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Abstract: Cross monic zero divisor graph for a commutative ring R is a connected graph, denoted by C MZ G (Zn ×
Zm[x]/⟨ f (x)⟩) with order ξ , whose vertices are non-zero zero divisors Z(R)/{0} of commutative ring, and two vertices
u,v are connected by an edge if and only if uv = 0. In this paper, we discuss energy, Laplacian energy, distance energy and
distance signless Laplacian energy forC MZ G (Z2×Zp>2[x]/⟨x2⟩) andC MZ G (Zp×Zp[x]/⟨x2⟩). Also, we determine
the normalized Laplacian energy.
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1. Introduction
Let R be a commutative ring with multiplicative identity 1 ̸= 0. If there exists x2 ∈ R (x2 ̸= 0) such that x1x2 = 0

for some x1 ∈ R (x1 ̸= 0), then x1 is referred to as a zero divisor of R. The collection of zero divisors is symbolized
by Z(R), while Z(R)/{0} = Z(R)∗ is the collection of nonzero zero divisors of R. The zero divisor graph Γ(R) of
R is a graph, where Z(R) is its node set and two different nodes y, z ∈ Z(R) are connected if yz = zy = 0. Beck [1]
established such graphs over commutative rings in his concept, he incorporated the identity and was primarily concerned
with the coloring of a commutative ring. Following that, Anderson et al. [2] updated the concept of Γ(R) by omitting
the identity of R. The finite field of order n is represented by Fn and a ring of integers modulo n by Zn. The order
of Γ(Zn) is n− 1− ϕ(n), where as ϕ is Euler’s phi function. The graph theoretic characteristics of Γ(Zn) are widely
investigated [3–5]. Shang [6] focuses on the commutativity aspects within prime near-rings, providing valuable insights
that enrich the broader understanding of ring theory. Investigation of the spectral properties of matrices associated with
graphs is always interesting and challenging. We note that the graphs associated with different algebraic structures, for
instance, power graphs [7], annihilator monic prime graph [8] and commuting graphs of groups [9, 10] have helped
to solve several problems both in algebra and combinatorics. Alali et al. [11], implies a study of algebraic structures
within Zn and their connections with topological indices and entropies, underscoring the interdisciplinary intersection of
algebra and graph theory. The adjacency matrix of G is the n× n matrix A = (ai j), where ai j = 1 if there is an edge
between vertex i and vertex j, otherwise ai j = 0. For an n-vertex graph G with adjacency matrix A having eigenvalues
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λ1 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λn, the energy E (G) is defined as E (G) =
n

∑
i=1

|λi|. This energy encapsulates essential information

about the graph’s structural properties and connectivity. Specifically, the eigenvalues serve as indicators of the graph’s
spectral characteristics, offering insights into the algebraic features of the underlying ring. Adjacency eigenvalues of zero-

divisor graphs discussed byYoung [12]. In addition to this, the Laplacian energyL E (G)=∑
i

∣∣∣∣µi −
2|E|
|V |

∣∣∣∣ of a zero divisor
graph is ascertained through the eigenvalues of its Laplacianmatrix. This Laplacian energy imparts supplementary insights
by concentrating on the connections between vertices, capturing the inherent algebraic structure of the graph. Investigating
energy and Laplacian energy in zero divisor graphs entails a detailed examination of spectral properties, adding to a
more profound comprehension of how algebraic structures and graph-theoretic characteristics interact within this specific
context. The distance energy of a graph is denoted by ED and a quantitative measure that reflects the structural properties
of the graph based on distances between its vertices. It is defined as the sum of the absolute values of the eigenvalues
of the distance matrix of the graph. The distance matrix represents the pairwise distances between vertices in the graph.
Rather et al [13], probably extensively explores Laplacian eigenvalues and their ramifications for the zero divisor graph
in the domain of modular arithmetic. Similarly, distance energy [14] and distance Laplacian energy (distance signless
Laplacian energy) [15, 16], linked to the distance Laplacian matrix (distance signless Laplacian matrix) respectively, focus
on capturing the relationships between vertices while incorporating distance information (LetDL (G)=Diag(Tr)−D(G)

andDQ(G) =Diag(Tr)−D(G) be respectively, the distance Laplacian matrix and the distance signless Laplacian matrix,
where Diag(Tr) is diagonal matrix of vertex transmissions. Eigenvalues of DL (G) and DQ(G) denoted by ∂L

i and

∂Q
i . Then DL E = ∑

i
|∂L

i − t(G)| and DS L E = ∑
i
|∂Q

i − t(G)| where t(G) =
1
n ∑

i
Tr(vi)). Alhevaz et al. [17]

discusses distance signless Laplacian Estrada index combines distance information with the graph’s signless Laplacian
matrix, offering a comprehensive perspective on the graph’s structure, ultimately contributing to the advancement of graph
theory and its applications in various fields. This note aims to explore the implications of these distance based energy
measures in the context of zero divisor graphs, shedding light on their applications and significance in algebraic graph
theory. The normalized Laplacian energy is computed from the eigenvalues of this matrix and serves as a measure of
the graph’s, how efficiently information can propagate through the networks. Research on normalized Laplacian energy
explores its applications in diverse fields, including computer science, physics, and biology. Entries of the normalized
Laplacian matrix are 1 if i = j and − 1√

d(vi)d(v j)
if viv j ∈ E, otherwise 0, N L E = ∑

i=1
|δi − 1|, some recent work on

the normalized Laplacian see [18–20].
Motivated by the above articles, we investigate Laplacian energy, distance based energy, and normalized Laplacian

energy for cross monic zero divisor graph of a commutative ring. Cross monic zero divisor graph of a commutative
ring, denoted C MZ G (Zn ×Zm[x]/⟨ f (x)⟩), whose vertices are the non-zero zero divisors of the commutative ring, and
whose two vertices u,v are connected by an edge if and only if uv = 0. For example, cross monic zero divisor graph of
Z2 ×Z3[x]/⟨x2⟩ and Z3 ×Z4[x]/⟨x2⟩ is shown in Figure 1 and Figure 2. Characteristic polynomial and eigenvalues of
adjacency matrix, Laplacian matrix, distance matrix, distance Laplacian matrix and distance signless Laplacian matrix of
Figure 2 is shown in Table 1 and Table 2.

The structure of this paper is outlined as follows: In Section 2, we explore the energy and Laplacian energy of cross
monic zero divisor graphs within the commutative rings Z2 ×Zp[x]/⟨x2⟩ and Zp ×Zp[x]/⟨x2⟩. Section 3 is dedicated
to the examination of the distance energy and distance signless Laplacian energy of cross monic zero divisor graphs.
Furthermore, in Section 4, we delve into the discussion of the normalized Laplacian eigenvalues and their energy in the
context of cross monic zero divisor graphs.
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Figure 1. C MZ G (Z2 ×Z3[x]/⟨x2⟩)

Figure 2. C MZ G (Z3 ×Z4[x]/⟨x2⟩)
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Table 1. Characteristic polynomial of cross monic zero divisor of Z3 ×Z4[x]/⟨x2⟩

Characteristic Polynomial

PA (λ ) λ 18(λ +1)3(λ 2 −λ −8)2(λ 6 −λ 5 −70λ 4 −64λ 3 +768λ 2 +928λ −1024)

PD (∂ ) (∂ +1)3(∂ +2)18(∂ 2 +5∂ −2)2(∂ 6 −49∂ 5 −886∂ 4 +200∂ 3 +7424∂ 2 +368∂ −2528)

PL (µ) (µ −11)3(µ −3)9(µ −2)7µ(µ2 −12µ +10)2(µ7 −80µ6 +2567µ5 −42346µ4 +381423µ3

−1825964µ2 +4077353µ −2779770)

PDL (∂ L) (∂ L −76)7(∂ L −67)9(∂ L −51)3((∂ L)2 −120∂ L +3543)2((∂ L)8 −378(∂ L)7

+60299(∂ L)6 −5261384(∂ L)5 +271088615(∂ L)4 −8240009810(∂ L)3 +136424567565(∂ L)2

−935438945868(∂ L)−331111761120)

PDQ (∂ Q) (∂ Q −72)7(∂ Q −63)9(∂ Q −49)3((∂ Q)2 −110∂ Q +2953)2((∂ Q)8 −468(∂ Q)7 +92537(∂ Q)6

−10160396(∂ Q)5 +680149555(∂ Q)4 −28492198500(∂ Q)3 +730496306515(∂ Q)2

−10489822459516(∂ Q)+64635829556032)

Table 2. Eigenvalues of cross monic zero divisor of Z3 ×Z4[x]/⟨x2⟩

Matrix 1 Eigenvalues

A −6.1528(1) −3.2505(1) −2.3914(1) −2.3723(2) −1(3) 0(18) 0.7203(1)

3.3723(2) 3.4446(1) 8.6299(1)

L 0(1) 1.1454(1) 1.8769(2) 2(7) 3(9) 5.1863(1) 7(1)

10.1231(2) 10.9443(1) 11(3) 15(1) 17.6425(1) 23.0814(1)

D −13.7316(1) −5.3723(2) −2.9610(1) −2(18) −1(3) −0.6292(1) 0.3723(2)

0.5659(1) 2.7701(1) 62.9864(1)

DL −0.3371(1) 34.5707(1) 35(1) 46.8282(1) 51(3) 51.5665(1) 52.4502(2)

63(1) 64.0535(1) 67(9) 67.5498(2) 76(7) 83.3182(1)

DQ 31(1) 32.8453(1) 45.2539(1) 46.5147(2) 49(3) 52.6971(1) 57.9917(1)

59(1) 60.3958(1) 63(9) 63.4853(2) 72(7) 128.8161(1)

2. Energy andLaplacian energy of crossmonic zero divisor graphs of commutative
ring
Theorem 1 Energy of cross monic zero divisor graph of commutative ring Z2 ×Zp[x]/⟨x2⟩ is

E (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) = 1
4

(
6
√

p(p−1)+3p
3
2 +4p+2

)
where p is prime number greater than 2.

Proof. Let the cross monic zero divisor graph of Z2 ×Zp[x]/⟨x2⟩ be a simple graph, then the adjacent matrix is
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A (C MZ G ) =





O J O O

J O J O

O J J −I J

O O J O

Now |A (C MZ G )−λI |= 0. Then the characteristic polynomial is λ p2−3(λ +1)p−2(λ 4−(p−2)λ 3−4pτpλ 2+

p(p−1)(p−2)λ ). The eigenvalues satistifying
√

p(p−1)≤ λi ≤ (
p
2
√

p)+1. Then

SpecA (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =

 −1 0
√

p(p−1)

√
p(p−1)

2

√
p(

p
2
)+1

2
√

p(
p
2
)+1

p−1 p2 −3 1 1 1 1



E (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =
p2+p−1

∑
i=1

|λi|

= (p−1)+(p2 −3)(0)+
√

p(p−1)+

√
p(p−1)

2
+

√
p( p

2 )+1
2

+
√

p
( p

2

)
+1

=
3
2

√
p(p−1)+ p−1+

1
4

(
p

3
2 +2

)
+

1
2

(
p

3
2 +2

)

=
3
2

√
p(p−1)+

3p
3
2

4
+ p+

1
2

=
1
4

(
6
√

p(p−1)+3p
3
2 +4p+2

)
.

Theorem 2LetC MZ G be a commutative ringZp×Zp[x]/⟨x2⟩ of order 2p2− p−1 and size
1
2
(
4p3 −7p2 + p+2

)
,

then

E (C MZ G (Zp ×Zp[x]/⟨x2⟩))≤ 4p3 −7p2 + p+2
2p2 − p−1

+

√√√√2p2 − p−2

[
4p3 −7p2 + p+2−

[
4p3 −7p2 + p+2

2p2 − p−1

]2
]

where p is odd prime.
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Proof. Let the cross monic zero divisor graph of Zp ×Zp[x]/⟨x2⟩ be a simple graph with

|V |= 2p2 − p−1,

|E|= 1
2
(4p3 −7p2 + p+2),

then adjacent matrix is

A (C MZ G (Zp ×Zp[x]/⟨x2⟩)) =





J −I J J O

J O O J

J O O O

O J O O

Suppose that λ1 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λ2p2−p−1 are the eigenvalues of C MZ G (Zp ×Zp[x]/⟨x2⟩). Then, as is well
known, we have

λ1 ≥
4p3 −7p2 + p+2

2p2 − p−1

(see [21], for example). Moreover, since

2p2−p−1

∑
i=1

λ 2
i = 4p3 −7p2 + p+2

must hold (for example, see [22]), we have

2p2−p−1

∑
i=2

λ 2
i = 4p3 −7p2 + p+2−λ 2

1 .

Using this together with the Cauchy-Schwartz inequality, applied to the vectors (|λ2|, |λ3|, . . . , |λ2p2−p−1|) and
(1, 1, 1, . . . , 1) with 2p2 − p−2 entries, we obtain the inequality

2p2−p−1

∑
i=2

|λi| ≤
√

(2p2 − p−2)(4p3 −7p2 + p+2−λ 2
1 )

Thus, we must have
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E (C MZ G )≤ λ1 +
√
(2p2 − p−2)(4p3 −7p2 + p+2−λ 2

1 )

Now, since the function f (y) = y+
√

(2p2 − p−2)(4p3 −7p2 + p+2− y2) decreases on the interval

√
4p3 −7p2 + p+2

2p2 − p−1
< y ≤

√
4p3 −7p2 + p+2

in veiw of 4p3 − 7p2 + p+ 2 ≥ 2p2 − p− 1, we see that

√
4p3 −7p2 + p+2

2p2 − p−1
≤ 4p3 −7p2 + p+2

2p2 − p−1
≤ λ1 must hold,

and hence f (λ1) ≤ f (
4p3 −7p2 + p+2

2p2 − p−1
) must hold as well. From this fact, and inequality E (C MZ G ) ≤ λ1 +√

(2p2 − p−2)(4p3 −7p2 + p+2−λ 2
1 ), it immediately follows that inequality E (C MZ G ) ≤ 4p3 −7p2 + p+2

2p2 − p−1
+√√√√2p2 − p−2

[
4p3 −7p2 + p+2−

[
4p3 −7p2 + p+2

2p2 − p−1

]2
]
holds. Hence the proof.

Example 1 For cross monic zero divisor graph of commutative ring Z3 ×Z3[x]/⟨x2⟩ with order 14 and size 25, we
have

E (C MZ G (Z3 ×Z3[x]/⟨x2⟩))≤ 25.5755

SolutionWe consider cross monic zero divisor graph of commutative ring Z3 ×Z3[x]/⟨x2⟩ (Figure 3),

Figure 3. C MZ G (Z3 ×Z3[x]/⟨x2⟩)

The adjacent matrix is
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A (C MZ G (Z3 ×Z3[x]/⟨x2⟩)) =





O4×4 I4×2 O4×2 O4×6

I2×4 J −I 2×2 I2×2 O2×6

O2×4 I2×2 O2×2 I2×6

O6×4 O6×2 I6×2 O6×6

Now |A (C MZ G (Z3 ×Z3[x]/⟨x2⟩))−λI |= 0.
Then the characteristic polynomial is λ 14 −25λ 12 −12λ 11 +108λ 10 +96λ 9 = 0. The spectrum of the graph is

SpecA (C MZ G (Z3 ×Z3[x]/⟨x2⟩)) =

−4.1425 −2 −1 0 2.4913 4.6512

1 1 1 9 1 1


Therefore

E (C MZ G (Z3 ×Z3[x]/⟨x2⟩)) =
14

∑
i=1

|λi|

= |−4.1425|+ |−2|+ |−1|+0+2.4913+4.6512

= 14.285

Theorem 3 Let the cross monic zero divisor graph of Z2 ×Zp[x]/⟨x2⟩ have order p2 + p−1, η =
1
2
(5p2 −7p+2)

and△= p2 −1. Then

L E (C MZ G (Z2 ×Zp[x]/⟨x2⟩))< 2η
p2 + p−1

+

√
η
(

η
(

4
(p2 + p−1)2 −2

)
+ p4 +2p3 −2p2 −3p+2

)

Proof. For the cross monic zero divisor graph of Z2 ×Zp[x]/⟨x2⟩) with order p2 + p−1, η =
1
2
(5p2 −7p+2) and

△= p2 −1, we have

Volume 5 Issue 2|2024| 1289 Contemporary Mathematics



L M (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =





I −J O O

−J p2 −1 −J O

O −J M1 −J

O O −J M2

where M1 = 2(p − 1)I + I − J and M2 = (p − 1)I . Then |L M (C MZ G (Z2 × Zp[x]/⟨x2⟩))− λI | = 0.
Eigenvalues of L M satisfies the inequality 0 ≤ µα ≤△+2. Now

SpecL M (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =

0 τ1 1 p−1 τ2 2p−1 τ3

1 1 p(p−1)−1 p−2 1 p−2 1



where τ1 > 0,τ2 > 2(p−1),τ3 > p2.

L M (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =
|V |

∑
α=1

∣∣∣∣µα − 2η
p2 + p−1

∣∣∣∣
=

∣∣∣∣∣− 2(p2 + p−1)
1
2 (5p2 −7p+2)

∣∣∣∣∣+(p(p−1)−1)

∣∣∣∣∣1− 2(p2 + p−1)
1
2 (5p2 −7p+2)

∣∣∣∣∣
+ · · ·+(p−2)

∣∣∣∣(p−1)− 4(p2 + p−1)
(5p−2)(p−1)

∣∣∣∣
=

2(p2 + p−1)
1
2 (5p2 −7p+2)

+(p(p−1)−1)
(

p2 −11p+6
5p2 −7p+2

)

+ · · ·+(p−2)
(
−4(p2 + p−1)

5p2 −7p+2
+ p−1

)

=
2(p2 + p−1)

1
2 (5p2 −7p+2)

+(−1)
(
(p2 −11p+6)(p(p−1)−1)

5p2 −7p+2

)

+ · · ·+(−1)
(
(p−2)(5p3 −16p2 +5p+2)

(p−1)(5p−2)

)
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L E (C MZ G (Z2 ×Zp[x]/⟨x2⟩))< 2η
p2 + p−1

+

√
η
(

η
(

4
(p2 + p−1)2 −2

)
+ p4 +2p3 −2p2 −3p+2

)

Laplacian matrix and spectrum of cross monic zero divisor graph of Zp ×Zp>2[x]/⟨x2⟩ are

L M (C MZ G (Zp ×Zp[x]/⟨x2⟩)) =





(p2 −1)I −J −J −J O

−J (p2 −1)I O −J

−J O (p−1)I O

O −J O (p−1)I

SpecL M (C MZ G (Zp ×Zp[x]/⟨x2⟩)) =

0 τ1 p−1 τ2 (p−1)+(p(p−1)) τ3

1 1 2p2 −3p−1 1 2p−4 1


respectively.

3. Distance based energy of cross monic zero divisor graphs
Theorem 4 Upper and lower bounds of distance energy of cross monic zero divisor graph of Z2 ×Zp[x]/⟨x2⟩ is

√
2 ∑

η1<η2

(dη1η2)
2 +(p2 + p−1)(p2 + p)ρ

2
p2+p−1 ≤ ED

≤
√

2(p2 + p) ∑
η1<η2

(dη1η2)
2 +(p2 + p−1)ρ

2
p2+p−1

Proof. Distance matrix and spectrum of the graph is

Volume 5 Issue 2|2024| 1291 Contemporary Mathematics



D(C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =





2(J −I ) J 2J 3J

J O J 2J

2J J J −I J

3J 2J J 2J −I

SpecD (C MZ G (Z2 ×Zp[x]/⟨x2⟩)) =

 −2 −1
√

p(p−1)+2p−2
√

p−2−1
√

p
⌈ p

2 ⌉
τα

p2 −3 p−2 1 1 1 1



Then

M ≤ p2 + p−1∑
η1

µ2
η1
−

(
∑
η1

|µη1 |

)2

≤ (p2 + p)M

M ≤ 2p2 +2p−2 ∑
η1<η2

(dη1η2)
2 − (ED)

2 ≤ (p2 + p)M

where

M = p2 + p−1

 1
p2 + p−1 ∑

η1

µ2
η1
−

[
∏
η1

µ2
η1

] 1
p2+p−1



= p2 + p−1

 2
p2 + p−1 ∑

η1<η2

(dη1η2)
2 −

[
∏
η1

|µη1 |

] 2
p2+p−1



= 2 ∑
η1<η2

(dη1η2)
2 − (p2 + p−1)ρ

2
p2+p−1

Theorem5 If the transmission degree sequence ofC MZ G is {Tr1,Tr2, . . . ,Trξ} and△=

∣∣∣∣∣DQ(C MZ G )− 1
ξ

ξ

∑
a=1

TraIξ

∣∣∣∣∣ ,
then

Contemporary Mathematics 1292 | J. Ravi Sankar, et al.



√√√√2 ∑
1≤a<b≤ξ

(disab)2 +
ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ
+ξ (ξ −1)△

2
ξ

≤EDQ (C MZ G )≤

√√√√(ξ −1)

(
2 ∑

1≤a<b≤ξ
(disab)2 +

ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ

)
+ξ△

2
ξ

Proof. Let us choose sa = α2
a , for a = 1, 2, 3, . . . , ξ . We obtain

M ≤ ξ
ξ

∑
a=1

α2
a −

(
ξ

∑
a=1

|αa|

)2

≤ (ξ −1)M

i.e.,

M ≤ ξ

(
2 ∑

1≤a<b≤ξ
(disab)

2 +
ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ

)
−E2

DQ(C MZ G )

≤ (ξ −1)M,

where

M = ξ

 1
ξ

ξ

∑
a=1

α2
a −

(
ξ

∏
a=1

α2
a

) 1
ξ


= ξ

 1
ξ

(
2 ∑

1≤a<b≤ξ
(disab)

2 +
ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ

)
−

(
ξ

∏
a=1

α2
a

) 1
ξ


= 2 ∑
1≤a<b≤ξ

(disab)
2 +

ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ
+ξ△

2
ξ

Hence, we get the required bounds.
Distance Laplacian matrix and Distance signless Laplacian matrix of cross monic zero divisor graph is shown in

Table 3.
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Table 3. Block matrix of distance (signless Laplacian) of cross monic zero divisor graph

DL (C MZ G (Z2 ×Zp>2[x]/⟨x2⟩)) DQ(C MZ G (Z2 ×Zp>2[x]/⟨x2⟩))
A1 −J −2J −3J

−J A2 −J −2J

−2J −J A3 −J

−3J −2J −J A4




B1 J 2J 3J

J B2 J 2J

2J J B3 J

3J 2J J B4


A2 = p2 +2p−3 B2 = p2 +2p−3

A3 =−J+(2p2 −1)I B3 = J+(2p2 −3)I

A4 =−2J+(3p2 −1)I B4 = 2J+(3p2 −5)I

A1 =−2J+(2p2 +3p−4)I B1 = 2J+(2p2 +3p−8)I

Theorem 6 If C MZ G is a connected graph with order ξ and diameter β , then

ξ

√
(ξ −1)

(
β 2 +

β 2(β −1)
4

−ξ +1
)
≥ EDQ ≥

√
ξ (ξ −1).

Proof. Since disab ≥ 1 for a ̸= b and there are
ξ (ξ −1)

2
pairs of vertices in C MZ G , then we get

EDQ (C MZ G )≥

√√√√2 ∑
1≤a<b≤ξ

(disab)2 +
ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ

≥

√√√√2
ξ (ξ −1)

2
+

ξ

∑
a=1

Tr2
a −

ξ

∑
a=1

Tr2
a

=
√

ξ (ξ −1).

Again, disab ≤ β for a ̸= b and there are
ξ (ξ −1)

2
pairs of vertices in C MZ G , then we get

EDQ (C MZ G )≤

√√√√ξ

(
2 ∑

1≤a<b≤ξ
(disab)2 +

ξ

∑
a=1

Tr2
a −

4σ2
0 (C MZ G )

ξ

)

≤

√
ξ
(

2
ξ (ξ −1)

2
β 2 +

ξ 3(ξ −1)2

4
−ξ (ξ −1)2

)

= ξ

√
(ξ −1)

(
β 2 +

ξ 2(ξ −1)
4

−ξ +1
)
.
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Hence the result.

4. Normalized Laplacian energy of graphs
Theorem 7 Normalized Laplacian energy of cross monic zero divisor graph is

EN L (C MZ G (Z2 ×Zp[x]/⟨x2⟩))< p2 + p−1
2

Proof. Normalized Laplacian matrix of N L (C MZ G ) is

N L (C MZ G ) =





I − 1√
△(C MZ G )

O O

− 1√
△(C MZ G )

J − 1√
(△(C MZ G ))(2(p−1))

O

O − 1√
(△(C MZ G ))(2(p−1))

A − 1√
2(p−1)2

O O − 1√
2(p−1)2

I

where A =I +J

[
− 1

2(p−1)

]
+I

[
1

2(p−1)

]
, whose entries are lies−1 < ai j ≤ 1.5. If p = 3, then PN L = ((−1+

δ )6(301678245+2477350454279δ −13997313671875δ 2+21056283984375δ 3−12207031250000δ 4+2441406250000x5))

/2441406250000, δi denotes the eigenvalues. Then

SpecN L (C MZ G (Z2 ×Z3[x]/⟨x2⟩)) =

0 0.2714 1 1.25 1.5609 1.9177

1 1 6 1 1 1



EN L (C MZ G (Z2 ×Z3[x]/⟨x2⟩)) =
11

∑
i=1

|δi(CMZG(Z2 ×Z3[x]/⟨x2⟩))−1|

= 3.4572

If p= 5, thenPN L =((−1+δ )22(−9+8δ )3(−240380053−7487301171875δ +55013759375000δ 2−56640625000000δ 3+

15625000000000δ 4))/8000000000000000. Then

SpecN L (C MZ G (Z2 ×Z5[x]/⟨x2⟩)) =

0 0.1619 1 1.125 1.5365 1.9266

1 1 22 3 1 1


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EN L (C MZ G (Z2 ×Z5[x]/⟨x2⟩)) = 3.6762

If p= 7, thenPN L =((−1+δ )46(−10833+10000δ )5(−12307899999−429953071962500δ +4206384150000000δ 2−
4479375000000000δ 3 +1250000000000000δ 4))/1250000000000000000000. Then

SpecN L (C MZ G (Z2 ×Z7[x]/⟨x2⟩)) =

0 0.116 1 1.083 1.5256 1.9417

1 1 46 5 1 1



EN L (C MZ G (Z2 ×Z7[x]/⟨x2⟩)) = 3.7678

Generalized matrix of normalized Laplacian of family (p, p) is

N L E (C MZ G ) =





A − 1√
p4−3p3+2

− 1√
(p2−2)(p−1)

O

− 1√
p4−3p3+2

I O − 1√
(p2−1)(p−1)

− 1√
(p2−2)(p−1)

O I O

O − 1√
(p2−1)(p−1)

O I

where A = I +J
[
− 1

p2−2

]
+I

[
1

p2−2

]
.

Theorem 8 Suppose C MZ G (Zs ×Zt [x]/⟨x2⟩) is a connected graph of order ξ . Then

EN L (C MZ G )≥ 1+

√
ξ

△(C MZ G )
+2
(

ξ −1
2

)
ξ−1
√

φ(C MZ G ,1)2

where△(C MZ G ) is the maximal degree in C MZ G .
Proof. Let δ1 = 0, and hence

EN L (C MZ G ) =
ξ

∑
k=1

|δk −1|

= 1+
ξ

∑
k=2

|δk −1|.
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Now applying arithmetic geometric inequality, we get

(
ξ

∑
k=2

|δk −1|

)2

=
ξ

∑
k=2

|δk −1|2 + ∑
2≤k ̸= f≤ξ

|δk −1||δ f −1|

≥ 2R−1(C MZ G )−1+(ξ −1)(ξ −2)

(
∏

2≤k ̸= f≤ξ
|δk −1||δ f −1|

) 1
(ξ−1)(ξ−2)

= 2R−1(C MZ G )−1+2
(

ξ −1
2

)( ξ

∏
k=2

(δk −1)2(ξ−2)

) 1
(ξ−1)(ξ−2)

= 2R−1(C MZ G )−1+2
(

ξ −1
2

)
ξ−1

√√√√( ξ

∏
k=2

(δk −1)

)2

= 2R−1(C MZ G )−1+2
(

ξ −1
2

)
ξ−1
√

φ(C MZ G ,1)2.

We know that R−1 ≥
ξ

2△(C MZ G )
, therefore

EN L (C MZ G )≥ 1+

√
ξ

△(C MZ G )
+2
(

ξ −1
2

)
ξ−1
√

φ(C MZ G ,1)2.

Theorem 9 Let Zα ×Zβ [x]/⟨x2⟩ be connected, C MZ G with smallest δs and largest δξ non-negative normalized
Laplacian eigenvalues. Then
(i) δξ −δs ≥

2
ξ −1

√
(ξ −1)(ξ +2R−1(C MZ G ))−ξ 2

(ii)

√
δξ

δs
+

√
δξ

δs
≥ 2

ξ
√
(ξ −1)(ξ +2R−1(C MZ G ))

Proof. Consider ξ > 2, recall the Ozekis inequality [23], stating that pk and qk, 1 ≤ k ≤ ξ , are positive real numbers,
then

ξ

∑
k=1

p2
k

ξ

∑
k=1

q2
k −

(
ξ

∑
k=1

pkqk

)2

≤ ξ 2

4
(N1N2 −n1n2)

2,

where N1 = max1≤k≤ξ pk, N2 = max1≤k≤ξ qk, n1 = min1≤k≤ξ pk and n2 = min1≤k≤ξ qk. An application of Ozekis inequality
with pk = 1 and qk = δk, 2 ≤ k ≤ ξ , yields
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(ξ −1)
ξ

∑
k=2

δ 2
k −

(
ξ

∑
k=2

δk

)2

≤ (ξ −1)2

4
(δξ −δs)

2.

In view of [24], it is easy to see that

δξ −δs ≥
2

ξ −1

√
(ξ −1)(ξ +2R−1(CMZG))−ξ 2

yielding the assertion (i). To prove assertion (ii), we recall the Polya-Szego inequality, stating that if pk, qk, Nk, nk,
1 ≤ k ≤ ξ are as in part (i), then we have

ξ

∑
k=1

p2
k

ξ

∑
k=1

q2
k ≤

1
4

(√
N1N2

n1n2

√
n1n2

N1N2

)2( ξ

∑
k=1

pkqk

)2

.

Applying the last inequality pk = 1 and qk = δk, 2 ≤ k ≤ ξ , we get

(ξ −1)
ξ

∑
k=2

δ 2
k ≤ 1

4

√δξ

δs
+

√
δs

δξ

2(
ξ

∑
k=2

δk

)2

,

(ξ −1)(ξ +2R−1(C MZ G ))≤ ξ 2

4

√δξ

δs
+

√
δs

δξ

2

.

Therefore

√
δξ

δs
+

√
δξ

δs
≥ 2

ξ
√
(ξ −1)(ξ +2R−1(C MZ G )).

5. Conclusion
The primary emphasis of this paper is the exploration of Laplacian energy, distance based energy, and normalized

Laplacian energy concerning the cross monic zero divisor graph within a commutative ring, denoted as C MZ G (Zn ×
Zm[x]/⟨x2⟩). The paper also includes visual representations of the concepts discussed. In essence, the contribution of this
paper lies in enhancing our comprehension of the graph properties linked to the cross monic zero divisor graph within the
framework of commutative ring.

Contemporary Mathematics 1298 | J. Ravi Sankar, et al.



Confilict of interest
The authors declare no competing financial interest.

References
[1] Beck I. Coloring of commutative rings. Journal of Algebra. 1988; 116(1): 208-226.
[2] Anderson DF, Livingston PS. The zero divisor graph of a commutative ring. Journal of Algebra. 1999; 217(4):

434-447.
[3] Sharma S, Bhat VK. Fault-tolerant metric dimension of zero-divisor graphs of commutative rings. AKCE

International Journal of Graphs and Combinatorics. 2022; 19(1): 24-30.
[4] Pirzada S, Altaf A. Cliques in the extended zero-divisor graph of finite commutative rings. Communications in

Combinatorics and Optimization. 2023. Available from: https://doi.org/10.22049/cco.2023.28740.1693.
[5] Singh P, Bhat VK. Graph invariants of the line graph of zero divisor graph of Zn. Journal of Applied Mathematics

and Computing. 2022; 68(2): 1271-1287.
[6] Shang Y. A note on the commutativity of prime near-rings. Algebra Colloquium. 2015; 22(3): 361-366.
[7] Bera S, Bhuniya AK. On enhanced power graphs of finite groups. Journal of Algebra and its Applications. 2018;

17(8): 1850146.
[8] Sarathy R, Sankar JR. Applications on color (distance) signless laplacian energy of annihilator monic prime graph

of commutative rings. Ain Shams Engineering Journal. 2024; 15(3): 102469.
[9] Mahmoudifar A, Moghaddamfar AR. Commuting graphs of groups and related numerical parameters. Communica-

tions in Algebra. 2017; 45(7): 3159-3165.
[10] Sarathy R, Ravi Sankar J. Coloring of graphs associated with commutative rings. Journal of Applied Mathematics

and Computing. 2024: 1-18. Available from: https://doi.org/10.1007/s12190-024-02055-x.
[11] Alali AS, Ali S, Hassan N, Mahnashi AM, Shang Y, Assiry A. Algebraic structure graphs over the commutative ring

Zm: exploring topological indices and entropies usingM-polynomials. Mathematics. 2023; 11(18): 3833.
[12] YoungM. Adjacency matrices of zero-divisor graphs of integers modulo n. Involve, a Journal of Mathematics. 2015;

8(5): 753-761.
[13] Rather BA, Pirzada S, Naikoo TA, Shang Y. On Laplacian eigenvalues of the zero-divisor graph associated to the

ring of integers modulo n. Mathematics. 2021; 9(5): 482.
[14] Gutman I, Indulal G, Vijayakumar A. On distance energy of graphs. MATCH Communications in Mathematical and

in Computer Chemistry. 2008; 60: 461-472.
[15] Banerjee S. Distance Laplacian spectra of various graph operations and its application to graphs on algebraic

structures. Journal of Algebra and Its Applications. 2023; 22(1): 2350022.
[16] Das KC, AouchicheM, Hansen P. On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs.

Discrete Applied Mathematics. 2018; 243: 172-185.
[17] Alhevaz A, Baghipur M, Shang Y. Merging the spectral theories of distance Estrada and distance signless Laplacian

Estrada indices of graphs. Mathematics. 2019; 7(10): 995.
[18] Das K, Sun S. Extremal graph on normalized Laplacian spectral radius and energy. The Electronic Journal of Linear

Algebra. 2015; 29: 237-253.
[19] Hakimi-Nezhaad M, Hua H, Ashrafi AR, Qian S. The normalized Laplacian Estrada index of graphs. Journal of

Applied Mathematics Informatics. 2014; 32(1-2): 227-245.
[20] Milovanović E, Matejić MM, Milovanović I. On the normalized Laplacian spectral radius, Laplacian incidence

energy and Kemeny’s constant. Linear Algebra and its Applications. 2019; 582: 181-196.
[21] Cvetkovic D, Doob M, Sachs H. Spectra of Graphs: Theory and Application. Heidelberg, Leipzig: Johann

Ambrosius Barth Verlag; 1995.
[22] Biggs N. Algebraic Graph Theory. Cambridge university press; 1993.
[23] Hardy GH, Littlewood JE, George P. Inequalities. Cambridge university press; 1988.
[24] Cavers M, Fallat S, Kirkland S. On the normalized Laplacian energy and general Randić index R-1 of graphs. Linear

Algebra and its Applications. 2010; 433(1): 172-190.

Volume 5 Issue 2|2024| 1299 Contemporary Mathematics

https://doi.org/10.22049/cco.2023.28740.1693
https://doi.org/10.1007/s12190-024-02055-x

	Introduction
	Energy and Laplacian energy of cross monic zero divisor graphs of commutative ring
	Distance based energy of cross monic zero divisor graphs
	Normalized Laplacian energy of graphs
	Conclusion

