ak(ℓ)DiP
(ν , θ)
M, k (0) (13)

=
ℓ−i

∑
k=0

(−1)k (θ + i+1)k(λ + k+ i)i

k!
M−i ak+i(ℓ), (14)

which constitutes a triangular system of dimension (ℓ+1) whose unknowns are ai(ℓ), (0 ≤ i ≤ ℓ), and accordingly, the
system (14) can be written in the form (11). Now, we have

ℓ−i

∑
k=0

(−1)k (θ + i+1)k(λ + k+ i)i

k!
M−i ak+i(ℓ) =

ℓ−i

∑
k=0

(−1)k (θ + i+1)k(λ + k+ i)i

k!
M−i

×
ℓ−i−k

∑
r=0

Mi+k+r(2i+2k+λ )(θ +1)i+k+r(λ )i+k

r!(θ +1)i+k(λ )2i+2k+r+1
Q(r+i+k)
ℓ (0),

then, the rearrangement of terms turns the last formula into

ℓ−i

∑
k=0

(−1)k (θ + i+1)k(λ + k+ i)i

k!
M−i ak+i(ℓ) =

ℓ−i

∑
r=0

Mr

r!
(θ + i+1)r Ar(i)Q

(r+i)
ℓ (0), (15)

where

Ar(i) =
r

∑
k=0

(−r)k(2i+2k+λ )
k!(2i+ k+λ )r+1

. (16)

Zeilberger’s algorithm [55], specifically, by using the ‘sumrecursion command’ in Maple software, it can be shown
that Ar(i) for r ≥ 1 meets the next recursive formula:
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(r+1)(2i+2r+λ +1)(2i+2r+λ +2)Ar+1(i)+ r (2i+ r+λ +1)Ar(i) = 0, (17)

governing by: A1(i) = 0. This recurrence relation has the exact solution: Ar(i) = δr, 0. Then formula (15) takes the form

ℓ−i

∑
k=0

(−1)k (θ + i+1)k(λ + k+ i)i

k!
M−i ak+i(ℓ) = Q(i)

ℓ (0),

which indicates that the solution of the system (11) takes the form (12).
The next proposition provides some tools that are employed in the following sections.
Proposition 1 [56, p.467] The following relationships are satisfied:

(i) (d)m+r =(d)ℓ (d +m)r, (ii) (d)m−r = (−1)r (d)m

(1−d −m)r
, (18)

(iii) (d)2r =22r
(

d
2

)
r

(
d +1

2

)
r
, (iv) (−m)r = (−1)r m!

(m− r)!
. (19)

3. Connection problem: relationship between xmqℓ(x) and a sum of SJPs
In this section, our focus is on determining the explicit formula of the coefficients ai(ℓ, m) in the expansion:

xmqℓ(x) =
ℓ+m

∑
i=0

ai(ℓ, m)P
(ν , θ)
M, i (x). (20)

In this regard, the following theorem is given.
Theorem 1 The expansion coefficients ai(ℓ, m), i = 0, 1, . . . , ℓ+m, can be expressed as

ai(ℓ, m) = Mm i!(2i+λ )(θ +1)m

(θ +1)i(λ + i)m+1

ℓ

∑
r=0

(
r+m

i

)
Mr(θ +m+1)r

r!(λ + i+m+1)r
q(r)ℓ (0), (21)

that can be expressed as

ai(ℓ, m) = m!Mm (2i+λ )(θ +1)mΓ(λ + i)
(θ +1)i

×
ℓ

∑
r=0

Mr(m+1)r(θ +m+1)r

r!(m− i+ r)!Γ(λ + i+m+1+ r)
q(r)ℓ (0).

(22)

Proof. Let Qℓ+m(x) = xmqℓ(x), then applying Lemma 1 lead to
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ai(ℓ, m) =
ℓ+m−i

∑
r=0

Ωr(i, ν , θ , M)Q(r+i)
ℓ+m (0). (23)

Applying the Leibniz rule, it is easy to obtain

Q( j)
ℓ+m(0) =

m!
(

j
m

)
q( j−m)
ℓ (0), j ≥ m,

0, 0 ≤ j ≤ m−1.
(24)

Substitution of (24) into (23)-after some calculations- yields (21). Employing Proposition Theorem 1 leads to (22).
As an application of Theorem 1, the expression of coefficients ai(ℓ, m) when qℓ(x) = P

(γ, δ )
M, ℓ (x) can be obtained.

Corollary 1 In the expansion

xmP
(γ, δ )
M, ℓ (x) =

ℓ+m

∑
i=0

ai(ℓ, m)P
(ν , θ)
M, i (x), (25)

the coefficients ai(ℓ, m) can be expressed as

ai(ℓ, m) = (−1)ℓm!Mm (2i+λ )(θ +1)mΓ(λ + i)Γ(δ + ℓ+1)
ℓ!(θ +1)i

×
ℓ

∑
r=0

(m+1)r(θ +m+1)r(µ + ℓ)r(−ℓ)r

r!(m− i+ r)!Γ(λ + i+m+ r+1)Γ(δ + r+1)
,

(26)

which has the following alternative form

ai(ℓ, m) = (−1)ℓm!Mm (2i+λ )(θ +1)mΓ(λ + i)Γ(δ + ℓ+1)
ℓ!(θ +1)i

× 4F̄3

 −ℓ, m+1, m+θ +1, µ + ℓ

1− i+m, λ + i+m+1, δ +1

∣∣∣∣∣∣∣1
 ,

(27)

where µ = γ +δ +1.
Proof. Substitution of (9) into (22) gives (26) which can be represented as in (27).
Note 1 It is noted that the using of series formula of regularized hypergeometric function pF̄q is useful in computations,

by using Mathematica, rather than the using of usual series formula pFq, where it is defined by
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pF̄q

[
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣∣x
]
=

∞

∑
k=0

p
Π

i=1
(ai)k

q
Π

i=1
Γ(bi + k)

xk

k!
. (28)

In particular, for the special case ℓ= 0, formula (25) becomes

xm = m!Mm (θ +1)m

m

∑
i=0

(2i+λ )
(m− i)!(λ + i)m+1(θ +1)i

P
(ν , θ)
M, i (x). (29)

Also, for the special case m = 0, formula (25) becomes

P
(γ, δ )
M, ℓ (x) =

ℓ

∑
i=0

ai(ℓ, 0)P(ν , θ)
M, i (x), (30)

where ai(ℓ, 0) can be expressed as

ai(ℓ, 0) = (−1)ℓ
(2i+λ )(δ +1)ℓ(−ℓ)i(µ + ℓ)i

ℓ!(λ + i)i+1(δ +1)i

ℓ−i

∑
r=0

(θ + i+1)r(µ + i+ ℓ)r(−ℓ+ i)r

r!(λ +2i+1)r(δ + i+1)r
, (31)

by using formula (26), Proposition 1 and some rather manipulation. This formula becomes

ai(ℓ, 0) = (−1)ℓ
(2i+λ )(δ +1)ℓ(−ℓ)i(µ + ℓ)i

ℓ!(λ + i)i+1(δ +1)i
3F2

[
−ℓ+ i,1,θ + i+1,µ + i+ ℓ

λ +2i+1,δ + i+1

∣∣∣∣∣1
]
. (32)

Using the known relation between the Jacobi and ultraspherical polynomials

C
(γ)
M, ℓ(t) =

ℓ!
(γ +1/2)ℓ

P
(γ−1/2, γ−1/2)
M, ℓ (t), γ >−1/2, (33)

enable us to prove Corollary 2 as an immediate result of Corollary 1. The main advantage of relation (33) is that the
shifted Legendre polynomials PM, ℓ(x), and the shifted Chebyshev polynomials of the first and second kind TM, ℓ(x) and
UM, ℓ(x) can be obtained as direct special cases of C

(γ)
M, ℓ(x). Explicitly, the following relations are valid:

PM, ℓ(t) = C
(1/2)
M, ℓ (t),

TM, ℓ(t) = C
(0)
M, ℓ(t),

UM, ℓ(t) = (ℓ+1)C (1)
M, ℓ(t).

(34)
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Corollary 2 In the expansion

xmC
(γ)
M, ℓ(x) =

ℓ+m

∑
i=0

ai(ℓ, m)C
(ν)
M, i(x), (35)

the coefficients ai(ℓ, m) can be expressed as

ai(ℓ, m) = (−1)ℓ
m!
i!

MmΓ(γ +1/2)(ν +1/2)m(2i+2ν)Γ(2ν + i)

× 4F̄3

[
−ℓ, m+1, m+ν +1/2, 2γ +n
1− i+m, 2ν + i+m+1, γ +1/2

∣∣∣∣∣1
]
.

(36)

In case of m = 0, formula (35) gives the connection problem

C
(γ)
M, ℓ(x) =

ℓ

∑
i=0

ai(ℓ, 0)C (ν)
M, i(x), (37)

where the coefficients ai(ℓ, 0) can be written in the form

ai(ℓ, 0) = (−1)ℓ
(−ℓ)i(2γ + ℓ)i(ν +1/2)i

i!(2ν + i)i(γ +1/2)i
3F2

[
−ℓ+ i,ν + i+1/2,2γ + i+ ℓ

2ν +2i+1,γ + i+1/2

∣∣∣∣∣1
]
, (38)

and by using Watson formula [57]

3F2

[
−k, k+2µ +2ν −1, µ
2µ, µ +ν

∣∣∣∣∣1
]
=


k!Γ(µ + k

2 )Γ(ν + k
2 )Γ(2µ)Γ(µ +ν)

( k
2 )!Γ(µ +ν + k

2 )Γ(2µ + k)Γ(µ)Γ(ν)
, keven,

0, kodd,

with k = ℓ− i, ν = γ −ν and µ = ν + i+1/2, it is not difficult to show that formula (37) takes the form

C
(γ)
M, ℓ(x) =

[ℓ/2]

∑
i=0

ℓ!(ν + ℓ−2i)(γ −ν)i(γ)ℓ−s(2ν)ℓ−2i

(2γ)ℓ i!(ν)ℓ−s+1(ℓ−2i)!
C

(ν)
M, ℓ−2i(x). (39)

Again, by the application of Theorem 1, the expression of coefficients ai(ℓ, m)when qℓ(x) =L
(γ)
ℓ (x) can be obtained

in terms of hypergeometric function 3F̄2(M) as in the following corollary.
Corollary 3 In the expansion

xmL
(γ)
ℓ (x) =

ℓ+m

∑
i=0

ai(ℓ, m)P
(ν , θ)
M, i (x), (40)
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where the coefficients ai(ℓ, m) can be expressed as

ai(ℓ, m) = m!Mm (2i+λ )(θ +1)mΓ(λ + i)Γ(γ + ℓ+1)
ℓ!(θ +1)i

× 3F̄2

[
−ℓ, m+1, m+θ +1
1− i+m, λ + i+m+1, γ +1

∣∣∣∣∣M
]
.

(41)

Proof. The direct substitution of formula DrL
(ν)
ℓ (0) into (22) gives (41).

Remark 1 Using the formulae of Diqℓ(0), for qℓ(x) = Hℓ(x), P
(ν , θ)
ℓ (x), C

(α)
ℓ (x), Pℓ(x), Tℓ(x),Uℓ(x) listed in

Table A1 and applying Theorem 1, the corresponding formulae of the expansions coefficients ai(ℓ, m) can be computed
in similar way.

Remark 2 For the special case m = 0, the connection problem

qℓ(x) =
ℓ

∑
i=0

ai(ℓ, 0)P(ν , θ)
M, i (x), (42)

is a direct consequence of Theorem 1.

4. Linearization problem: relationship between qm(x) pℓ(x) and a sum of SJPs
In this part, we look at how to calculate the coefficients ci(ℓ, m) in the expansion,

pℓ(x)qm(x) =
ℓ+m

∑
i=0

ci(ℓ, m)P
(ν , θ)
M, i (x), (43)

where qm(x) and pℓ(x) are two OPs of degrees m and ℓ, respectively.
Theorem 2 The coefficients ci(ℓ, m), i = 0, 1, . . . , ℓ+m, in (43) can be represented as

ci(ℓ, m) =
i!(2i+λ )

(θ +1)i(λ + i)

m

∑
k=0

ℓ

∑
r=0

(
r+ k

i

)
Mr+k(θ +1)r+k

r!k!(λ + i+1)r+k
q(k)m (0)p(r)ℓ (0), (44)

or it can be written in the two forms

ci(ℓ, m) =
m

∑
k=max(0, i−ℓ)

q(k)m (0)
k!

ai(ℓ, k) =
m

∑
k=0

q(k)m (0)
k!

ai(ℓ, k), (45)

and
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ci(ℓ, m) =
ℓ

∑
r=max(0, i−m)

p(r)ℓ (0)
r!

ai(m, r) =
ℓ

∑
r=0

p(r)ℓ (0)
r!

ai(m, r). (46)

Proof. We have

qm(x) =
m

∑
k=0

q(k)ℓ (0)
k!

xk,

and therefore, we can write

qm(x) pℓ(x) =
m

∑
k=0

q(k)ℓ (0)
k!

xk pℓ(x), (47)

then using Theorem 1 leads to (44).
Now, we need to prove (45). Employing formula (20) leads one to express (47) as follows:

qm(x) pℓ(x) =
m

∑
k=0

ℓ+k

∑
i=0

q(k)ℓ (0)
k!

ai(ℓ, k)P(ν , θ)
M, i (x). (48)

Then, expanding and collecting similar terms gives

qm(x) pℓ(x) =
ℓ+m

∑
i=0

[
m

∑
k=max(0, i−ℓ)

q(k)m (0)
k!

ai(ℓ, k)

]
P

(ν , θ)
M, i (x). (49)

With the help of (21), we can see that ai(ℓ, k) = 0 for i > ℓ+ k. Hence, formula (49) takes the form

qm(x) pℓ(x) =
ℓ+m

∑
i=0

[
m

∑
k=0

q(k)m (0)
k!

ai(ℓ, k)

]
P

(ν , θ)
M, i (x), (50)

and this proves (45). Similarly, formula (46) can be proved.
Corollary 4 In the LP

P
(ν , θ)
M, ℓ (x)P(γ, δ )

M, m (x) =
ℓ+m

∑
i=0

ci(ℓ, m)P
(α, β )
M, i (x), (51)

the coefficients ci(ℓ, m) can be expressed as
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ci(ℓ, m) = (−1)ℓ+m (2i+λ )Γ(λ + i)Γ(θ + ℓ+1)(δ +1)m

ℓ!m!(β +1)i

×
m

∑
k=0

(β +1)k(γ +δ +m+1)k(−m)k

(δ +1)k
4F̄3

[
−ℓ, k+1, k+β +1, ν +θ + ℓ+1
1− i+ k, λ + i+ k+1, θ +1

∣∣∣∣∣1
]
.

(52)

Proof. In Theorem 2, consider qm(x) = P
(γ, δ )
M, m (x) and pℓ(x) = P

(ν , θ)
M, ℓ (x). Applying formula (45), gives

ci(ℓ, m) =
m

∑
k=0

q(k)m (0)
k!

ai(ℓ, k), i = 0, 1, . . . , ℓ+m. (53)

Based on Corollary 1, we get

ai(ℓ, k) = (−1)ℓk!Mk (2i+λ )(β +1)kΓ(λ + i)Γ(θ + ℓ+1)
ℓ!(β +1)i

× 4F̄3

[
−ℓ, k+1, k+β +1, ν +θ + ℓ+1
1− i+ k, λ + i+ k+1, θ +1

∣∣∣∣∣1
]
, i = 0, . . . , ℓ+ k.

(54)

Substitution of (54) and (9) into (53)-after some manipulation- yields (52).
The following corollary is a direct consequence of Corollary 4 and relation (33).
Corollary 5 In the LP

C
(θ)
M, ℓ(x)C

(γ)
M, m(x) =

ℓ+m

∑
i=0

ci(ℓ, m)C
(ν)
M, i(x), (55)

the coefficients ci(ℓ, m) can be expressed as

ci(ℓ, m) = (−1)ℓ+m 1
i!
(2i+2ν)Γ(2ν + i)Γ(θ +1/2)

×
m

∑
k=0

(ν +1/2)k(2γ +m)k(−m)k

(γ +1/2)k
4F̄3

[
−ℓ, k+1, k+ν +1/2, 2θ +n
1− i+ k, 2ν + i+ k+1, θ +1/2

∣∣∣∣∣1
]
.

(56)

Note 2 It is worth to note that in the two LPs

P
(ν , θ)
ℓ (x)P(γ, δ )

m (t) =
ℓ+m

∑
i=0

ci(ℓ, m)P
(α, β )
i (t), (57)
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and

C
(θ)
ℓ (t)C (γ)

m (t) =
ℓ+m

∑
i=0

ci(ℓ, m)C
(ν)
i (t), (58)

the expansion coefficients ci(ℓ, m) are given by (52) and (56), respectively.
Remark 3 Using the formulae of Di pℓ(0), for pℓ(x) = Hℓ(x), L

(ν)
ℓ (x), P(γ, δ )

ℓ (x),Pℓ(x), Tℓ(x), Uℓ(x), listed in
Table A1 (In the Appendix) and applying Theorem 2, the formulae of expansions coefficients ci(ℓ, m) can be computed
easily in many different cases.

5. Linearization problem: relationship between
s

∏
j=1

pℓ j (x) and a sum of SJPs

In this section, the explicit formula of linearization coefficients ci(ℓ1, ℓ2, . . . , ℓs) in the expansion

s

∏
j=1

pℓ j(x) =
Ls

∑
i=0

ci(ℓ1, ℓ2, . . . , ℓs)P
(ν ,θ)
M,i (x), (59)

where Ls = ∑s
j=1 ℓ j, are given in following theorem.

Theorem 3 The expansion coefficients ci(ℓ1, ℓ2, . . . , ℓs) in (59) can be expressed as

ci(ℓ1, ℓ2, . . . , ℓs) =
i!(2i+λ )

(θ +1)i(λ + i)

ℓ1

∑
r1=0

. . .
ℓs

∑
rs=0

(
ds

i

)
Mds(θ +1)ds

(λ + i+1)ds

s

∏
j=1

p(rs)
ℓ j

(0)

r j!
, i = 0, 1, . . . , Ls, (60)

where ds = r1 + · · ·+ rs.

proof. We proceed by induction on s. When s = 2, the formula (60) is the same as (44). Let’s say that the formula
(60) works for s. We want to show that

ci(ℓ1, ℓ2, . . . , ℓs+1) =
i!(2i+λ )

(θ +1)i(λ + i)

ℓ1

∑
r1=0

. . .
ℓs+1

∑
rs+1=0

(
ds+1

i

)
Mds+1(θ +1)ds+1

(λ + i+1)ds+1

s+1

∏
j=1

p
(r j)

ℓ j
(0)

r j!
. (61)

Let qLs(x) =
s

∏
j=1

pℓ j(x), then
s+1
∏
j=1

pℓ j(x) = pℓs+1(x)qLs(x). Applying formula (43) leads to

s+1

∏
j=1

pℓ j(x) =
Ls+1

∑
i=0

ci(ℓs+1, Ls)P
(ν , θ)
M, i (x), (62)

then
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ci(ℓ1, ℓ2, . . . , ℓs+1) = ci(ℓs+1, Ls)

=
i!(2i+λ )

(θ +1)i(λ + i)

Ls

∑
k=0

ℓs+1

∑
rs+1=0

(
k+ rs+1

i

)
Mk+rs+1(θ +1)k+rs+1

(λ + i+1)k+rs+1 rs+1!k!
q(k)Ls

(0) p(rs+1)
ℓs+1

(0).

(63)

Assume that theorem holds for s and employing (9) lead to

q(k)Ls
(0) =

Ls

∑
j=k

c j(ℓ1, ℓ2, . . . , ℓs)(−1) j (θ +1) j(λ + j)k(− j)k

j!(θ +1)k
M−k, (64)

where

c j(ℓ1, ℓ2, . . . , ℓs) =
j!(2 j+λ )

(θ +1) j(λ + j)

ℓ1

∑
r1=0

. . .
ℓs

∑
rs=0

(
ds

j

)
Mds(θ +1)ds

(λ + j+1)ds

s

∏
j=1

p(rs)
ℓ j

(0)

r j!
, j = 0, 1, . . . , Ls. (65)

Substituting (64) into (63), we get

ci(ℓs+1, Ls) =
i!(2i+λ )

(θ +1)i(λ + i)

ℓ1

∑
r1=0

. . .
ℓs+1

∑
rs+1=0

Mds(θ +1)ds

s+1

∏
j=1

p(rs)
ℓ j

(0)

r j!
Θ(i)

rs+1(Ls, ν , θ) , (66)

where

Θ(i)
rs+1(Ls, ν , θ) =

Ls

∑
k=0

Ls

∑
j=k

1
k!

(
ds

j

)(
k+ rs+1

i

)
×

Mrs+1(θ +1)k+rs+1

(λ + i+1)k+rs+1

(2 j+λ )
(λ + j)

(−1) j(λ + j)k(− j)k

(θ +1)k

=
Ls

∑
k=0

1
k!

(
k+ rs+1

i

)
Mrs+1(θ +1)k+rs+1

(λ + i+1)k+rs+1(θ +1)k
×

[
Ls

∑
j=k

(
ds

j

)
(−1) j (2 j+λ )(λ + j)k(− j)k

(λ + j)(λ + j+1)ds

]
.

(67)

Noting that

(
ds

j

)
= 0, j > ds,

it is easy to note that
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Ls

∑
j=k

(
ds

j

)
(−1) j (2 j+λ )(λ + j)k(− j)k

(λ + j)(λ + j+1)ds

=
ds

∑
j=k

(
ds

j

)
(−1) j (2 j+λ )(λ + j)k(− j)k

(λ + j)(λ + j+1)ds

=
ds!

(ds − k)!
Ads−k(k)

=
ds!

(ds − k)!
δk, ds ,

where Ar(i) is defined by formula (16). Hence formula (67) can be expressed as follows

Θ(i)
rs+1(Ls, ν , θ) =

Ls

∑
k=0

1
k!

(
k+ rs+1

i

)
Mrs+1(θ +1)k+rs+1

(λ + i+1)k+rs+1(θ +1)k
ds!δk, ds ,

=

(
ds + rs+1

i

)
Mrs+1(θ +1)ds+rs+1

(λ + i+1)ds+rs+1(θ +1)ds

,

that can be represented as

Θ(i)
rs+1(Ls, ν , θ) =

(
ds+1

i

)
Mrs+1(θ +1)ds+1

(λ + i+1)ds+1(θ +1)ds

, ds+1 = ds + rs+1. (68)

Substituting (68) into (66), one can obtain (61), and completes the proof of theorem.
The generalized hypergeometric series of N variables (GHS-N), sFp:q1; ...; qs

l:m1; ...; ms
, can be used to describe the coefficients

ci(ℓ1, ℓ2, . . . , ℓs). These functions are given by Niukkanen [48],

sFp0, p1, ..., ps
q0, q1, ...,qℓ

[
a0; a1, . . . , as; x1, . . . , xs

b0; b1, . . . , bs;

]
=

∞

∑
r1,...,rs=0

(a0)ds

(b0)ds

s

∏
j=1

(a j)r j

(b j)r j

x
r j
j

r j!
, (69)

where

ds = r1 + . . .+ rs, a j =
(

a j
1, . . . ,a

j
p j

)
, b j =

(
b j

1, . . . , b j
q j

)
,

(a j)r j =
p j

∏
i=1

(a j
i )r j , (b j)r j =

q j

∏
i=1

(b j
i )r j , j = 1, 2, . . . , s.

Note 3 As a particular case, for p j = p and q j = q, j = 1, . . . ,s, the series (69) simply denotes by sF
p0 ,p
q0 ,q

.
Corollary 6 In the LP
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s

∏
j=1

P
(ν j , θ j)

M, ℓ j
(x) =

Ls

∑
i=0

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs)P

(ν , θ)
M, i (x), s ≥ 1, (70)

the expansion coefficients Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) can be expressed as

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) =

(−1)i(2i+λ )(θ +1)Ls(−Ls)i

(θ +1)i(λ + i)(λ + i+1)Ls

s

∏
j=1

(λ j + ℓ j)ℓ j

ℓ j!

× sF2, 2
2, 1

[
i−Ls, −i−Ls −λ ; −ℓ1, −θ1 − ℓ1, . . . , −ℓs, −θs − ℓs; 1, . . . , 1
−Ls −θ , −Ls; 1−2ℓ1 −λ1, . . . , 1−2ℓs −λs

]
,

i = 0, 1, . . . , Ls,

(71)

where ν and θ denote to the two arrays ν , ν1, . . . , νs and θ , θ1, . . . , θs, respectively, and λ j = ν j+θ j+1, j = 1, 2, . . . , s.
Proof. Using Theorem 3 and formula (9), the coefficients Cν , θ

i (ℓ1, ℓ2, . . . , ℓs) may be expressed as follows:

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) =

(2i+λ )
(θ +1)i(λ + i)

ℓ1

∑
r1=0

. . .
ℓs

∑
rs=0

(1)Ls−ds

(1)Ls−i−ds

MLs−ds(θ +1)Ls−ds

(λ + i+1)Ls−ds

×
s

∏
j=1

(−1)ℓ j
(θ j +1)ℓ j(λ j + ℓ j)ℓ j−r j(−ℓ j)ℓ j−r j

ℓ j!(ℓ j − r j)!(θ j +1)ℓ j−r j

M−ℓ j+r j .

(72)

By the aid of Proposition 1, it is easy to see that formula (72) becomes

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) =

(−1)i(2i+λ )(θ +1)Ls(−Ls)i

(θ +1)i(λ + i)(λ + i+1)Ls

s

∏
j=1

(λ j + ℓ j)ℓ j

ℓ j!

×
ℓ1

∑
r1=0

. . .
ℓs

∑
rs=0

(i−Ls)ds(−i−Ls −λ )ds

(−Ls)ds(−Ls −θ)ds

s

∏
j=1

(−θ j − ℓ j)r j(−ℓ j)r j

r j!(1−2ℓ j −λ j)r j

,

(73)

which can be expressed as (71).
As a direct consequence of Corollary 6 and relation (33), we obtain the following corollary.
Corollary 7 In the LP

s

∏
j=1

C
(γ j)

M, ℓ j
(x) =

Ls

∑
i=0

Cγγγ,ν
i (ℓ1, ℓ2, . . . , ℓs) C

(ν)
M, i(x), s ≥ 1, (74)

the expansion coefficients Cγ, ν
i (ℓ1, ℓ2, . . . , ℓs) can be expressed as
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Cγ, ν
i (ℓ1, ℓ2, . . . , ℓs)

=
(−1)i(2i+2ν)(ν +1/2)Ls(−Ls)i

i!(2ν + i)(2ν + i+1)Ls

s

∏
j=1

(2γ j + ℓ j)ℓ j

(γ j +1/2)ℓ j

× sF2, 2
2, 1

 i−Ls, −i−Ls −2ν ; −ℓ1, −γ1 − ℓ1 +1/2, . . . , −ℓs, −γs − ℓs +1/2; 1, . . . , 1

−Ls, −Ls −ν +1/2; 1−2ℓ1 −2γ1, . . . , 1−2ℓs −2γs

 ,

i = 0, 1, . . . , Ls,

(75)

where γ denotes to the array γ1, . . . , γs.
Corollary 8 In the LP

s

∏
j=1

L
(ν j)

ℓ j
(x) =

Ls

∑
i=0

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) P

(ν , θ)
M, i (x), s ≥ 1, (76)

the expansion coefficients Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) can be expressed as

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) =

(−1)i(2i+λ )(θ +1)Ls(−Ls)i(−M)Ls

(θ +1)i(λ + i)(λ + i+1)Ls

s

∏
j=1

1
ℓ j!

× sF2, 2
2, 0

 i−Ls, −i−Ls −λ ; −ℓ1, −ν1 − ℓ1, . . . , −ℓs, −νs − ℓs; −M, . . . , −M

−Ls −θ , −Ls; /0, . . . , /0

 ,

i = 0, 1, . . . , Ls,

(77)

where ν denotes to the array ν , ν1, . . . , νs.
Proof. Based on Theorem 3 together with the expression of DrL

(ν)
ℓ (0) (see Table A1) and following the same

procedures in the proof of Corollary 6, yields formula (77).
Corollary 9 In the LP

s

∏
j=1

Hℓ j(x) =
Ls

∑
i=0

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) P

(ν , θ)
M, i (x), ℓ≥ 1, (78)

the expansion coefficients Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) can be expressed as

Volume 5 Issue 2|2024| 1883 Contemporary Mathematics



Cν , θ
i (ℓ1, ℓ2, . . . , ℓs)

= (2M)Ls
(−1)i(2i+λ )(θ +1)Ls(−Ls)i

(θ +1)i(λ + i)(λ + i+1)Ls

× sF4, 2
4, 0

 −Ls−i
2 , −Ls−i−1

2 ; −Ls+i+λ
2 , −Ls+i+λ−1

2 ; − ℓ1−1
2 , − ℓ1

2 , . . . , −
ℓs−1

2 , − ℓs
2 ; − 1

M2 , . . . , − 1
M2

−Ls−1
2 , −Ls

2 , −
Ls+θ

2 , −Ls+θ−1
2 ; /0, . . . , /0

 ,

i = 0, 1, . . . , ℓs.

(79)

Proof. Using Theorem 3 and formula DrHℓ(0) (see Table A1), one can get

Cν , θ
i (ℓ1, ℓ2, . . . , ℓs) =

(2i+λ )
(θ +1)i(λ + i)

×
[ℓ1/2]

∑
k1=0

. . .
[ℓs/2]

∑
ks=0

(1)Ls−2hs

(1)Ls−i−2hs

MLs−2hs(θ +1)Ls−2hs

(λ + i+1)Ls−2hs

s

∏
j=1

(−1)k j 2ℓ j−2k j ℓ j!
k j!(ℓ j −2k j)!

,

(80)

where hs = k1 + · · ·+ ks. By using Proposition 1, formula (80) takes the form

Cν
i (ℓ1, ℓ2, . . . , ℓs) = (2M)Ls

(−1)i(2i+λ )(θ +1)Ls(−Ls)i

(θ +1)i(λ + i)(λ + i+1)Ls

×
[ℓ1/2]

∑
k1=0

. . .

[ℓs/2]

∑
ks=0

(−Ls−i
2 )hs(−

Ls−i−1
2 )hs(−

Ls+i+λ
2 )hs(−

Ls+i+λ−1
2 )hs

(−Ls−1
2 )hs(−

Ls
2 )hs(−

Ls+θ
2 )hs(−

Ls+θ−1
2 )hs

s

∏
j=1

(− ℓ j−1
2 )k j(−

ℓ j
2 )k j

k j!(−M2)k j
,

(81)

which can be expressed as (79).
Corollary 10 In the LP

s

∏
j=1

C
(λ j)

ℓ j
(x) =

Ls

∑
i=0

Cλ , ν , θ
i (ℓ1, ℓ2, . . . , ℓs) P

(ν , θ)
M, i (x), ℓ≥ 1, (82)

the expansion coefficients Cλ , ν , θ
i (ℓ1, ℓ2, . . . , ℓs) can be expressed as
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Cλ , ν , θ
i (ℓ1, ℓ2, . . . , ℓs)

= (2M)Ls
(−1)i(2i+λ )(θ +1)Ls(−Ls)i

(θ +1)i(λ + i)(λ + i+1)Ls

× sF4, 2
4, 1

 −Ls−i
2 , −Ls−i−1

2 ; −Ls+i+λ
2 , −Ls+i+λ−1

2 ; − ℓ1−1
2 , − ℓ1

2 , . . . , −
ℓs−1

2 , − ℓs
2 ; 1

M2 , . . . ,
1

M2

−Ls−1
2 , −Ls

2 , −
Ls+θ

2 , −Ls+θ−1
2 ; 1− ℓ1 −λ1, . . . , 1− ℓs −λs

 ,

i = 0, 1, . . . , Ls,

(83)

where λ denotes to the array λ1, . . . , λs.
Proof. Similar to the proof of Corollary 9.

6. Results and discussions
The main results of the current article paper are Theorems 1, 2, and 3. These theorems enable us to compute the

expansion coefficients that must be determined explicitly. As far as we know, most of the formulas in this article are novel.
As expected in future work, the proposed approach may be extended straightforwardly to multivariable polynomials.
In addition, we do believe that the presented approach can be followed to find other linearization formulas for other
orthogonal polynomials. This will be an expected future work.
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Appendix A
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