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1. Introduction
The study of geometric properties of certain subclasses, which includes hypergeometric functions and their

representation in the form of hypergeometric series. The ability to express a mathematical function in terms of
a hypergeometric function is a highly helpful analytical tool for quickly comprehending many of its aspects. The
hypergeometric representation of the analytic normalized function defined in the unit open disc is frequently employed in
univalent function theory to determine if the function belongs to a certain class.

Let h(z) be a normalized analytic function with the form,

h(z) = z+
∞

∑
m=2

xmzm (1)

and class A define collection of such functions in D. Let S be the class of univalent function in D and S∗, K are the
subclasses of S, which are known as starlike functions and convex functions respectively. That are,

S∗ = {h(z) ∈ S : h(z) is a starlike function}
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and

K = {h(z) ∈ S : h(z) is a convex function} .

A function h(z) ∈ A is said to be close-to-convex if and only if Re
{
eiλ zh′(z)

g(z)

}
> 0, z ∈ D where g(z) is a

fixed starlike function and λ ∈ R. For λ = 0 the class of close-to-convex functions is denoted by C. There are several
generalizations of these classes in the literature, as well as many subclasses of S (see [1–5]) and further generalizations
(see [6, 7]). For 0 ≤ δ < 1, S∗(δ ) andK(δ ) are the subclasses of S, known as starlike of order δ and convex of order δ
respectively. The subclasses S∗(δ ) andK(δ ) are defined as

S∗(δ ) =
{
h(z) ∈A : Re

{
zh′(z)
h(z)

}
> δ , z ∈D

}

and

K(δ ) =
{
h(z) ∈A : Re

{
1+

zh′′(z)
h′(z)

}
> δ , z ∈D

}
.

For 0 ≤ δ < 1, S∗(δ ) ⊂ S∗(0) ≡ S∗ ⊂ S but for δ < 0 the functions in S∗(δ ) need not be univalent. There are
several subclasses and the generalization of S∗(δ ) has been defined and studied over the years. Let h(z) ∈A and λ > 0
then S∗

λ is defined as [8]

S∗
λ =

{
h(z) ∈A :

∣∣∣∣ zh′(z)h(z)
−1
∣∣∣∣< λ , z ∈D

}
.

Note that S∗
λ ⊂ S∗(1− λ ). Recent research has focused on the study of geometric properties for various integral

transforms using the duality technique and negative coefficients [9–11] and references therein, but it is difficult to
determine because the results include multiple integrals, and it is challenging to identify the prerequisites for the inclusion
property of the integral transforms to exist. It is possible to explore the characteristics of a certain special function that
will be included in analytic subclasses. In this work, we are interested in finding the inclusion properties for the Hohlov
integral operator (see [12])

Hp,q,r(h)(z) = zF(p, q; r; z)∗h(z)

and Komatu integral operator

Kl
a(h)(z) =Kl

a(z)∗h(z)

where ∗ is the Hadamard product and h(z) belongs to a certain subclass ofS. The geometric properties of different integral
transforms of the type
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Vλ (h) =
∫ 1

0
λ (t)

h(tz)
t

dt, h(z) ∈ M τ
ζ ,ψ(β )

is discussed by several authors [4, 9, 10, 13] with the suitable restrictions on λ (t). For a particular choice of λ (t) it reduces
to various integral operators. If

λ (t) =
Γ(r)

Γ(q)Γ(r−q)
tq−1(1− t)r−q−1

then Vλ (h) =L(q, r)(h)(z) is the Carlson-Schaffer operator and

H1.q.r(h)(z) =L(q, r)(h)(z).

Let h(z) ∈A and r > p+q−1> 0, p> 0 and q> 0, then Vλ (h) is the Hohlov integral operators, i.e.,

Vλ (h)(z) =Hp,q,r(h)(z)

where

Hp,q,r(h)(z) =
Γ(r)

Γ(p)Γ(q)

∫ 1

0

(1− t)r−p−q

Γ(r−p−q+1)
tq−2F(r−p, 1−p; r−p−q+1; 1− t)h(tz)dt.

The Komatu operator [14],Kl
a : A →A is defined as

Kl
a(h)(z) =

(1+a)l

Γ(l)

∫ 1

0

(
log
(
1

t

))l−1

ta−1h(tz)dt

where a > 1 and l ≥ 0. It is represented by a series as

Kl
a(h)(z) = z+

∞

∑
m=2

(1+a)l

(m+a)l
xmzm

and concerning convolution, we can write

Kl
a(h)(z) =Kl

a(z)∗h(z)

where
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Kl
a(z) = z+

∞

∑
m=2

(1+a)l

(m+a)l
zm.

Many authors used different operators to obtain various formulas for the transformation of hypergeometric functions
of higher-order that help study the geometric properties of subclasses (see [15, 16]).

In this work, we define a new subclass M τ
ζ ,ψ(β ), for β < 1 and τ ∈ C\{0}

M τ
ζ ,ψ(β ) :=

{
h ∈A :

∣∣∣∣∣ h
′
+ψzh

′′
+ζ z2h

′′′ −1
2τ(1−β )+h

′
+ψzh′′

+ζ z2h
′′′ −1

∣∣∣∣∣< 1, z ∈D

}
,

where 0 ≤ ζ < 1 and 0 ≤ ψ < 1.
Some particular cases of M τ

ζ ,ψ(β ), studied in the literature.
• For ζ = 0, the class M τ

0,ψ(β ) is considered in [17], concerning the certain conditions of the parameters to be in the
class.

• For ζ = 0, ψ = 1 and τ = eiη cosη , |η | < π
2
, the class M τ

0,1(0) is considered in [5] and discussed the properties
with certain integral operators.

Let p, q, r ∈ C then the Gaussian hypergeometric function F(p, q; r; z) is defined as

F(p, q; r; z) =
∞

∑
m=0

(p)m(q)m
(r)mm!

zm, z ∈D

where r ̸= 0, −1, −2, −3, · · · and (δ )m is Pochhammer symbol. The Pochhammer symbol is defined as

(δ )m =
Γ(δ +m)

Γ(δ )
, (m ∈ N)

and Γ(δ +1) = δΓ(δ ), where Γ(δ ) is Gamma function. The generalized hypergeometric function was studied by many
authors (see [3, 18, 19]).

Definition 1 [20] A function h(z) ∈ S∗ is said to be uniformly starlike in unit diskD if for every circular arc γ , with
center z0 contained in D then h(γ) is also starlike with respect to h(z0) in D. We denote the class of uniformly starlike
functions with UST.

Definition 2 [21] A function h(z) ∈K is said to be uniformly convex in D if for every circular arc γ with center z0

in D then h(γ) is also convex in D. We use UCV to denote the class of uniformly convex functions.
Definition 3 [22] Let h(z) ∈A is said to be parabolic starlike functions if

Re
(

zh′(z)
h(z)

)
>

∣∣∣∣ zh′(z)h(z)
−1
∣∣∣∣+σ , −1 ≤ σ < 1, z ∈D

the class of such functions denoted by Sp(σ). In other words, the class Sp consists of functions h(z) = zf′(z) where
f(z) ∈UCV.

Definition 4 [11] Let h(z) is of from (1) and z ∈D then CP(α) is defined as
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CP(α) =

{
h(z) ∈ S :

∣∣∣∣ zh′′(z)h′(z)
+1−α

∣∣∣∣≤ Re
(

zh′′(z)
h′(z)

)
+1+α , 0 < α < ∞

}
.

Definition 5 [23, 24] Let k−UCV and k−ST be the subclasses of S, known as k-uniformly convex and k-starlike
respectively inD, which are defined as

k−UCV =

{
h ∈ S : Re

(
1+

zh′′(z)
h′(z)

)
> k

∣∣∣∣ zh′′(z)h′(z)

∣∣∣∣ , 0 ≤ k < ∞, z ∈D

}

and

k−ST =

{
h ∈ S : Re

(
zh′(z)
h(z)

)
> k

∣∣∣∣ zh′(z)h(z)
−1
∣∣∣∣ , 0 ≤ k < ∞, z ∈D

}
.

Definition 6 [25] Let h(z) ∈A, for 0≤ k < ∞, 0 ≤ σ < 1 then the function h(z) to be in k−UCV(σ) if and only if

Re
(

1+
zh′′(z)
h′(z)

)
≥ k

∣∣∣∣ zh′′(z)h′(z)

∣∣∣∣+σ , 0≤ k < ∞, 0 ≤ σ < 1.

When σ = 0 then k−UCV(σ) = k−UCV.

The class k−UCV(σ) generalizes many other classes. The domain of values for the expression p(z) = 1+
zh′′(z)
h′(z)

,

z ∈ D is geometrically described by the class 1−UCV(0) =UCV [21]. A related class k−Sp(σ) is created by using
the Alexander transform as h(z) ∈ k−UCV(σ) if and only if zh′ ∈ k−Sp(σ) [23]. There are results in the literature for
the condition of these classes’ Taylor coefficients of functions.

2. Preliminary results
Lemma 1 [17, 26] Consider the following results of the Gaussian hypergeometric function F(p, q; r; z), that are

useful in proving our main results:
i. Let r be a non-negative integer and is not zero, then

F(p, q; r; 1) =
Γ(r)Γ(r−q−p)

Γ(r−q)Γ(r−p)
(2)

where Re(r−q−p)> 0.
ii. For p, q> 0 and r > 1+q+p then

∞

∑
m=0

(m+1)
(p)m(q)m
(r)m(1)m

=

[
pq

r−1−q−p
+1

]
F(p, q; r; 1).

iii. For r >max{q+p−1, 0} and p, q, r ̸= 1 then
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∞

∑
m=0

(p)m(q)m
(r)m(1)m+1

=
(r−1)

(q−1)(p−1)
[F(p−1, q−1; r−1; 1)−1]. (3)

iv. For r >max{2Re(p)−1, 0} and p, r ̸= 1 then

∞

∑
m=0

|(p)m|2

(r)m(1)m+1
=

(r−1)

|p−1|2
[F(p−1, p̄−1; r−1; 1)−1].

Lemma 2 [27] Let h(z) ∈A is of from (1). If

∞

∑
m=2

m|xm| ≤ 1

then h(z) is univalent inD and maps that region to a starlike region with center at the origin. If

∞

∑
m=2

m2|xm| ≤ 1

then h(z) is univalent inD and maps that region on to a convex region.
Lemma 3 [8, 28] Let h(z) ∈A is of from (1). If

∞

∑
m=2

(m+λ −1)|xm| ≤ λ

then h(z) ∈ S∗
λ .

Lemma 4 [8] Let h(z) ∈A is of from (1). If

∞

∑
m=2

m|xm| ≤
1

d

where d =
√

K ≈ 1.2557 and K ≈ 1.5770, then h(z) ∈UST. The bound
1

d
is sharp.

Lemma 5 [29] Let h(z) ∈A is of from (1). If

∞

∑
m=2

m(2m−1)|xm| ≤ 1

then h(z) ∈UCV. This is the best possible for 1 on the right-hand side.
Lemma 6 [23] Let h(z) ∈A is of the form (1). If the inequality
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∞

∑
m=2

m(m−1)|xm| ≤
1

k+2
, 0 ≤ k < ∞

holds for some value of k then h(z) ∈ k−UCV. The number
1

k+2
cannot be made larger.

Lemma 7 [24] Let h(z) ∈A is of the form (1). If the inequality

∞

∑
m=2

(
m+k(m−1)

)
|xm|< 1, 0 ≤ k < ∞

holds for some value of k then h(z) ∈ k−ST.
Lemma 8 [11] A function h(z) ∈A is satisfies the following condition that is

∞

∑
m=2

m
(
m(1+k)− (k+σ)

)
|xm| ≤ 1−σ

then the function h(z) ∈ k−UCV(σ). Again, a condition

∞

∑
m=2

(
m(1+k)− (k+σ)

)
|xm| ≤ 1−σ

is sufficient for h(z) ∈ k−Sp(σ) and necessary if xm < 0 for h(z) ∈A.
Lemma 9 [11] Let h(z) ∈A and it is of the form (1), if

∞

∑
m=2

(
m+2(α −1)

)
m|xm| ≤ 2α −1, 0 < α < ∞

then h(z) ∈ CP(α).

3. Main results
The conditions on the Taylor coefficients of h(z) ∈ M τ

ζ ,ψ(β ), which are provided in the subsequent results, are
necessary to achieve the objective.

Lemma 10 Let a univalent function h(z) is of the form (1) and if h(z) ∈ M τ
ζ ,ψ(β ) then

|xm| ≤
2|τ|(1−β )

m+m(2ζ −ψ)+m2(ψ −3ζ )+m3ζ
.

proof. As h(z) ∈ M τ
ζ ,ψ(β ), it is equivalent to write
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1+
1
τ
(h′+ψzh′′+ζ z2h′′′−1) =

1+(1−2β )φ(z)
1−φ(z)

, z ∈D

and the function φ(z) is analytic in D have the conditions φ(0) = 0, |φ(z)|< 1.
Hence

1
τ
(h′+ψzh′′+ζ z2h′′′−1) = φ(z)

[
2(1−β )+

1
τ
(h′+ψzh′′+ζ z2h′′′−1)

]
.

We have

h′+ψzh′′+ζ z2h′′′−1 =
∞

∑
m=2

(m+(m−1)mψ +(m−2)(m−1)mζ )xmzm−1. (4)

Using (4) and φ(z) =
∞

∑
m=1

pmzm then

(
2(1−β )+

1
τ

∞

∑
m=2

m(m2ζ +m(ψ −3ζ )+2ζ −ψ +1)xmzm−1

)(
∞

∑
m=1

pmzm
)

=
1
τ

∞

∑
m=2

m(m2ζ +m(ψ −3ζ )+2ζ −ψ +1)xmzm−1.

Now equating the coefficient of zm−1 in the above equation, it is simple to see that the coefficient xm on both sides
of the above equation depends only on x2, x3, · · · xm−1. So, for m ≥ 2

(
2(1−β )+

1
τ

j−1

∑
m=2

m
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)
xmzm−1

)
φ(z)

=
1
τ

j

∑
m=2

m
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)
xmzm−1 +

∞

∑
m=j+1

qmzm−1.

With the use of |φ(z)|< 1, it reduces to

∣∣∣∣∣2(1−β )+
1
τ

j−1

∑
m=2

m
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)
xmzm−1

∣∣∣∣∣
>

∣∣∣∣∣1τ j

∑
m=2

m
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)
xmzm−1 +

∞

∑
m=j+1

qmzm−1

∣∣∣∣∣ .
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By squaring the inequality mentioned above and integrating towards |z|= u, 0< u < 1 then we get

4(1−β )2 +
1
|τ|2

j−1

∑
m=2

m2
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)2|xm|2u2(m−1)

>
1
|τ|2

j

∑
m=2

m2
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)2|xm|2u2(m−1)+
∞

∑
m=j+1

|qm|2u2(m−1).

Taking u → 1, then

4(1−β )2 ≥ 1
|τ|2

m2
(
m2ζ +m(ψ −3ζ )+2ζ −ψ +1

)2|xm|2
which gives the desired result.

Note that when ζ = 0 in Lemma 10, it is equivalent to Theorem 2.1 of [17] and it is also equivalent to Lemma 2.2 of
[25] when α −2γ = 1.

Remark 1
The coefficient inequality in Lemma 10 is equivalently expressed as for m = 2, 3, · · ·

|xm| ≤
2|τ|(1−β )

1+(2ψ +1)(m−1)+(3ζ +ψ)(m−2)(m−1)+ζ (m−3)(m−2)(m−1)
. (5)

Lemma 11
Let h(z) ∈A is of the form (1). A sufficient condition for h(z) ∈ M τ

ζ ,ψ(β )

∞

∑
m=2

m(1+(m−1)ψ +(m−2)(m−1)ζ )|xm| ≤ |τ|(1−β ).

Proof. As h(z) ∈A and have the form (1) so

Re(eiη)
(
h′+ψzh′′+ζ z2h′′′−β

)

= (1−β )cosη +Re(eiη)
∞

∑
m=2

m(1−ψ +2ζ +m(ψ −3ζ )+m2ζ )xmzm−1.

Since z ∈D so |z|< 1 and the above series is convergent, then
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|(1−β )cosη |+ |Re(eiη)|
∞

∑
m=2

∣∣m(1−ψ +2ζ +m(ψ −3ζ )+m2ζ )
∣∣ |xm||zm−1|

≤ (1−β )|τ|+ |Re(eiη)|
∞

∑
m=2

∣∣m(1−ψ +2ζ +m(ψ −3ζ )+m2ζ )
∣∣ |xm|.

From the Lemma 10 we get

1
2
[
m+m(2ζ −ψ)+m2(ψ −3ζ )+m3ζ

]
|xm| ≤ |τ|(1−β ).

So, we conclude that

(1−β )cosη −
∞

∑
m=2

∣∣m(1−ψ +2ζ +m(ψ −3ζ )+m2ζ )
∣∣ |xm| ≥ 0.

Then the proof is completed by using the hypothesis and it is equivalent to the analytical description of h(z) in
M τ

ζ ,ψ(β ).
Note that when ζ = 0 in Lemma 11, it is equivalent to Theorem 2.2 of [17] and it is also equivalent to Lemma 2.3 of

[25] when α −2γ = 1.
Theorem 1 Let a function h(z) ∈A has the form (1). For q, p ̸= 1 and r > q+p it satisfies the condition,

F(p, q; r; 1)
(r−q−p)

(q−1)(p−1)
≤ 1+

(r−1)

(q−1)(p−1)
+

(ψ −3ζ )
2|τ|(1−β )

.

Then for h(z) ∈ M τ
ζ ,ψ(β ) where 0 ≤ ψ ≤ 1, 0 ≤ ζ ≤ 1 and 0 ≤ β < 1 we haveHp,q,r(h)(z) ∈ S∗.

Proof. For h(z) ∈ M τ
ζ ,ψ(β ), then from Lemma 10

|xm| ≤
2|τ|(1−β )

m+m(2ζ −ψ)+m2(ψ −3ζ )+m3ζ
.

Let

m+m(2ζ −ψ)+m2(ψ −3ζ )+m3ζ = m(1−ψ)+mζ (2+m2)+m2(ψ −3ζ )

≥ m2(ψ −3ζ ).

So

|xm| ≤
2|τ|(1−β )
m2(ψ −3ζ )

. (6)
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From Lemma 2

∞

∑
m=2

m |Xm| ≤ 1

where

Xm =
(p)m−1(q)m−1

(r)m−1(1)m−1
xm (7)

Then

∞

∑
m=2

1

m

(p)m−1(q)m−1

(r)m−1(1)m−1
≤ (ψ −3ζ )

2|τ|(1−β )
.

Then

∞

∑
m=0

(p)m(q)m
(r)m(1)m+1

−1 ≤ (ψ −3ζ )
2|τ|(1−β )

.

Now applying (3), we get

(r−1)

(q−1)(p−1)
[F(p−1, q−1; r−1; 1)−1]≤ 1+

(ψ −3ζ )
2|τ|(1−β )

.

From Gaussian hypergeometric function

F(p−1, q−1; r−1; 1) =
(r−q−p)

(r−1)
F(p, q; r; 1). (8)

Now using the hypothesis of the theorem and (8) we will get the required result.
Theorem 2 Let h(z) ∈A is of the form (1) and satisfy the condition, that is for r > q+p

F(p, q; r; 1)≤ 1+
(ψ −3ζ )

2|τ|(1−β )
.

Then for h(z) ∈ M τ
ζ ,ψ(β ) where 0 ≤ ψ ≤ 1, 0 ≤ ζ ≤ 1 and 0 ≤ β < 1 we haveHp,q,r(h)(z) ∈K.

Proof. As h(z) ∈ M τ
ζ ,ψ(β ), then from (6) and Lemma 2

∞

∑
m=0

(p)m(q)m
(r)m(1)m

−1 ≤ (ψ −3ζ )
2|τ|(1−β )

.
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Now, using the hypothesis of the theorem, we will get the required result.
Theorem 3 Let h(z) ∈A has the form (1), for q, p ̸= 1 and r > q+p is satisfies the following condition:

F(p, q; r; 1)
(

2− (r−q−p)

(q−1)(p−1)

)
+

(r−1)

(q−1)(p−1)
≤ 1+

(ψ −3ζ )
2|τ|(1−β )

.

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ ζ ≤ 1, 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we haveHp,q,r(h)(z) ∈UCV.

Proof. As h(z) ∈ M τ
ζ ,ψ(β ), then from (6) and Lemma 5

∞

∑
m=2

(2m2−m)
1

m2

(p)m−1(q)m−1

(r)m−1(1)m−1
≤ (ψ −3ζ )

2|τ|(1−β )
.

Then

2
∞

∑
m=2

(p)m−1(q)m−1

(r)m−1(1)m−1
−

∞

∑
m=2

1

m

(p)m−1(q)m−1

(r)m−1(1)m−1
≤ (ψ −3ζ )

2|τ|(1−β )
.

Now using (3), (8) and the hypothesis of the theorem then we get the required results.
Theorem 4 Let h(z) ∈A is of the form (1) and satisfy the condition, that is for p, q ̸= 1 and r > q+p

F(p, q; r; 1)
(

1+
2(α −1)(r−q−p)

(q−1)(p−1)

)
+(1−2α)≤ 2(α −1)(r−1)

(q−1)(p−1)
+

(2α −1)(ψ −3ζ )
2|τ|(1−β )

.

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ ζ ≤ 1, 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we haveHp,q,r(h)(z) ∈ CP(α) where 0 < α < ∞.

proof. As h(z) ∈ M τ
ζ ,ψ(β ), then from (6) and Lemma 9

∞

∑
m=2

(m2+2m(α −1))
1

m2

(p)m−1(q)m−1

(r)m−1(1)m−1
≤ (2α −1)(ψ −3ζ )

2|τ|(1−β )
.

Then

(
∞

∑
m=0

(p)m(q)m
(r)m(1)m

−1

)
+2(α −1)

(
∞

∑
m=0

(p)m(q)m
(r)m(1)m+1

−1

)
≤ (2α −1)(ψ −3ζ )

2|τ|(1−β )
.

Now using (3), (8) and the hypothesis of the theorem then we get the required results.
Theorem 5 Let h(z) ∈A is of the form (1). For k≥ 0, 0 ≤ σ < 1 it satisfies the following conditions:
i. |p|, |q| ̸= 1 and r > |q|+ |p|
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F(|p|−1, |q|−1; r−1; 1)

(
(|q|−1)(|p|−1)+σ(|q|+ |p|− r)+k(|pq|+1− r)

)
(r−1)

(r−|q|− |p|)(|q|−1)(|p|−1)

+
(r−1)(k+σ)

(|q|−1)(|p|−1)
≤
(

(ψ −3ζ )
2|τ|(1−β )

+1
)
(1−σ).

ii. |p|, |q| ̸= 1 and r ≥ 0

F(|p|, |q|; r; 1)(|q|−1)(|p|−1)+σ(|q|+ |p|− r)+k(|pq|+1− r)

(|q|−1)(|p|−1)

+
(r−1)(k+σ)

(|q|−1)(|p|−1)
≤
(

(ψ −3ζ )
2|τ|(1−β )

+1
)
(1−σ).

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ ζ ≤ 1, 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we haveHp,q,r(h)(z) ∈ k−UCV(σ).

proof. As h(z) ∈ M τ
ζ ,ψ(β ), then from (6)

|xm| ≤
2|τ|(1−β )
m2(ψ −3ζ )

.

From the Lemma 8

∞

∑
m=2

(
(1+k)m− (k+σ)

)
m|Xm| ≤ 1−σ

where

Xm =
(p)m−1(q)m−1

(r)m−1(1)m−1
xm.

Then

∞

∑
m=2

(
(1+k)m− (k+σ)

)
m
(|p|)m−1(|q|)m−1

(r)m−1(1)m−1
|xm| ≤ (1−σ).

Now applying (6), we get

∞

∑
m=2

(
(1+k)m− (k+σ)

)
m

(|p|)m−1(|q|)m−1

(r)m−1(1)m−1
≤ (ψ −3ζ )

2|τ|(1−β )
(1−σ).
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Let

M =
∞

∑
m=2

(1+k)
(|p|)m−1(|q|)m−1

(r)m−1(1)m−1
− (k+σ)

m

(|p|)m−1(|q|)m−1

(r)m−1(1)m−1

= (1+k)

(
∞

∑
m=0

(|p|)m(|q|)m
(r)m(1)m

−1

)
− (k+σ)

(
∞

∑
m=0

(|p|)m(|q|)m
(r)m(1)m+1

−1

)
.

Using (3) in the second sum, we obtain

M = (1+k)F(|p|, |q|; r; 1)− (k+σ)
(r−1)

(|q|−1)(|p|−1)
F(|p|−1, |q|−1; r−1; 1)

+(k+σ)
(r−1)

(|q|−1)(|p|−1)
− (1−σ).

With the use of (2), we ge
i.

M = (1+k)
Γ(r)Γ(r−|q|− |p|)
Γ(r−|q|)Γ(r−|p|)

− (k+σ)
(r−1)

(|q|−1)(|p|−1)
F(|p|−1, |q|−1; r−1; 1)

+(k+σ)
(r−1)

(|q|−1)(|p|−1)
− (1−σ)

= (1+k)
(r−1)

(r−|p|− |q|)
F(|p|−1, |q|−1; r−1; 1)+(k+σ)

(r−1)

(|q|−1)(|p|−1)

− (k+σ)
(r−1)

(|q|−1)(|p|−1)
F(|p|−1, |q|−1; r−1; 1)− (1−σ).

ii.
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M = (1+k)F(|p|, |q|; r; 1)− (k+σ)(r−1)

(|q|−1)(|p|−1)

(r−|q|− |p|)
(r−1)

Γ(r)Γ(r−|q|− |p|)
Γ(r−|q|)Γ(r−|p|)

+(k+σ)
(r−1)

(|q|−1)(|p|−1)
− (1−σ)

=F(|p|, |q|; r; 1)
[
(1+k)− (k+σ)

(r−|q|− |p|)
(|q|−1)(|p|−1)

]

+(k+σ)
(r−1)

(|q|−1)(|p|−1)
− (1−σ).

Using the hypothesis of the theorem, we conclude the required results.
If we choose p= q̄ inF(p, q; r; z), where q is some negative integer, we have a polynomial with positive coefficients.

Therefore, the aforementioned theorem is beneficial in characterizing complex polynomials and we present the related
findings separately.

Coeollary 1 Let h(z) ∈A is of the form (1). For k ≥ 0, 0 ≤ σ < 1, it satisfies the following conditions:
i. q ̸= 1 and r > 2Re(q)

F(q̄−1, q−1; r−1; 1)

(
|q−1|2+k(|q|2− r+1)+σ(2Re(q)− r)

)
(r−1)

|q−1|2(r−2Re(q))

+
(r−1)(k+σ)

|q−1|2
≤ (1−σ)

(
1+

(ψ −3ζ )
2|τ|(1−β )

)
.

ii. q ̸= 1 and r > 0

F(q̄, q; r; 1)
|q−1|2+σ(2Re(q)− r)+k(|q|2− r+1)

|q−1|2
+

(r−1)(k+σ)

|q−1|2

≤ (1−σ)

(
1+

(ψ −3ζ )
2|τ|(1−β )

)
.

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we haveHq̄,q,rh(z) ∈ k−UCV(σ).

Theorem 6 Let h(z) ∈A is of the form (1). For k ≥ 0, 0 ≤ ζ < 1 it satisfies the following conditions, that are
i. |p|, |q| ̸= 1 and r > |q|+ |p|

(|pq|− r+1)(r−1)

(r−|q|− |p|)(|q|−1)(|p|−1)
F(|p|−1, |q|−1; r−1; 1)− (r−1)

(|q|−1)(|p|−1)

≤ (ψ −3ζ )
2|τ|(1−β )(k+2)

.
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ii. |p|, |q| ̸= 1 and r ≥ 0

(|pq|− r+1)

(|q|−1)(|p|−1)
F(|p|, |q|; r; 1)+ (r−1)

(|q|−1)(|p|−1)
≤ (ψ −3ζ )

2|τ|(1−β )(k+2)
.

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ ψ ≤ 1 and 0 ≤ β < 1, we haveHp,q,rh(z) ∈ k−UCV.

proof. Since h(z) ∈ M τ
ζ ,ψ(β ) so from (6) and Lemma 6

∞

∑
m=2

(m−1)
1

m

(|p|)m−1(|q|)m−1

(r)m−1(1)m−1
≤ (ψ −3ζ )

2|τ|(k+2)(1−β )
.

Then

(
∞

∑
m=0

(|p|)m(|q|)m
(r)m(1)m

−1

)
−

(
∞

∑
m=0

(|p|)m(|q|)m
(r)m(1)m+1

−1

)
≤ (ψ −3ζ )

2|τ|(k+2)(1−β )
.

Now using (3), (8) and the hypothesis of the theorem then we get the required results.
If we take p= q̄ in, F(p, q; r; z) then the following results directly.
Corollary 2 Let h(z) ∈A is of the form (1). For k ≥ 0, 0 ≤ ζ < 1 it satisfies the following conditions:
i. q ̸= 1 and r > 2Re(|q|)

(|q|2− r+1)(r−1)

|q−1|2(r−2Re(q))
F(q̄−1, q−1; r−1; 1)− (r−1)

|q−1|2
≤ (ψ −3ζ )

2|τ|(k+2)(1−β )
.

ii. q ̸= 1, and r ≥ 0

(|q|2− r+1)

|q−1|2
F(q̄, q; r; 1)+

(r−1)

|q−1|2
≤ (ψ −3ζ )

2|τ|(k+2)(1−β )
.

Then for h(z) ∈ M τ
ζ ,ψ(β ), we haveHq̄,q,r(h)(z) ∈ k−UCV.

Theorem 7 Let h(z) ∈A is of the form (1). Suppose a > 1, l ≥ 0 and

∞

∑
m=2

(
1

m
+

k(m−1)

m2

)
Bm(a, l)<

(ψ −3ζ )
2|τ|(1−β )

where

Bm(a, l) =
(1+a)l

(m+a)l
.

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ ζ ≤ 1, 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we haveKl

a(h)(z) ∈ k−ST.
proof. As h(z) ∈ M τ

ζ ,ψ(β ), so from (6)
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|xm| ≤
2|τ|(1−β )
m2(ψ −3ζ )

.

Now using the Lemma 7, that is

∞

∑
m=2

(m+k(m−1))|Xm|< 1

and |Xm|= Bm(a, l)|xm|, we get

∞

∑
m=2

(
m+k(m−1)

)Bm(a, l)
m2

<
(ψ −3ζ )

2|τ|(1−β )
.

From the above inequality, we will get the required result.
Theorem 8 Let h(z) ∈A is of the form (1), with a > 1, l ≥ 0 and

∞

∑
m=2

(
(1+k)− (k+σ)

m

)
Bm(a, l)≤

(1−σ)(ψ −3ζ )
2|τ|(1−β )

where

Bm(a, l) =
(1+a)l

(m+a)l
.

Then for h(z) ∈ M τ
ζ ,ψ(β ) and 0 ≤ ζ ≤ 1, 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we haveKl

a(h)(z) ∈ k−UCV(σ).
proof. Since h(z) ∈ M τ

ζ ,ψ(β ) then from (6) and Lemma 8, that is

∞

∑
m=2

(
(1+k)m− (k+σ)

)
m|Xm| ≤ 1−σ

and |Xm|= Bm(a, l)|xm|, we get

∞

∑
m=2

(
(1+k)m− (k+σ)

)Bm(a, l)
m

≤ (1−σ)(ψ −3ζ )
2|τ|(1−β )

.

From the above inequality, we will get the required result.
Theorem 9 Let h(z) ∈A is of the form (1), with a > 1, l ≥ 0 and

∞

∑
m=2

(
(1+k)

m
− (k+σ)

m2

)
Bm(a, l)≤

(1−σ)(ψ −3ζ )
2|τ|(1−β )
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where Bm(a, l) =
(1+a)l

(m+a)l
. Then for h(z) ∈ M τ

ζ ,ψ(β ), 0 ≤ ζ ≤ 1, 0 ≤ ψ ≤ 1 and 0 ≤ β < 1 we have Kl
a(h)(z) ∈

k−Sp(σ).
proof. Using Lemma 8 the proof is the same as the above theorem.
It is easy to see, for m ≥ 2

Bm(a, l) =
(1+a)l

(m+a)l
< 1, a > 1, l ≥ 0

which leads to the next results.
Corollary 3 Let h(z) ∈A is of the form (1). Suppose a > 1, l ≥ 0 and

∞

∑
m=2

(
1

m
+

k(m−1)

m2

)
<

(ψ −3ζ )
2|τ|(1−β )

, m ≥ 2.

Then for h(z) ∈ M τ
ζ ,ψ(β ), 0 ≤ β < 1, 0 ≤ ζ ≤ 1 and 0 ≤ ψ ≤ 1, we haveKl

a(h)(z) ∈ k−ST.
Corollary 4 Let h(z) ∈A is of the form (1). Suppose a >−1, l ≥ 0 and

∞

∑
m=2

(
(1+k)− (k+σ)

m

)
≤ (1−σ)(ψ −3ζ )

2|τ|(1−β )
, m ≥ 2.

Then for h(z) ∈ M τ
ζ ,ψ(β ) we haveK

l
a(h)(z) ∈ k−UCV(σ).

Corollary 5 Let h(z) ∈A is of the form (1). Suppose a > 1, l ≥ 0 and

∞

∑
m=2

(
(1+k)

m
− (k+σ)

m2

)
≤ (1−σ)(ψ −3ζ )

2|τ|(1−β )
, m ≥ 2.

Then for h(z) ∈ M τ
ζ ,ψ(β ) we haveK

l
a(h)(z) ∈ k−Sp(σ).

Theorem 10 Let h(z) ∈A is of the form (1). Suppose a > 1, l ≤ 0 and

∞

∑
m=2

(m+λ −1)
Bm(a, ℓ)

m2
≤ λ (−3ζ )

2|τ|(1−β )

where Bm(a, l) =
(1+a)l

(m+a)l
. Then for h(z) ∈ M τ

ζ ,ψ(β ), 0 ≤ β < 1, 0 ≤ ζ ≤ 1 and 0 ≤ ψ ≤ 1, we haveKl
a(h)(z) ∈ S∗

λ .

proof. As h(z) ∈ M τ
ζ ,ψ(β ) then from (6) and Lemma 3, that is

∞

∑
m=2

(m+λ −1)|Xm| ≤ λ .

Using the hypothesis of the theorem, we conclude the required results.
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