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Abstract: Today, the use of renewable energy sources such as sun, wind and hot water to generate electricity is
increasingly becoming a global priority. In this paper, we propose a deterministic dynamical system reporting the
transition from oil to solar energy, in which we then add the randomness of this phenomenon. First, we study the positivity
of the deterministic oil-solar model and show that there is a maximum solution of the deterministic model and that the
system is controllable at any time T > 0 from an initial point. We also prove the existence of an equilibrium state, study
its nature and prove that there is no limit cycle between the quantity of oil available and the solar production capacity
installed. Secondly, we formulate the stochastic solar energy model from the deterministic model, for which we proved
the existence of a unique solution. Finally, using a model extracted from the model performed and examining the transition
from the amount of available oil to the installed solar generation capacity, we associate a linear optimal control problem,
from which we prove that the optimal control components are of bang-bang type, and we characterize them.

Keywords: solar energy, oil energy, deterministic and stochastic models, Brownian motion, maximum Pontryagin’s
principle, limit cycles
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1. Introduction
The energy transition has been a highly topical issue since the 50s, and more specifically since the 1973 oil crisis,

when new technologies enabled significant growth. Among all renewable sources, solar energy is one of the most
important energy policy issues of our century, resulting from the transformation of sunlight into electrical energy by
means of photovoltaics.

To describe this phenomenon, Tsur and Zemel proposed in [1] a study that models the process of capital accumulation
in the production of solar energy in competition with non-renewable energies. In [2], Moser et al. treated a problem
endogenously by applying learning-by-doing effects using ordinary differential equations. In this work, they used a log-
linear curve to model the decrease in investment costs as a function of accumulated experience, while taking into account
the seasonal fluctuation presented by solar radiation as an energy source (see [3, 4]).

Moreover, Amigues et al. introduced in [5] a more comprehensive model than the one of Moser et al. for the
transition from oil to solar energy, with adjustment costs for both sources assumed to be constant. Assuming sufficient

Copyright ©2024 Alain Pietrus, et al.
DOI: https://doi.org/10.37256/cm.5220244027
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Contemporary Mathematics 1800 | Alain Pietrus, et al.

http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0001-8493-9821
https://orcid.org/0009-0005-8064-4950
https://orcid.org/0009-0002-4934-4798
https://doi.org/10.37256/cm.5220244027
https://creativecommons.org/licenses/by/4.0/


non-renewable resources at the outset, they chose a three-phase sequence. In [6], Noël Bonneuil and Raouf Boucekkine
produced a work whose main objective is to resolve the trade-off between cheap fossil energy and more expensive
renewable energy. This was done by maximizing the discounted cash flow of utilities from energy consumption and
disutilities associated with pollution and the cost of investing in renewable energies.

The contribution of the present work is fourfold. In the second section, we extend the model established in [5]
into a more general deterministic linear non-autonomous one. In the third section, after a mathematical analysis due to
the intermittent nature of renewable energies, we formulate a stochastic model to take into account the random aspects
disrupting the production of energy from the sun. In the fourth section, we treat an infinite-horizon optimal control problem
for which we characterize the solution. Finally, in the fifth section, we prove the existence of an equilibrium state and that
this equilibrium state is a saddle point, and that there is no cyclical behavior between the amount of oil available and the
installed solar production capacity.

In the third section of this paper, we consider (Ω, F , {Ft}t≥0, P) a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions, i.e. it is increasing and right-continuous while F0 contains all P-null sets,
and denote (Bi(.)), i = 1, 2, scalar Brownian motions on the probability space. We note det the determinant, E[.] the
expectation and a∨b = max(a, b), for all a, b ∈ R.

In this paper, we express the amount of oil that must be exploited as a function of the amount of oil available at
time t while assuming that a portion of it is not exploitable and therefore control the rate of extraction of the portion of
oil available for exploitation. We use a depreciation factor for solar generation capacity rather than controlling the rate at
which this capacity is scrapped as was done in previous work.

2. A deterministic solar-oil model
We consider an energetic sector wishing to have two sources of energy which are oil and solar radiation to generate

electricity. The final objective is to have a high production of electricity based exclusively on solar energy while
significantly decreasing the amount of oil used.

We consider an extension of the mathematical model from [5] in which we assume that a part of the available oil is
not exploitable.

We consequently consider the following mathematical model:


Ẋ(t) =−x(t)X(t)+αx(t),

K̇(t) = k(t)−θK(t),
(1)

with the initial conditions X(0) = X0 > α ≥ 0 and K(0) = 0, where:
• t is the time,
• X(.) the amount of oil available,
• K(.) the installed solar production capacity,
• α the non-extractable part of X(.),
• x(.) the extraction rate of the quantity of oil available for exploitation,
• k(.) the purchase rate of solar equipment,
• θ ∈ [0, 1] the depreciation factor of installed solar production capacity.
We use a differential equation where Ẋ(.) is expressed as a function of X(.) to model oil exploitation, unlike Amigues

et al. in [5] who used a differential equation where Ẋ(.) is not expressed as a function of X(.) (Ẋ(.) =−x(.)). We don’t
control the solar panel scrap rate θ(.) as they did. Instead, we use it as a depreciation factor θ due to the solar production
capacity K(.).
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Note that if there is no solar production capacity at the start, that is K(0) = 0, K remains identically zero. The model
therefore does not represent the start of solar production capacity but only its evolution.

Proposition 1 The region R = {(X , K) : X > 0, K > 0} is positively invariant, that is, for any admissible control x
and k, the solutions exist for all times and remain in R.

Proof. Suppose (X0, K0)∈R and let x and k any Lebesguemeasurable functions with values in [0, xmax] and [0, kmax]

respectively. Integrating the equation

Ẋ(t) =−x(t)X(t)+αx(t), (2)

we obtain

X(t) = (X0 −α)e−
∫ t

0 x(s)ds +α. (3)

We have X0 −α > 0 and α ≥ 0 by assumption, therefore X(t)> 0 for all t ≥ 0.
Similarly, the integration of

K̇(t) = k(t)−θK(t) (4)

between 0 and t gives

K(t) =C(t)e−θ t , (5)

whereC(t) is a primitive of k(t)eθ t and K(0) = 0. As k(t) is a positive function for all t thenC(t) is a positive function as
a primitive of the product of positive functions, then K(t)> 0 for all t.

We consider a part Ω of R for which we write the previous system in the following form, for all t ≥ 0,


Ẏ (t) = F(t, Y (t), u(t)),

Y (0) = Y0,

(6)

with

Y =

X

K

 , Y0 =

X0

0

 and u(t) =

x(t)

k(t)

 .

We have (X0, 0) ∈ R2
+, u(t) ∈ Ω and

F : R×R2
+×Ω → R2

+
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of class C1 is given by

F(t, Y (t), u(t)) =

−x(t)X(t)+αx(t)

k(t)−θK(t)

 .

In order to properly pose the optimal control problem, we apply Carathéodory’s theorem to prove that this Cauchy
problem has a maximal solution while choosing the control u(.) among the following functions x(.) and k(.). Once the
control u(.) is chosen, we fix the other functions so that the conditions of the theorem are checked. The following theorem
proves the existence of the maximal solution of the problem.

Theorem 1 For any fixed control u(.), there exists a maximal solution Yu(.) defined on R2
+ of problem (6).

Proof. We introduce a function G defined by:

G(t, Y (t)) = F(t, Y (t), u(t)). (7)

The function G is measurable in t as a composite of measurable functions and continuous in Y as a composite
of continuous functions. It is integrable in t, because the function F is integrable in time. The function G satisfies the
conditions of Carathéodory’s theorem, then there exists a maximal solution Yu(.) defined on R2

+ of the problem (6).
Theorem 2 The system (6) is controllable in time T > 0 from Y0 if and only if α ̸= 0 and x(t) ̸= θ for all t ∈ [0, T ].
Proof. The dynamical system (1) can be written in a matrix form:

Ẏ (t) = A(t)Y (t)+Bu(t), (8)

where

A(t)=

−x(t) 0

0 −θ

 , Y (t) =

X(t)

K(t)

 , B =

α

1

and u(t) =

x(t)

k(t)

.

The previous system is a non-autonomous linear system since the matrix A depends explicitly on the variable t. The
study of the controllability of this system is to show that the controllability matrix KT is invertible. The controllability
matrix of the previous system is

KT =
∫ T

0
R(s)−1B(s)B(s)t(R(s)−1)tds, (9)

where R(s) is the resolvent of this system. We have
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KT =
∫ T

0
R(s)−1BBt(R(s)−1)tds

=
∫ T

0

e
∫ s

0 x(µ)dµ 0

0 eθs


α

1


α

1


te

∫ s
0 x(µ)dµ 0

0 eθs


t

ds

=

 α2 ∫ T
0 e2

∫ s
0 x(µ)dµ ds α

∫ T
0 eθs+

∫ s
0 x(µ)dµ ds

α
∫ T

0 eθs+
∫ s

0 x(µ)dµ ds
∫ T

0 e2θsds


and

det(KT ) =

(
α2
∫ T

0
e2
∫ s

0 x(µ)dµ ds
)(∫ T

0
e2θsds

)
−
(

α
∫ T

0
eθs+

∫ s
0 x(µ)dµ ds

)2

=α2

[(∫ T

0
e2
∫ s

0 x(µ)dµ ds
)(∫ T

0
e2θsds

)
−
(∫ T

0
eθs+

∫ s
0 x(µ)dµ ds

)2
]
.

We obtain det(KT ) ̸= 0 if and only if α ̸= 0 and x(t) ̸= θ . The dynamical system is therefore controllable in T > 0
if and only if α ̸= 0 and x(t) ̸= θ for all t ∈ [0, T ].

3. To a stochastic solar-oil model
When using renewable energy sources such as sun, to produce electricity, some phenomena can occur at any time,

such as hurricane, etc. This is a major problem for the efficient production of renewable energies as they are intermittent.
As a result, seasonal fluctuations frequently disrupt solar energy production. It is therefore interesting to approach it
stochastically because daily and seasonal fluctuations are random.

In order to model the random effects on solar energy production, we will use a stochastic model (see [7–10]). To
obtain the desired stochastic differential equation model, we add a diffusion term to the deterministic model to model
the random perturbations of the parameters linked to seasonal fluctuations. This diffusion or volatility term will be the
product of a measurable function γ(K) which will depend on the installed solar production capacity K(t) and a Brownian
B(t) = (0, B2(t)) defined in a filtered probability space (Ω, F , {Ft}t≥0, P) where {Ft}t≥0 on F satisfies the usual
conditions (i.e. growth, continuity, while F0 contains all P-null sets). We assume that this diffusion term can be written
as γ(K) = γ ×K where γ denotes the intensity of B2(t) (environmental noise intensity).

To do this, we consider the equation (4) modelling installed and maintained solar production capacity, for which
we’d like to use a stochastic approach.

This stochastic model is constructed as in [11, 12] by adding to model (1) the diffusion γK(t)dB(t). We then obtain
the new model.

We will therefore add the diffusion term to the deterministic model in order to formulate the following stochastic
model:
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Ẋ(t) =−x(t)(X(t)−α),

K̇(t) = k(t)−θK(t)+ γK(t)dB2(t),
(10)

where X(0) = X0 > α ≥ 0 and K(0) = 0 are the initial conditions. This last model can be rewritten as:


dX(t) = (−x(t)(X(t)−α))dt +0,

dK(t) = (k(t)−θK(t))dt + γK(t)dB2(t),
(11)

here X(0) = X0 > α ≥ 0 and K(0) = 0.
We then set

Yt =

X(t)

K(t)

 , F(t, Yt) =

−x(t)(X(t)−α)

k(t)−θK(t)

 , M(t, Yt) =

0 0

0 γK(t)

.

The stochastic differential equation (11) is written as follows:


dYt = F(t, Yt)dt +M(t, Yt)dB(t),

Y0 = (X0, 0) ∈ R2,

(12)

where F(t, Yt) is the drift term or deterministic coefficient and M(t, Yt) is the diffusion term or volatility coefficient. We’ll
show that the stochastic differential equation (11) has a unique solution.

Theorem 3 For any initial condition Y (0) = (X0, 0) ∈ R2, the stochastic differential equation (11) has a unique
solution.

Proof. The function F(., .) is composed of measurable functions and is therefore measurable. Similarly, the function
M(., .) is measurable as a composite of measurable functions. The proof goes into two steps.

1. Let be Yt = (X(t), K(t)) and t ∈ [0, T ], we have:

∥F(t, Yt)∥+ |M(t, Yt)|=
√
(γK(t))2 +

√
(αx(t)− x(t)X(t))2 +(k(t)−θK(t))2.

Let’s find a majoration for each of these terms. Since we’re working with positive quantities, we use the inequality
(a−b)2 ⩽ a2 +b2, for all a, b ≥ 0 to obtain the majoration of each terms. One has

(αx(t)− x(t)X(t))2 ⩽ (αx(t))2 +(x(t)X(t))2

and
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(k(t)−θK(t))2 ⩽ (k(t))2 +(θK(t))2.

So we have

∥F(t, Yt)∥+ |M(t, Yt)|⩽
√
(γK(t))2 +

√
(αx(t))2 + k(t)2 +(x(t)X(t))2 +(θK(t))2.

Since the functions x(t) and k(t) are respectively the instantaneous rate of extraction of oil and the instantaneous
rate of purchase of solar panels, there are two positive constants xmax and kmax such as x(t) ≤ xmax et k(t) ≤ kmax, for all
t ∈ [0, T ] P−p.s, which implies that

∥F(t, Yt)∥+ |M(t, Yt)| ≤
√

γ2K(t)2 +
√

α2x2
max + k2

max + x2
maxX(t)2 +θ 2K(t)2.

So

∥F(t, Yt)∥+ |M(t, Yt)| ≤C(1+∥Yt∥),

with

C =
√
[x2

max ∨ (γ2 +θ 2)]∨
√

α2x2
max + k2

max.

2. Let be Y1(t) = (X1(t), K1(t)), Y2(t) = (X2(t), K2(t)) and t ∈ [0, T ]. Let’s show that

∥F(t, Y1(t))−F(t, Y2(t))∥+ |M(t, Y1(t))−M(t, Y2(t))|⩽ D∥Y1(t)−Y2(t)∥ .

For this we calculate ∥F(t, Y1(t))−F(t, Y2(t))∥ and |M(t, Y1(t))−M(t, Y2(t))|.
One has

∥F(t, Y1(t))−F(t, Y2(t))∥=

∥∥∥∥∥∥∥
−x(t)(X1(t)−α)

k(t)−θK1(t)

−

−x(t)(X2(t)−α)

k(t)−θK2(t)


∥∥∥∥∥∥∥

that is

∥F(t, Y1(t))−F(t, Y2(t))∥=

∥∥∥∥∥∥∥
x(t)(X2(t)−X1(t))

θ(K2(t)−K1(t))


∥∥∥∥∥∥∥
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and

|M(t, Y1(t))−M(t, Y2(t))|=

∣∣∣∣∣∣∣
0 0

0 γK1(t)

−

0 0

0 γK2(t)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
0 0

0 γ(K1(t)−K2(t))


∣∣∣∣∣∣∣ .

Let’s calculate

A = ∥F(t, Y1(t))−F(t, Y2(t))∥+ |M(t, Y1(t))−M(t, Y2(t))| .

One has

A =
√
[x(t)(X2(t)−X1(t))]2 +[θ(K2(t)−K1(t))]2 +

√
[γ(K1(t)−K2(t))]2

⩽
√

x2
max (X2(t)−X1(t))

2 +θ 2 (K2(t)−K1(t))
2 +

√
γ2 (K2(t)−K1(t))

2

because x(t)≤ xmax for all t ∈ [0, T ] P−p.s. Therefore

A ≤ D∥Y1(t)−Y2(t)∥

withD=
√

x2
max ∨ (θ 2 + γ2). Since the hypotheses of the existence and uniqueness theorem for the solution of a stochastic

differential equation are satisfied, we can conclude that the equation (11) has a unique solution.
Lemma 1 Let be Y 1(t) and Y 2(t) two solutions of the stochastic differential equation (11), that is

Y 1(t) = y1 +
∫ t

0
F(s, Y 1(s))ds+

∫ t

0
M(s, Y 1(s))dBs

and

Y 2(t) = y2 +
∫ t

0
F(s, Y 2(s))ds+

∫ t

0
M(s, Y 2(s))dBs,

where y1 = Y 1(0) and y2 = Y 2(0). Then
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E

[
sup
[0, T ]

∣∣Y 1(t)−Y 2(t)
∣∣2]≤ βT (y1 − y2)2,

with βT depending on T .
Proof. First, we calculate the difference between Y 1(t) and Y 2(t):

Y 1(t)−Y 2(t) = y1 − y2 +
∫ t

0

[
F(s, Y 1(s))−F(s, Y 2(s))

]
ds+

∫ t

0

[
M(s, Y 1(s))−M(s, Y 2(s))

]
dBs.

Let’s calculate F(s, Y 1(s))−F(s, Y 2(s)) and M(s, Y 1(s))−M(s, Y 2(s)).
We have

F(s, Y 1(s))−F(s, Y 2(s)) =

x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))


and

M(s, Y 1(s))−M(s, Y 2(s)) =

0 0

0 γ(K1(s)−K2(s))

 .

If we set A = Y 1(t)−Y 2(t), we have

∥A∥=
∥∥∥y1 − y2 +

∫ t

0

[
F(s, Y 1(s))−F(s, Y 2(s))

]
ds+

∫ t

0

[
M(s, Y 1(s))−M(s, Y 2(s))

]
dBs

∥∥∥
that is

∥A∥=

∥∥∥∥∥y1 − y2 +
∫ t

0

x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))

ds+
∫ t

0

0 0

0 γ(K1(s)−K2(s))

dBs

∥∥∥∥∥.

Consequently,

∥A∥ ≤
∥∥y1 − y2∥∥+

∥∥∥∥∥∥∥
∫ t

0

x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))

ds

∥∥∥∥∥∥∥+
∥∥∥∥∥∥∥
∫ t

0

0 0

0 γ(K1(s)−K2(s))

dBs

∥∥∥∥∥∥∥ .
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Let’s take the squares of the two members of this inequality. The use of following inequality: (a+b+ c)2 ≤ 3a2 +

3b2 +3c2 which is true for all a, b, c ∈ R, implies

∥A∥2 ≤3
∥∥y1 − y2∥∥2

+3

∥∥∥∥∥∥∥
∫ t

0

x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))

ds

∥∥∥∥∥∥∥
2

+3

∥∥∥∥∥∥∥
∫ t

0

0 0

0 γ(K1(s)−K2(s))

dBs

∥∥∥∥∥∥∥
2

.

By taking the sup on [0, T ] and the expectation, we have:

E

[
sup
[0, T ]

∥A∥2

]
≤3(y1 − y2)2 +3E

 sup
[0, T ]

∥∥∥∥∥∥∥
∫ t

0

x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))

ds

∥∥∥∥∥∥∥
2

+3E

 sup
[0, T ]

∥∥∥∥∥∥∥
∫ t

0

0 0

0 γ(K1(s)−K2(s))

dBs

∥∥∥∥∥∥∥
2 .

Let us set

B = E

 sup
[0, T ]

∥∥∥∥∥∥∥
∫ t

0

x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))

ds

∥∥∥∥∥∥∥
2

and

D = E

 sup
[0, T ]

∥∥∥∥∥∥∥
∫ t

0

0 0

0 γ(K1(s)−K2(s))

dBs

∥∥∥∥∥∥∥
2 .

The use of Cauchy-Schwarz inequality gives:
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B ≤E

 sup
[0, T ]

((∫ t

0
(1)2ds

) 1
2
)2


∫ t

0

∥∥∥∥∥∥∥
x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))


∥∥∥∥∥∥∥

2

ds


1
2


2

≤E

 sup
[0, T ]

t
∫ t

0

∥∥∥∥∥∥∥
x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))


∥∥∥∥∥∥∥

2

ds



≤E

T
∫ t

0

∥∥∥∥∥∥∥
x(s)(X2(s)−X1(s))

θ(K2(s)−K1(s))


∥∥∥∥∥∥∥

2

ds

 .

This gives us:

B ≤TC1

∫ t

0
E
[∥∥Y 1(s)−Y 2(s)

∥∥2
]

ds,

where C1 = xmax ∨θ .
Moreover, using Doob’s inequality [13], we obtain:

D =E

 sup
[0, T ]

∥∥∥∥∥∥∥
∫ t

0

0 0

0 γ(K1(s)−K2(s))

dBs

∥∥∥∥∥∥∥
2

≤4E

∫ t

0

∥∥∥∥∥∥∥
0 0

0 γ(K1(s)−K2(s))


∥∥∥∥∥∥∥

2

ds



≤4γ2
∫ t

0
E
[∥∥Y 1(s)−Y 2(s)

∥∥2
]

ds.

Using the inequalities obtained for B and D, we have:

E

[
sup
[0, T ]

∥A∥2

]
≤3(y1 − y2)2 +3TC1

∫ t

0
E
[∥∥Y 1(s)−Y 2(s)

∥∥2
]

ds

+3×4γ2
∫ t

0
E
[∥∥Y 1(s)−Y 2(s)

∥∥2
]

ds.

which can be rewritten as
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E

[
sup
[0, T ]

∥∥Y 1(t)−Y 2(t)
∥∥2
]
≤ 3(y1 − y2)2 +(3TC1 +12γ2)

∫ t

0
E
[∥∥Y 1(s)−Y 2(s)

∥∥2
]

ds.

Let us set h(t) = E
[
sup[0, T ]

∥∥Y 1(t)−Y 2(t)
∥∥2
]
. One has h(.) is bounded on [0, T ] and

h(t)≤ 3(y1 − y2)2 +3(TC1 +4γ2)
∫ t

0
h(s)ds, ∀s ∈ [0, T ].

Applying Gronwall’s lemma, we then have:

h(t)≤3(y1 − y2)2 × exp
[
(3TC1 +12γ2)T

]
≤ βT (y1 − y2)2,

where βT = 3exp
[
(3TC1 +12γ2)T

]
, which completes the proof.

As the dynamical system (1) is controllable, we now move on to the search for the optimal control, using the
maximum Pontryagin’s principle at infinite horizon.

4. Formulation of an optimal control problem
In this section, we characterize the optimal control of the problem (see [14–16]). To do so, we take an extension of

the objective function introduced in [5] because the maintenance cost is applied to all installed solar production capacity:

f 0(u(t), X(t), K(t)) = p(t)(x(t)+ y(t))− cxx(t)− cyy(t)−PKk(t)−CK(1−θ)K(t), (13)

where u(.) is a control that we choose among the functions x(.), y(.) and k(.). The control functions are respectively
the instantaneous oil extraction rate, the flow from solar production and the instantaneous purchase rate of the solar
panels. It is necessary to take these control functions bounded. Therefore, we have x(.) ∈ [0, xmax], y(.) ∈ [0, ymax] and
k(.)∈ [0, kmax]where xmax, ymax and kmax are strictly positive maximum values. We consider the following optimal control
problem, where r > 0 is the discount rate:

(P) :



max
u

∫ ∞

0
e−rt f 0(u(t), X(t), K(t))dt,

s.c



Ẋ(t) =−x(t)(X(t)−α), X(0) = X0, X(t)≥ 0,

K̇(t) = k(t)−θK(t), K(0) = 0, K(t)≥ 0,

x(t), y(t)≥ 0, k(t)≥ 0, K(t)− y(t)≥ 0.

Note that the y(.) function is not in the state equations.
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We use the maximum Pontryagin’s principle at infinite horizon to characterize the optimal control. To do so, we first
define the Hamiltonian H , associated with the problem by means of the previously defined cost function and the scalar
product between the adjoint vector (λX , λK) and the second members of the state equations:

H (t, Y (t), u(t), λX (t), λK(t)) =p(t)(x(t)+ y(t))− cxx(t)− cyy(t)−PK(t)k(t)

−CK(1−θ)K(t)−λX (t)x(t)(X(t)−α)+λK(t)(k(t)−θK(t)) .

(14)

We define now the Lagrangian L in order to take into account all constraints:

L (t, Y (t), u(t),λX (t), λK(t), γx, γy, γk, γK) =p(t)(x(t)+ y(t))− cxx(t)− cyy(t)−PK(t)k(t)

−CK(1−θ)K(t)−λX (t)x(t)(X(t)−α)+λK(t)(k(t)−θK(t))

+ γxx(t)+ γyy(t)+ γkk(t)+ γK(K(t)− y(t)).

(15)

We have the following theorem.
Theorem 4 Let (Y ∗(.), u∗(.)) be an optimal pair for the control problem (P). Then there exists a continuously

differentiable (λ (.) = (λX (.), λK(.)) : R+ → R2 such that, for any t ≥ 0,


λ̇X (t) = rλX (t)−

∂L

∂X
,

λ̇K(t) = rλK(t)−
∂L

∂K
,

with the transversality conditions

lim
t→+∞

e−rtX(t)λX (t) = 0

and

lim
t→+∞

e−rtK(t)λK(t) = 0.

Moreover, we have the maximization condition:

H (t, X∗(t), K∗(t), u∗(t), λ ∗(t)) = max
u

H (t, X(t), K(t), u(t), λ (t)).

Proof. For the proof of this theorem, we apply the maximum Pontryagin’s principle to an infinite horizon. Therefore,
the system of adjoint equations becomes:
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λ̇X (t) = (r+ x(t))λX (t),

λ̇K(t) = (r+θ)λK(t)+CK(1−θ)− γK ,

which is equivalent to


λX (t) = λX (0)ert+

∫ t
0 x(s)ds,

λK(t) = λK(0)e(r+θ)t − CK(1−θ)− γK

r+θ
,

where λX (0) et λK(0) are two non-zero constants. This gives us the existence of λ (.) = (λK(.), λK(.)).
In our case, the Lagrangian is linear with respect to each component of the optimal control u∗(.)= (x∗(.), y∗(.), k∗(.)),

thus we have the following proposition:
Proposition 2 The components of the optimal control u∗(.) = (x∗(.), y∗(.), k∗(.)) for the control problem (P) are

of bang-bang type.
Proof. Using the Lagrangian which is linear with respect to x, y and k, the optimality conditions give



∂L

∂x
= p(t)− cx −λX (t)(X(t)−α)+ γx,

∂L

∂y
= p(t)− cy + γy − γK ,

∂L

∂k
=−PK(t)+λK(t)+ γk,

(16)

which are independent of x, y and k, so the controls x∗(.), y∗(.) and k∗(.) are bang-bang.
We have just proved that the components of the optimal control are of bang-bang type. We are going to state and

prove a theorem in order to characterize each component of this optimal control u∗(.) = (x∗(.), y∗(.), k∗(.)).
Theorem 5 Let u∗(.) = (x∗(.), y∗(.), k∗(.)) be the optimal control of the control problem (P). The optimal controls

u∗1(.) = x∗(.), u∗2(.) = y∗(.) and u∗3(.) = k∗(.) are characterized as follows:

u∗1(t) = x∗(t) =



0 i f t >
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
,

? i f t =
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
,

xmax i f t <
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
,
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u∗2(t) = y∗(t) =



0 i f p(t)< cy + γK − γy,

? i f p(t) = cy + γK − γy,

ymax i f p(t)> cy + γK − γy,

and

k∗(t) =



0 i f t <
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
,

? i f t =
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
,

kmax i f t >
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
.

Proof. The optimality conditions are given by equation (16). According to the previous proposition, the components
of the optimal control u∗(.) i.e. x∗(.), y∗(.) and k∗(.) are of bang-bang type. Let’s define φi the switching functions for
u∗i , i ∈ {1, 2, 3}, where u1 = x, u2 = y and u3 = k:

φ1(t) =
∂L

∂u1
=

∂L

∂x
=p(t)− cx −λX (t)(X(t)−α)+ γx,

φ2(t) =
∂L

∂u2
=

∂L

∂y
=p(t)− cy + γy − γK ,

φ3(t) =
∂L

∂u3
=

∂L

∂k
=−PK(t)+λK(t)+ γk.

We have u∗1(t) = x∗(t) = 0 if and only if φ1(t)< 0, that is

p(t)− cx −λX (t)(X(t)−α)+ γx < 0.

Replacing λK(t) by its expression, we obtain:

ert >
p(t)+ γx − cx

(X0 −α)λX (0)
.

This is equivalent to writing:
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rt > ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
,

since p(t)+ γx > cx, ∀t ∈ [0, T ] and (X0 −α)λX (0)> 0.
That is

t >
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
.

Moreover, we have

u∗1(t) = x∗(t) =



0 i f t >
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
,

? i f t =
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
,

xmax i f t <
1
r

ln
[

p(t)+ γx − cx

(X0 −α)λX (0)

]
.

But u∗2(t) = y∗(t) = 0 if and only if φ2(t)< 0 that is p(t)< cy + γK − γy. So we have

u∗2(t) = y∗(t) =



0 i f p(t)< cy + γK − γy,

? i f p(t) = cy + γK − γy,

ymax i f p(t)> cy + γK − γy.

Finally, we have u∗3(t) = k∗(t) = 0 if and only if φ3(t)< 0 that is

−PK(t)+λK(t)+ γk < 0.

After replacing λK(t) with its expression, we obtain

e(r+θ)t <
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)
,

that is

t <
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
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and hence

k∗(t) =



0 i f t <
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
,

? i f t =
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
,

kmax i f t >
1

(r+θ)
ln
(
(r+θ)(PK(t)− γk)+CK(1−θ)− γK

λK(0)(r+θ)

)
.

5. Existence of the equilibrium state
In this section, we prove the existence of the equilibrium state by considering the canonical system composed with

the two state equations and the two adjoint equations. We assume that the oil source is being exploited, that is x(t) > 0
for all t ∈ [0, T ]. We have

Theorem 6 The following system



Ẋ =−xX +αx,

K̇ = k−θK,

λ̇X = (r+ x)λX ,

λ̇K = (r+θ)λK +CK(1−θ)− γK ,

(17)

has an equilibrium state.
Proof. This system has an equilibrium state (X∗, K∗, λ ∗

X , λ ∗
K) if and only if (X∗, K∗, λ ∗

X , λ ∗
K) is solution of



−xX +αx = 0,

k−θK = 0,

(r+ x)λX = 0,

(r+θ)λK +CK(1−θ)− γk = 0.

Let J be the associated Jacobian matrix defined by:

J =


−x(t) 0 0 0

0 −θ 0 0
0 0 r+ x(t) 0
0 0 0 r+θ

 .

We have
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det(J) = x(t)×θ × (r+ x(t))× (r+θ). (18)

One has det(J)> 0 because r, θ and x(t) for all t ∈ [0, T ] are strictly positive. So there is a unique equilibrium state.
Now we study the stability of this equilibrium state which we have previously proved the existence.
Theorem 7 The equilibrium state of the System (17) is a saddle point.
Proof. The proof is based on a theorem of [17]. To do so, we compute and study the sign of the sum of all diagonal

minors of order 2 of the Jacobian matrix which is denoted by Z:

Z =

∣∣∣∣∣∣∣
−x(t) 0

0 r+ x(t)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
−θ 0

0 r+θ

∣∣∣∣∣∣∣+2×

∣∣∣∣∣∣∣
0 0

0 0

∣∣∣∣∣∣∣ ,

that is

Z =−[x(t)(r+ x(t))+θ(r+θ)]. (19)

Thus Z < 0 because r, θ and x(t), for all t ∈ [0, T ], are strictly positive.

Let us now compute det(J)−
(

Z
2

)2

. After calculations, we obtain

det(J)−
(

Z
2

)2

=
−(x(t)(r+ x(t))−θ(r+θ))2

4
≤ 0

where

det(J) = x(t)θ(r+ x(t))(r+θ)> 0.

Therefore, 0 < det(J)≤
(

Z
2

)2

and we can conclude that this equilibrium point is a saddle point.

5.1 Absence of limit cycle

We state and prove the following theorem to show that there is no cyclical behavior (see [17–19]) between the amount
of available pre-oil and the installed solar production capacity.

Theorem 8 For any time t ≥ 0, there is no cyclical behavior between the available oil stock X(t) and the installed
solar generation capacity K(t).

Proof. To prove the existence of a limit cycle between the quantity of available oil X(t) and the solar production
capacity K(t), it is necessary to know the signs of the determinant of the Jacobian matrix J and of the sum of all the
diagonal minors of order 2 of the Jacobian matrix Z computed at the equilibrium point. In the previous section, we found
that the determinant of the Jacobian matrix given by equation (18) is strictly positive and that the sum of all diagonal
minors of order 2 of the Jacobian matrix Z given by equation (19) is strictly negative. We can conclude that there is no
cyclic behavior between the amount of available oil X(t) and the installed solar generation capacity K(t).
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6. Conclusion
In this work, we shown that by controlling the oil extraction rate and the instantaneous purchase rate of solar panels,

we can increase solar production capacity while considerably reducing the amount of oil used in order to maximize the
expected benefits. Furthermore, we proved that the dynamical system admits a maximal solution that it is controllable
and we formulated the stochastic model for which we proved the existence of a unique solution. We characterized the
optimal control components u∗(.) = (x∗(.), y∗(.), k∗(.)). We proved the existence of the equilibrium state and that it is a
saddle point. Finally, we have shown that at any time t, there is no cyclical behavior between the amount of oil available
and the installed solar production capacity. Following on from the work carried out in this paper, it would be interesting to
study a model taking into account oil, sun, wind, and its sensitivity. The random aspect of wind power generation should
be taken into account and this could provide a new case study. In this paper, we focused on an optimal control problem
for a stochastic model. Another approach could be done about stability analysis and/or resource limitation settings, as it
has been done in [20, 21] for COVID-19.
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