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Abstract: Let X, Y be Hilbert spaces and F : X → Y be Fréchet differentiable. Suppose that F′ is center-Lipschitz on U(w, r) 
and F′(w) be a surjection. Then, S1 = F(U(w, ε1)) is convex where ε1 ≤ r. The set S1 contains the corresponding set given in 
[18] under the Lipschitz condition. Numerical examples where the old conditions are not satisfied but the new conditions 
are satisfied are provided in this paper.
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1. Introduction
In this study we are concerned with the problem of approximating a solution x* of the nonlinear equation

F(x) = y0,               (1)

where F is a Fréchet-differentiable operator defined on a Hilbert space X with values in a Hilbert space Y and y0 ∈ Y. We 
denote by F′ the Fréchet derivative of operator F.

Numerical problems from Applied Sciences can be brought in the form of equation (1) using Mathematical 
Modelling[2,6-9,15-21]. The solutions of these equations can be found in closed form only in special cases. That is why most 
solution methods for these equations are iterative. In particular, the practice of numerical analysis for finding such solutions 
is essentially connected to variants of Newton’s method[1-21].

Let U(w, r) stand for a closed ball centered at w ∈ X and of radius r > 0.
In the present paper we are interested in expanding the applicability of an important theorem by B. T. Polyak[19] with 

numerous applications in optimization and control theory[6,15-21].
Theorem 1.1 [19]Suppose that the following hold:

there exists a constant L > 0 such that F′ is Lipschitz on the ball U(w, r), thus

||F′(x) − F′(z)|| ≤ L||x − z|| for all x, z ∈ U (w, r);           (2)

there exists α > 0 such that

||F′(w)*y|| ≥ α || y || for all y ∈ Y ;            (3)

min{ , }.
2

R r
L
αε ≤ =               (4)

Then, the image of the ball U(w, ε) under the map F is convex. That is S ={F(x) : x ∈ U(w, ε)} is a convex set in Y.
There are many operators F′ for which (2) does not hold (see the examples at the end of this study). Therefore 

Theorem 1.1 cannot apply. Moreover the ball U(w, ε) is small. Our goal is twofold: On the one hand, we provide an 
analogous to Theorem 1.1 result to cover the case when (2) does not hold. And on the other hand we enlarge the ball U(w, ε). 
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Notice that for x0 and w fixed in U(w, r) there exist constants L0 and L1 such that

||F′(x) − F′(x0)|| ≤ L0 ||x − x0|| for all x ∈ U(x0, ε0)           (5)

with ε0 ≤ r and

||F′(x) − F′(w)|| ≤ L1 ||x − w|| for all x ∈ U(w, ε1)           (6)

with ε1 ≤ r. Clearly,

L0 ≤ L,               (7)

L1 ≤ L               (8)

hold in general and 
0 1

,L L
L L  can be arbitrarily large (see also the examples at the end of this study).

The paper is organized as follows: In Section 2 we present a result analogous to Theorem 1.1 but using (5) and (6) 
instead of (2). The numerical examples where (5) (or (6)) hold but not (2) are given in Section 3.

2. Main result
We need two auxiliary results.
Lemma 2.1 [19]A ball in a Hilbert space is strongly convex: If x1, x2 ∈ U(w, ε1), 1 2

0 2
x xx += , then, U(x0, ρ) ⊂ U(w, ε1) for 

2
1 2

18
x x

ερ −=‖ ‖ .
Lemma 2.2 [7]Suppose there exist L0, ρ, µ > 0 such that ||F′(x) − F′(x0)|| ≤ L0 ||x − x0|| for all x ∈ U(x0, ρ), ||F′(x)*y|| ≥ µ 

|| y || for all y ∈ Y and all x ∈ U(x0, ρ), and ||F′(x0) − y0|| ≤ ρµ. Then, the equation F(x) = y0 has a solution x* ∈ U(x0, ρ) and

0 0
0

( )
.

F x y
x x

µ
∗ −
− ≤

‖ ‖
‖ ‖

Remake 2.3 (a) Notice that Lemma 2.2 extended Corollary 1 of [18] in the case when (2) is not satisfied but (5) is 
satisfied. Moreover, these results were given in the case when X and Y are Banach spaces.

(b) It is worth noticing that Lemma 2.2 follows from the Grave’s theorem [13] without assuming the Lipschitz 
continuity. It is sufficient F′ be continuous at x0 which is equivalent to strict differentiability of F at x0. In particular, the 
injectivity of F′ is equivalent to its surjectivity. Hence, Grave’s theorem applies.

Next we present the main result.
Theorem 2.4 Suppose that (3), (5) (with ε0 = ρ) and (6) hold and 

0 11 min{ , }.L Lr αε +≤  Then, the image of the ball U(w, 
ε1) under the map F is convex. That is S1 = {F(x) : x ∈ U(w, ε1)} is a convex set in Y.

Proof. Let x1, x2 be arbitrary points in U(w, ε1) ⊂ U(w, r), yi = F (xi) ∈ S1, i = 1, 2. We shall show the hypotheses of 

Lemma 2.2 for 
2

1 2

18
x x

ερ −=‖ ‖  and µ = α − L1ε1. As in [Theorem 2.1[19]], set 1 2 1 2
20 02  and .x x y yx y+ += =  We must find x* ∈ U(w, 

ε1) such that F (x*) = y0. That will show the convexity of S1. We have that

yi = F(x0) + F′(x0)(xi − x0) + bi, i = 1, 2.            (9)

Then, using (5) and (9) we get in turn that

0 0 0( ) ( ) ( )( )i i ib F x F x F x x x′= − − −‖ ‖ ‖ ‖

        
1

0 0 0 00
[ ( ( )) ( )]( )  i iF x x x F x x x dθ θ′ ′≤ + − − −∫‖ ‖

        20
0 .

2 i
L

x x≤ −‖ ‖
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That is 
2

0 1 21 2
0 0 0 0 02 8( ) , , and .L x xb by F x b b b −+= + = ≤ ‖ ‖

‖ ‖  Using Lemma 2.1, we have that U(x0, ρ) ⊂ U(w, ε1). Moreover, 
by the choice of ε1, ρ and µ

2
0 1 2

0 0 0 0 1( ) ( ) .
8

L x x
F x y b L Lρε ρ α ε ρµ

−
− = ≤ = ≤ − =

‖ ‖
‖ ‖ ‖ ‖

Furthermore, we have in turn by (3) and (6) that for all x ∈ U (x0, ρ)

||F′(x)*y|| ≥ ||F′(w)*y|| − ||F′(x)* − F′(w)*)y||

               ≥ α|| y || − L1||x − w|| || y ||

               ≥ (α − L1ε1)||
 y || = µ|| y ||.

Hence, all conditions of Theorem 1.1 are satisfied. That completes the proof of the theorem.
Remark 2.5 (a) It follows from the definition of R and R1 that

R ≤ R1.               (10)

If L0 = L1 = L, then R = R1. Moreover, if strict inequality holds in (7) or (8), so does in (10). Furthermore, if R = 

0 112  and ,L L LRα α
+=  then,

0 01 1

1 0

1 ( ) 0 as and
2

   0.
L LL LR

R L L L L
= + → →

           (11)

Estimate (11) shows by how many times (at most) the ball is enlarged under our approach.
(b) As already noted in Remark 2.3 (b) the Lipschitz continuity is not needed in Theorem 2.4. But we are also  

interested in providing a computable ball based on Lipschitz constants. That is why we use Lemma 2.2 and the Lipschitz 
conditions and not Grove’s theorem (that does not provide a computable ball).

In the next section, we present some examples in a Banach space setting where (2) is not satisfied but (5) (or (6)) is 
satisfied. Other concrete applications can be also found in [6, 15-21] and the references therin.

3. Examples
We present three examples in this Section. In the first two we show that the center-Lipschitz holds but not the 

Lipschitz condition. Whereas in the third example we show that 
0

L
L  can be arbitrarily large. Our examples are presented in a 

Banach space setting which can certainly be specialized in a Hilbert space one.
Example 3.1 Let X = Y = , D = [0, ∞), x0 = 1. Define function F on

11

1 2( ) ,
11

ixF x c x c

i

+

= + +
+              (12)

where c1, c2 are real parameters and i > 2 is an integer. Then, F′(x) = x1/i + c1 is not Lipschitz on D. However, center 
Lipschitz condition holds for L0 = 1.

Indeed, we have
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1/ 1/
0 0( ) ( ) i iF x F x x x′ ′− = −

                          

0
1 1

0

i i
i i

x x

x x
− −

−
=

+ +

so

||F′(x) − F′(x0)|| ≤ L0 |x − x0|.

Example 3.2 We consider the integral equation

1 1/( ) ( ) ( , ) ( ) , .
b n
a

u s f s G s t u t dt nλ += + ∈∫             (13)

Here, f is a given continuous function satisfying f (s) > 0; s ∈ [a, b], λ is a real number, and the kernel G is continu-
ous and positive in [a, b] × [a, b]. For example, when G(s, t) is the Green’s kernel, the corresponding integral equation is 
equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f (a), u(b) = f (b).

These type of problems have been considered in [1-2, 6, 9-15].
Equation of the form (13) generalizes equations like

( ) ( , ) ( )
b n
a

u s G s t u t dt= ∫              (14)

studied in [1-2, 6, 9-14]. Instead of (13) we can try to solve the equation F(u) = 0 where

: [ , ] [ , ], { [ , ] : ( ) 0, [ , ]},F C a b C a b u C a b u s s a bΩ ⊆ → Ω = ∈ ≥ ∈

and

1 1/( )( ) ( ) ( ) ( , ) ( ) .
b n
a

F u s u s f s G s t u t dtλ += − − ∫

We consider is the max-norm. 
The derivative F′ is given by

1/1( ) ( ) ( ) (1 ) ( , ) ( ) ( ) , .
b n
a

F u v s v s G s t u t v t dt v
n

λ′ = − + ∈Ω∫

First of all, we notice that F′ does not satisfy a Lipschitz-type condition in Ω. Let us consider, for instance, [a, b] = [0, 
1], G(s, t) = 1 and y(t) = 0. Then, we have F′( y)v(s) = v(s) and

1/1( ) ( ) (1 ) ( ) .
b n
a

F x F y x t dt
n

λ′ ′− = + ∫

If F′ were a Lipschitz function, then

1( ) ( ) ,F x F y L x y′ ′− ≤ −‖ ‖ ‖ ‖
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or, equivalently, the inequality

1 1/
20 [0,1]

( ) max ( ),n

x
x t dt L x s

∈
≤∫              (15)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for example, the functions

( ) , 1, [0,1].  j
tx t j t
j

= ≥ ∈

If these are substituted into (15)

1 1/2
21/

1 (1 1/ ), 1.
1

 
( 1/ )

n
n

L j L n j
jj n

−≤ ⇔ ≤ + ∀ ≥
+

This inequality is not true when j → ∞.
Therefore, condition (15) is not satisfied in this case. However, the center-Lipschitz condition holds. To show this, let 

0 [ , ]( ) ( ) and min ( ),  0. Then, for ,s a bx t f t f s vγ α∈= = > ∈Ω  we get

[ ] 1/ 1/
0 [ , ]

1( ) ( ) 1 max ( , )( ( ) ( ) ) ( )
b n n
as a b

F x F x v G s t x t f t v t dt
n

λ
∈

 ′ ′− = + − 
  ∫

                               [ , ]

11 max ( , ),ns a b
G s t

n
λ

∈

 ≤ + 
 

where ( 1)/ ( 2) / 1/ ( 1) /
( , ) ( ) ( )

( ) ( ) ( ) ( )
( , ) .n n n n n n n

G s t x t f t
n x t x t f t f t

G s t v− − −

−

+ + +
=



Hence, we obtain

[ ]0 0( 1)/ [ , ]

(1 1/ )
( ) ( ) max ( , )

b

n n as a b

n
F x F x v G s t dt x x

λ
γ − ∈

+
′ ′− = −∫

                               0 0 ,L x x≤ −

where ( 1)/
| |(1 1/ )

0 [ , ] and max ( , ) .n n

bn
s a b a

L N N G s t dtλ
γ −

+
∈= = ∫  Then, the center-Lipschitz condition holds for suffciently small λ.

Example 3.3 Define the scalar function 3
0 1 2 0 by ( ) sin , 0, where ,d x

iF F x d x d d e x d= + + =  i = 0, 1, 2, 3 are given 
parameters. Then, it can easily be seen that for d3 large and d2 suffciently small, 0L

L  can be arbitrarily small.
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