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Abstract: The local convergence analysis of iterative methods is important since it demonstrates the degree of difficulty  
for choosing initial points. In the present study, we introduce generalized multi-step high order methods for solving 
nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative which actually 
appears in the methods in contrast to earlier works using hypotheses on higher order derivatives. This way we extend the 
applicability of these methods. The analysis includes the computable radius of convergence as well as error bounds based 
on Lipschitz-type conditions not given in earlier studies. Numerical examples conclude this study.
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1. Introduction
Iterative regularization models are changing the face of the world by offering the scientists and mathematicians the 

opportunity to examine many real life problems, with a far greater generality and precision. To make use of the full power 
of the iterative methods, they must have a firm grip on numerical techniques developed for various mathematical models 
and their analysis. Application of the iterative schemes is found in any scientific field, where real world problems are 
modeled into mathematical equations.

Iterative schemes/methods are general terminology used for certain classes of numerical schemes where the solution 
procedure starts with an approximate value/function and then apply the method repeatedly to obtain a better approximation. 
Many mathematical equations are in the form (or are reduced to),

F(x) = 0                                                                                                                                 (1)

where F : D ⊆  B1 → B2 is a Fréchet-differentiable operator, B1 and B2 are Banach spaces and D is a nonempty open convex 
subset of B1. Such equations can be linear or nonlinear in nature and there are various iterative schemes used to obtain 
the solution. Also, these iterative schemes are useful in solving many optimization problems from different disciplines. 
Many of these methods are firmly based on various calculus and functional analysis concepts and they can be effectively 
implemented by taking the advantage of the speed and the power of modern computer technologies. In particular three step 
methods have been introduced in the special case when B1 =B2 =

i  (i a natural number) to solve nonlinear systems [1-3, 5-7, 12, 

13, 16, 18-21, 25-34]. We introduce in a Banach space setting multi-step method consisting of q+2 steps, q ∈   defined for each n 
= 0, 1, 2, . . . by for x0 ∈  D an initial point
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         (1) 1
0 ( ) ( ) ( )n n n n ny x x F' x F xϕ −= = −

           1( , )n n nz x yϕ=

         (1) ( , ) ( )n n n n nz z x y F zϕ= −
                .
                .
                .
 ( 2) ( 2)( 1) ( , ) ( )q q

n n n n nz q z x y F zϕ− −− = −                                                                                  (2)

        ( 1) ( 1)
1 ( , ) ( )q q

n n n n nx z x y F zϕ− −
+ = −

( )1 1 11( , ) ( ) ( ) ( ) ( )
2n n n n n nx y F' x F' x F' y F' xϕ − − −= +

Here functions are defined: 2
0 1 1 1: , :D B D Bϕ ϕ→ →  are iteration operators. Usually 1ϕ  is an iteration operator of 

convergence order p ≥  2. The order of convergence was shown to be p+2q [32]. Numerous popular iterative methods are 
special cases of method (2) [2–11,14,15,17–20,22–28,30–34] (see Section 3).

The local convergence analysis usually involves Taylor expansions and con-ditions on higher order derivatives not 
appearing in these methods. Moreover, these approaches do not provide a computable radius of convergence and error 
estimates on the distances *

nx x− . Therefore the initial point is a shot in the dark. These problems limit the usage of these 
methods. That is why in the present study using only conditions on the first derivative, we address the preceding problems 
in the more general setting of methods (2) and Banach space.

We find computable radii of convergence as well as error bounds on the distances based on Lipschitz-type conditions. 
The order of convergence is found using computable order of convergence (COC) or approximate computational order of 
convergence (ACOC) [31] (see Remark 4) that do not require usage of higher order derivatives. This way we expand the 
applicability of three step method (2) under weak conditions.

The rest of the study is organized as follows: Section 2 contains the local convergence of the method (2), wherein the 
concluding Section 3 applications and numerical examples can be found.

2. Local convergence analysis
The local convergence analysis of the method (2) is based on some parameters and scalar functions that appear in the 

proof.
We shall adopt the notation for { } { }1 1 and 0, ( , )  and ( , ) :x B U x y x y U x y B x yµ µ µ µ µ∈ > = ∈ − < = ∈ − ≤ . The 

local convergence analysis of method (2) is based on conditions (A):
(A1) There exist a continuous and increasing function 0 : (0, ) (0, )w ∞ → ∞ , such that equation

w0(t) - 1=0                                                                                                                               (3)

has a least positive zero denoted by 2ρ− . Define functions g−2 and h−2 on the interval 2(0, )ρ−  with values in (0, )∞  as

( )1
0

2 2 2
0

(1 )
( )  and ( ) ( ) 1

1 ( )
w t d

g t h t g t
w t
θ θ

− − −

∫ −
= = −

−

where w is a given continuous and increasing function defined on 2(0, )ρ−  with values in (0, )∞ . Equation h−2(t)=0 has a 
least zero in 2(0, )ρ−  denoted by r−2;

(A2) There exists a continuous and increasing function g-1 on 1(0, )ρ− , 1 2( )p p− −≤  with values in (0, )∞  such that 
equation 1 1( ) ( ) 1 0h t g t− −= − =  has a least zero in 1(0, )ρ−  denoted by r−1.

(A3) Equations w0 (gi−1(t)t) - 1 = 0, i = 0, 1, 2, ... q-1 have least solutions 1 1(0, ),i i i ip pρ ρ− −∈ ≤ , where the gi functions 
are defined as
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( ) ( )
( ) ( )( )

( )
( ) ( )( ) ( )

10 0 1 0 0 2
2 1 1 1 10

0 0 1 0 0 2

( ) ( ) ( ) ( )1( ) [ ( ) ( ) ] ( )
21 ( ) 1 ( ) 1 ( ) 1 ( )

i i
i i i i i

i i

w t w g t t w t w g t t
g t g g t t w g t t d g t

w t w g t t w t w g t t
θ θ− −

− − − −
− −

 + +
= + + ×  − − − − 

∫

and w1 is a continuous and increasing function defined on 1(0, )ρ−  with values in 1(0, )ρ− . Moreover, define functions 
hi(t) = gi(t) - 1. Suppose equations hi(t) = 0 have least solutions on (0, pi) denoted by ri. Define a radius of convergence r by

min{ }, 2, 1,0,1,..., 1jr p j q= = − − −                                                                                      (4)

Then, for each [0, )t r∈

0 < w0(t) < 1                                                                                                                         (5)

0 < w0(gj-2(t)t) < 1                                                                                                                 (6)

and

0 < gj(t) < 1                                                                                                                           (7)

(A4) 1 2:F D B B⊆ →  is a continuously Fréchet differentiable operator.
(A5) There exists x*∈D such that * * 1

2 1( ) 0 and ( ) ( , )F x F' x L B B−= ∈ .
(A6) There exists a continuous and increasing function w0 defined on the interval (0, )∞  with values in itself such that 

for x ∈  D

( ) ( )* 1 * *
0( ) ( ) ( )F' x F' x F' x w x x− − ≤ −

*
0 2Set ( , )D D U x ρ−= ∩

(A7) There exists a continuous and increasing function g-1 on 2(0, )ρ−  with values in (0, )∞ , and an iteration function 
1 0 0 1 2: ( , )D D L B Bϕ × →  such that for all x∈D0 

* * *
1 2( , ) ( )x y x g x x x xϕ −− ≤ − −

1where ( ) ( )y x F' x F x−= −

*
1 1Set ( , )D D U x ρ−= ∩

(A8) There exist continuous and increasing functions w and w1 defined on 1(0, )ρ−  with values in (0, )∞  such that for 
all 1,x y D∈

( ) ( )* 1( ) ( ) ( )F' x F' y F' x w y x− − ≤ −

and

( )* 1 *
1( ) ( )F' x F' x w x x− ≤ −

(A9) *( , )U x r D⊂ , where r is defined by (4).
(A10) There exists R ≥  r such that 1

0 0 ( ) 1w R d∫ θ θ < . Set *
2 ( , )D D U x R= ∩ .

Next, we present the local convergence analysis of the method (2) under the conditions (A), the classical Banach 
lemma on invertible operators [17], and the preceding notation.

Theorem 2.1 Suppose that the “(A)” conditions hold. Then sequence { }nx  generated for *
0 ( , )x U x r∈  by method (2) 
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is well defined in U(x*, r), remains in U(x*, r) for each n = 0, 1, 2, . . . and converged to x*. Moreover, the following error 
bounds hold

( )(1) * * * *
2n n n ny x g x x x x x x r−− ≤ − − ≤ − <                                                                      (8)

( )* * * *
1n n n nz x g x x x x x x r−− ≤ − − ≤ − <                                                                        (9)

and

( )( ) * * * *j
n i n n nz x g x x x x x x− ≤ − − ≤ −                                                                              (10)

where the iteration functions are defined previously.
Proof. Using induction, condition x0 ∈  U(x*,r) and conditions (A), we obtain that estimates (8)-(9) hold for n = 0. By (4) 

and (A6), we have

( ) ( ) ( )* 1 * *
0 0( ) ( ) ( ) 1F' x F' x F' x w x x w r− − ≤ − ≤ <

which together with the classical Banach lemma on invertible operators [?, ?] shows F'(x) is invertible with

( )
1

* *
0

1( ) '( )
1

F' x F x
w x x

− ≤
− −                                                                                        (11)

and y0 is well defined by method (2) for n = 0. Then, by (4), (A4), (A5) and (11), we get

* * 1
0 0 0 0'( ) ( )y x x x F x F x−− = − −

            
11 * * 1 * * *

0 0 0 00
= ( ) ( )[ ( ) ] ( ( )) ( ))( )F' x F' x F' x F' x x x F' x x x dθ θ− − + − − −∫

            
1 *
0 0

*
0 0

((1 )

1

w x x d

w x x

θ θ∫ − −
≤

− −

            ( )* * *
2 0 0 0g x x x x x x r−≤ − − ≤ − <                                                                          (12)

so (8) holds for n = 0 and y0 ∈  U(x*,r). Then, z0 is also well defined by the second substep of method (2) for n = 0. So, by 
(4) and (A7)

( )* * * * *
0 1 0 0 1 0 0 0( , )z x x y x g x x x x x xϕ −− = − ≤ − − ≤ −                                                           (13)

so (9) holds for n = 0 and z0 ∈  U(x*,r). Then, we obtain by (4), (6), (7)(for j = 0), (11)-(??) and the third substep of the 
method (2) for n = 0 that



Volume 1 Issue 3|2020| 123 Contemporary Mathematics

(1) * * 1 1
0 0 0 0 0 0 0 0( ( ) ( )) ( ) ( , ))) ( )z x z x F' z F z F' z x y F zϕ− −− = − − + −

             * 1
0 0 0 0'( ) ( )z x F z F z E−≤ − − +

             ( )
( ) ( )
( )( ) ( )( )

* *1 *
0 0 0 00

* * *
0 0 0 0 0 0

((1 )

1 1 1

w x x w z xw z x d

w z x w x x w z x

θ θ  − + −∫ − − ≤ +  − − − − − − 

                

( ) ( )
( )( ) ( )( )

* *
10 0 0 0 * *

1 0 00* *
0 0 0 0

1 (
2 1 1

w x x w y x
w z x d z x

w x x w y x
θ θ

 − + − + − − − − − −


∫

             ( )* * *
0 0 0 0g x x x x x x≤ − − ≤ −                                                                                   (14)

where 1
0 0 0 0 0( ) ( , ) ( )E F' z x y F zϕ−= − , so (10) holds for i = 0 and (0)

0z ∈  U(x*,r), where we also used the estimates

1* * * *
10

( ) ( ) ( ) ( ( )) ( )F x F x F x w x x x d x xθ θ= − = + − −∫                                                        (15)

( )1* 1 * *
10

( ) ( )F' x F' x w x x d x xθ θ− ≤ − −∫                                                                       (16)

and

1 1 1 1 1
0 0 0 0 0 0 0 0

1( ) ( , ) ( ) [ ( ) ( ) ( ) ( ) ]
2

F' z x y F' z F' x F' x F' y F' xϕ− − − − −− = − +

                               1 1 1 1 1
0 0 0 0 0 0

1( ) ( ) [ ( ) ( ) ( ) ( ) ]
2

F' z F' x F' x F' x F' y F' x− − − − −= − − −

                               1 1 1 1
0 0 0 0 0 0 0 0

1( ) ( ( ) ( )) ( ) ( ) ( ( ) ( )) ( )
2

F' z F' x F' z F' x F' x F' x F' y F' y− − − −= − − −

leading to

* * 1
0 0 0 0 0( ) ( ( ))( ( ) ( ))E F z E F' x F' x F z−=

                   
( ) ( )
( )( ) ( )( )

( ) ( )
( )( ) ( )( )

* * * *
0 0 0 0 0 0 0 0

* * * *
0 0 0 0 0 0 0 0

1
21 1 1 1

w x x w z x w x x w y x

w x x w z x w x x w y x

 − + − − + − ≤  − − − − − − − − 
 

                       ( )1 * *
1 0 00

w z x d z xθ θ× − −∫                                                                     (17)

Then, replacing z0
(1) by z0

(2), . . . , z0
(3), z0

(q), we get

( )( ) * * *
0 0 0

i
iz x g x x x x− ≤ − −                                                                                        (18)

In particular, we have

( ) [ )* * *
1 0 0, 0,1qx x c x x c g x x− ≤ − = − ∈                                                                     (19)

Hence, items (8)-(10) hold for n = 0. By simply replacing x0 , y0 , z0 , z0
(j) by xk , yk , zk , zk

(j), respectively in the 
preceding computations, we obtain estimates (8)-(10). Then, from the estimate
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* ( ) * * *
1

q
k n n nx x z x c x x x x+ − = − ≤ − < −                                                                      (20)

we obtain *limk kx x→∞ =  and *
1 ,kx U x r+ ∈ （ ）. The uniqueness part is obtained form the estimate

1 1 1* 1 * * *
0 00 0 0

( ) ( ( ( )) ( )) ( ) ( ) 1F' x F' a x a F' x w x a d w R dθ θ θ θ θ− + − − ≤ − ≤ <∫ ∫ ∫                (21)

where a ∈  D2 with F(a) = 0. Moreover, from (21) 
1 *

0
( ( ))Q F' a x a dθ θ= + −∫  is invertible. Then, by 0 = F(x*) − F(a) = 

Q(x*−a), we deduve x*−a.
Remark 2.2 We can compute the computational order of convergence (COC)[31] defined by

* *
1

* *
1

ln / lnn n

n n

x x x x

x x x x
ξ +

−

   − −
   =
   − −   

or the approximate computational order of convergence

1 1

1 1 2

ln / lnn n n n

n n n n

x x x x
x x x x

ξ + −

− − −

   − −
=       − −   

This way we obtain in practice the order of convergence without resorting to the computation of higher order 
derivatives appearing in the method or in the sufficient convergence criteria usually appearing in the Taylor expansions for 
the proofs of those results [5, 6, 14, 20, 25–28, 30–34]. It is worth noticing that the computation of ξ  and 1ξ  uses the method (2) and 
does not depend on Theorem 2.1 which simply guarantees convergence to x*. In particular, the computation of 1ξ  does not 
even require knowledge of x*. Indeed notice that we rely on the iterates xn picked from the method (2) which in turn rely on 
the iteration operators. Moreover, in the case of ACOC not even knowledge of the solution x* is required.

3. Numerical examples
Let us consider a specialization of method (2) to test the convergence criteria defined as

yn = xn − F'(xn)
−1 F(xn)

xn+1 = yn − F'(yn)
−1 F(yn)

Then, we have

1
0

2
0

((1 ) )
( )

1 ( )
w t d

g t
w t
θ θ

−

∫ −
=

−

and

1
0 2 2

1
0 2

((1 ) ( ) ) ( )
( )

1 ( ( ) )
w g t t d g t

g t
w g t t
θ θ− −

−
−

∫ −
=

−

Example 3.1 Let us consider a system of differential equations governing the motion of an object and given by

F1'(x) = ex , F2'(y) = (e − 1)y + 1, f3 (z) = 1

with initial conditions F1 (0) = F2 (0) = F3 (0) = 0. Let F = (F1, F, F3). Let 3 *
1 2 , (0,1), (0,0,0)TB B D U x= = = =� . Define 

function F on D for w = (x, y, z)T by
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21( ) ( 1, , )
2

x TeF w e y y z−
= − +

The Fréchet-derivative is defined by

         0          0
( ) 0   ( -1) 1   0

0          0          0

xe
F' v e y

 
 = + 
  

Notice that using the (A) conditions for x* = (0, 0, 0)T, we get 
1 1

1 1
0 1( ) ( 1) , ( ) , ( ) .e ew t e t w t e t w t e− −= − = =  The radii are

r−2 = 0.38269191223238574472986783803208 = r, r−1 = 0.38269191223238596677447276306339.

Example 3.2 Let B1 = B2 = C[0,1], the space of continuous functions defined on [0, 1] be equipped with the max 
norm. Let (0,1)D U= . Define function

F on D by

1 3

0
( )( ) ( ) 5 ( )F x x x dϕ ϕ θϕ θ θ= − ∫                                                                                          (22)

We have that

1 2

0
( ( ))( ) ( ) 15 ( ) ( )F' x x x dϕ ξ ξ θϕ θ ξ θ θ= − ∫ , for each Dξ ∈ .

Then, we get for x* = 0, that w0(t) = 7.5t, w(t) = 15t and w1(t) = 2. Then the radii are 

r−2 = 0.066666666666666666666666666666667 = r−1 = r

Examlpe 3.3 Let 31
1 2 2 2, and [ , ]B B D= = = −� . Define F on D by

3 2 5 4( ) logF x x x x x= + −

Then, we get x* = 1, w0(t) = w(t) = 96.6629073t and w1(t) = 2. Then the radii are 

r−2 = 0.0068968199414654552878434223828208 = r, r−1 = 0.0068968199414654561552051603712243.
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