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Abstract: In this article, we introduce a novel spectral algorithm utilizing Fibonacci polynomials to numerically solve 
both linear and nonlinear integro-differential equations with fractional-order derivatives. Our approach employs a 
quadrature-collocation method, transforming complex equations and associated conditions into systems of linear or 
nonlinear algebraic equations. The solutions to these equations, involving unknown coefficients, provide accurate 
numerical approximations for the original fractional-order equations. To validate the method, we present numerical 
examples illustrating its robustness and versatility. Comparative analyses with available analytical solutions affirm 
the reliability and accuracy of our algorithm, establishing its practical utility in addressing fractional-order integro-
differential equations. This research contributes to computational mathematics and spectral methods, offering a 
promising tool for diverse scientific and engineering challenges.
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1. Introduction
The rich tapestry of mathematical research over the past century has extensively delved into various sequences 

of polynomials, among which the renowned Fibonacci and Lucas polynomials occupy a prominent place. These 
polynomials have been subjects of profound investigation, revealing intricate interrelations that have captivated 
mathematicians and researchers alike. The exploration of Fibonacci and Lucas polynomials transcends disciplinary 
boundaries, finding applications across a spectrum of mathematical domains. In the realm of algebra, these polynomials 
play a crucial role in understanding algebraic structures and patterns. In geometry, they contribute to geometric 
constructions and shape analyses. Combinatorics benefits from the combinatorial properties embedded in these 
polynomials, offering insights into counting and arrangement problems. Additionally, the influence of Fibonacci and 
Lucas polynomials extends to approximation theory, providing powerful tools for approximating functions and solving 
numerical problems. In statistics, their properties are harnessed for probabilistic modeling, while in number theory, 
they reveal fascinating connections with the distribution of prime numbers and the properties of integers. Notably, 
Fibonacci polynomials, considered as special cases of Chebyshev polynomials, have attracted the attention of numerous 
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mathematicians who have delved into their properties and behaviors at an advanced level. This comprehensive 
exploration underscores the versatility and significance of Fibonacci and Lucas polynomials, demonstrating their 
enduring impact on the diverse landscapes of mathematical research and applications [1-2].

Simultaneously, the advent of fractional calculus represents a transformative extension beyond conventional 
derivatives and integrals, introducing a mathematical framework adept at handling non-integer orders. This innovative 
paradigm has become instrumental in addressing and modeling complex scientific and engineering phenomena, with 
applications spanning a diverse array of disciplines. Fractional differential equations, in particular, have assumed pivotal 
roles across various domains, captivating the interest of researchers from both theoretical and practical standpoints. The 
significance of fractional calculus becomes evident in its broad applicability to a spectrum of scientific and engineering 
problems. In the realm of acoustics, fractional differential equations provide a nuanced understanding of wave 
propagation and signal dynamics, offering insights into the behavior of sound in heterogeneous media. In the study of 
damping laws, fractional calculus enables the formulation of more accurate models for describing viscoelastic materials, 
contributing to advancements in structural engineering and material science [3].

Moreover, fractional calculus, as illuminated by Diethelm [4], plays a crucial role in the realm of electroanalytical 
chemistry, where complex electrochemical processes are intricately described by fractional differential equations. 
This mathematical tool proves indispensable for characterizing phenomena such as electrode kinetics and diffusion-
limited reactions [4]. Brunner, Pedas, and Vainikko [5] demonstrate the efficacy of piecewise polynomial collocation 
methods for linear Volterra integro-differential equations with weakly singular kernels, enhancing our ability to design 
and optimize electrochemical systems. In the domain of neuroscience, as Kilbas, Srivastava, and Trujillo illustrate [6], 
neuron modeling benefits substantially from fractional calculus, allowing for a more nuanced representation of the 
intricate dynamics and interactions within neural networks. Fractional-order models prove advantageous in capturing 
the long-range dependencies and memory effects that are characteristic of neuronal systems.

Additionally, fractional calculus finds application in elucidating diffusion processes, offering refined models that 
accurately depict the non-local and non-Markovian nature of particle movement in heterogeneous environments [7]. 
The versatile and powerful nature of fractional calculus positions it as a cornerstone in the mathematical toolbox for 
modeling and understanding diverse scientific and engineering challenges, ranging from the microscopic intricacies of 
electroanalytical chemistry to the macroscopic dynamics of material sciences. The continued exploration and refinement 
of fractional calculus methodologies promise to unlock new dimensions in our ability to comprehend and engineer 
complex systems across a multitude of disciplines [8-10]. Sadek et al. [11] propose a numerical approach based on the 
Bernstein collocation method, applying it to differential Lyapunov and Sylvester matrix equations.

Spectral methods have played a pivotal role in solving differential equations across various scientific disciplines, 
offering efficient and accurate numerical solutions. Researchers have extensively utilized spectral algorithms to tackle 
a wide range of differential equation problems. The work of Hafez and Youssri [12] introduce a fully Jacobi-Galerkin 
algorithm for two-dimensional time-dependent partial differential equations in physics, showcasing the versatility of 
spectral methods in handling complex physical phenomena. Youssri and Atta [13] present a modal spectral Tchebyshev 
Petrov-Galerkin stratagem specifically designed for the time-fractional nonlinear Burgers’ equation, providing insights 
into the application of spectral methods in addressing nonlinear partial differential equations. Additionally, Hafez, 
Youssri, and Atta [14] propose a Jacobi Rational Operational Approach for solving time-fractional sub-diffusion 
equations on a semi-infinite domain, demonstrating the applicability of spectral methods to fractional differential 
equations. These works, along with the contributions of Magdy et al. [15] and Abdelhakem et al. [16], collectively 
underscore the potency and efficacy of spectral methods in solving differential equations of various complexities. For 
more studies, please see [17-18].

In the annals of mathematical history, the year 1933 marked a seminal moment with the introduction of an 
influential method for evaluating definite integrals by the Hungarian mathematician Lipót Fejér. This pioneering 
technique, now celebrated as the Fejér quadrature formula, represents a sophisticated approach to numerical integration 
that has stood the test of time. The core principle of this method involves the expansion of the integrand in a finite 
Chebyshev series, a strategy that facilitates a comprehensive understanding of the function’s behavior over a specified 
interval. Subsequently, each term in this series is individually integrated, culminating in an approximation of the original 
definite integral.

The Fejér quadrature formula [19-20] has garnered widespread recognition and adoption due to its remarkable 
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efficiency, accuracy, and the inherent simplicity that characterizes its implementation. One of its key advantages lies in 
the ease with which error estimates can be derived, providing practitioners with valuable insights into the reliability of 
the obtained results. The formula, is expressed as:
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Fibonacci polynomials, initially studied in 1883 by Eugene Charles Catalan and E. Jacobsthal, have been a subject 
of ongoing exploration. These polynomials, denoted as Fn(x), satisfy the recurrence relation

1 2( ) ( ) ( ),n n nF x xF x F x− −= +

with initials F0(x) = 1 and F1(x) = x. Notably, these polynomials gained further attention in 1966 through the work of 
Swamy [21] at the University of Saskatchewan in Canada.

Motivated by the prevalence of fractional differential equations in diverse physical phenomena, this paper 
introduces an algorithm for solving fractional-order integro-differential equations. The proposed method leverages the 
Fejér quadrature formula and the collocation spectral method. In this context, our paper introduces a novel algorithm 
for solving fractional-order integro-differential equations, leveraging the well-established Fejér quadrature formula and 
the collocation spectral method. The Fejér quadrature formula, introduced in 1933, offers a sophisticated numerical 
integration approach with efficiency, accuracy, and simplicity. Our algorithm builds on this foundation, incorporating 
Fibonacci polynomials and fractional calculus to address complex mathematical challenges. To establish the foundation 
for our results, Section 2 presents mathematical preliminaries, including key definitions in fractional calculus and 
relevant properties of Fibonacci polynomials. Section 3 outlines and implements the algorithm, Section 4 for the study 
of the convergence analysis, while Section 5 provides numerical examples to demonstrate its efficiency, simplicity, and 
applicability. The paper concludes in Section 6 with a summary of findings and potential avenues for future research.

2. Essential preliminaries
2.1 Some definitions and properties of fractional calculus

We present some notations, definitions and preliminary facts of the fractional calculus theory which will be useful 
throughout this article.

Definition 1. The Rieman-Liouville fractional integral operator I α of order α on the usual Lebesgue space L1[0, 1] 
is defined as
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The operator I α has the following properties:
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where f ∈ L1[0, 1], α, β ≥ 0, and ν > −1. Also, Γ(α) is the gamma function.
Definition 2. The Rieman-Liouville fractional derivative of order α > 0 is defined by
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where n is an integer. However, its derivative has certain disadvantages when trying to model real-world phenomena 
with fractional differential equations. Therefore, we will present the definition proposed by Caputo of the fractional 
differential operator Dα.

Definition 3. Let  f
 (t) ∈ Cn[0, ℓ], ℓ > 0. Then the Caputo definition of fractional differential operator is given by
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For more details on the mathematical properties of fractional derivatives and integrals, see for example, [22-24].
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2.2 Some properties of Fibonacci polynomials

Fibonacci polynomials satisfying the recurrence relation [25, 26]

1 2( ) ( ) ( ), 2, 3, ,r r rF t t F t F t r− −= + = …

starting with F0(t) = 0, F1(t) = 1.
Fibonacci polynomials have the analytic form
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Theorem 1. The Caputo fractional derivative of Fn(t) is given by
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Proof. Apply property (7) to (8), we get the result.                                                                                                      □

3. Numerical solution of fractional integro-differential equation
In this section, using the collocation method with the aid of Fejér-quadrature formula, we solve the fractional 

integro-differential equations (FIDE) of the form:
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where, r − 1 < σr ≤ r, r = 1, 2, …, ℓ. First we approximate u(t) in terms of Fibonacci expansion as follows:
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substitution of Eq. (12) into Eq. (10), yields,
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We apply the transformation x  tx for Eq. (1), to get
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where, xk, ωk are given in Eq. (2). Now we apply the quadrature formula (14), to the integral on the right hand side of 
Eq. (13), to get
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moreover the use of the initial conditions
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Eqs (16)-(17), generates a system of N equations in the unknown expansion coefficients {ak : k = 1, …, N + 1}, 
which we solve using the well-known Newton’s iterative scheme, ultimately we get U(t).

Algorithm 1 Coding algorithm for the proposed technique

Input n, N, ℓ, G, H and σr, r = 1, 2, …, ℓ.

Step 1. Assume an approximate solution U(t) as in (12).

Step 2. Apply the a quadrature-collocation method to obtain the system in (16)-(17).

Step 3.
Use FindRoot command with initial guess {ak = 10−k, k : 1, 2, …, N + 1}, 

to to solve the system in (16)-(17) to get ak.

Output U(t)

4. Convergence analysis
We ascertain the convergence of the Fibonacci approximate solutions by reporting the following two theorems, 

providing a rigorous foundation for the reliability and accuracy of our proposed algorithm.
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The first Theorem establishes the convergence of the Fibonnaci expansion, validating its effectiveness in 
numerically approximating the solution of differential/integral problems. The second Theorem delves into the 
convergence of the approximate spectral solution when the number of retained modes be large. Together, these 
theorems bolster the confidence in the convergence properties of our proposed algorithm, establishing a solid theoretical 
underpinning. As we navigate the complexities of fractional-order integro-differential equations, these theorems 
assure researchers and practitioners that the Fibonacci approximate solutions converge reliably and accurately to the 
true solutions as computational parameters are refined. This assurance is paramount for the algorithm’s widespread 
applicability across diverse scientific and engineering domains.

Theorem 2. [27] If ϕ(z) is defined on [0, ℓ] and |ϕ(i)(r)| ≤ Qi, i ≥ 0, where r is any point in (0, ℓ), Q is a positive 
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5. Numerical results and comparisons
In this section we check the applicability of our proposed algorithm by exhibiting two numerical test problems.
Example 1. Consider the following linear FIDEs (see, [28]):

( )
1
2
* 0

( ) cos sin ( ) sin ( ) ( ), [0, 1],
t

D u t t t u t t u d f t tτ τ τ= − + + ∈∫ (18)
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3/2
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π π
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(0) 0.u =
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The exact solution of (18) is u(t) = t + t2. We apply the Fejér-quadrature collocation method (FQCM) presented in 
Section 3, to Eq. (18) for the case corresponding to n = 6, N = 2. In such case, we get

1 2 31, 1, 1,a a a= − = =

and hence

2
1 2 3[ ( ) ( ) ( ) ( ) ,U t F t F t F t t t= − + + = +

which is the exact solution.
Example 2. Consider the following nonlinear FIDE (see, [28]):
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The exact solution of Eq. (19) is u(t) = ln(1 + t). In Table 1, the maximum absolute error E is listed for various 
values of n and N, while in Table 2 we give a comparison between the best errors obtained by the method developed in 
[28] and FQCM. Figure 1 illustrates the absolute errors at different values of N.

Table 1. Maximum absolute error E for Example 2

N
n = 6 n = 10

4 10 14 6 8 10

E 2.65 × 10−6 1.27 × 10−9 2.58 × 10−10 5.27 × 10−7 6.54 × 10−10 1.41 × 10−12

Table 2. Best errors for Example 2

Method in [28] FQCM at N = 16, n = 10 Our CPU time

9.0178 × 10−6 1.4105 × 10−12 25.328
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Figure 1. The absolute errors of Example 2

Example 3. Consider the following nonlinear FIDE (see, [29-30]):

(20)( )2* 0
( ) ( ) ( ) , (1, 2], [0, 1],

t
D u t f t u d tα τ τ α= − ∈ ∈∫

where

1( ) sinh( ) sinh(2 ),
2 4
tf t t t= − + +

subject to

(0) 0, (0) 1.u u′= =

The exact solution of Eq. (19), for the case corresponds to α = 2, is u(t) = sinh t. In Table 3, the maximum absolute 
error E is listed for n = 12, various values of α and N, while in Table 4 we give a comparison between the best errors 
obtained by the methods developed in [29-30] and FQCM. Figure 2 illustrates the absolute errors at different values of N.
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Table 3. Maximum absolute error E for Example 3

N
α = 1.25 α = 1.5 α = 1.75 α = 2

10 14 18 8 10 12 10 14 18 8 10 12

E
6.31 

× 10−7

2.64 
× 10−11

1.57 
× 10−13

6.38 
× 10−10

2.51 
× 10−13

2.22 
× 10−16

7.88 
× 10−7

3.91 
× 10−11

2.22 
× 10−13

3.07 
× 10−10

5.28 
× 10−13

6.17 
× 10−16

Table 4. Best errors for Example 3

Method in [29] Method in [30] FQCM at N = 16, n = 6 Our CPU time

1.94 × 10−8 1.05 × 10−10 6.17 × 10−16 25.134
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Figure 2. The absolute errors of Example 3

Example 4. Consider the following nonlinear FIDE:

1
2
* 0

( ) ( ) 2 ( 2 ) ( ) , [0, 1],
t

D u t u t t u d tτ τ τ+ = − ∈∫ (21)

subject to

(0) 0.u =

Since the exact solution of (21) is not available, so let’s define the following absolute residual error norm
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(22)
1
2
* 0(0,1)

max ( ) ( ) 2 ( 2 ) ( ) .
t

t
RE D U t U t t U dτ τ τ

∈
= + − −∫

and applying our method at N = 18, n = 7 and α = 0.5 to get Table 5, which illustrates the RE at different values of t.

Table 5. The RE of Example 4

t 0.1 0.3 0.5 0.7 0.9 CPU time

RE 1.5992 × 10−18 3.03577 × 10−18 1.13841 × 10−18 3.41524 × 10−18 3.17671 × 10−17 19.75

6. Concluding remarks
Within the pages of this paper, we unveil a novel algorithm designed to procure numerical spectral solutions for 

FIDE. The genesis of this algorithm lies in a meticulous combination of the Fejér-quadrature method and the spectral 
collocation method, providing a robust and versatile framework for tackling the challenges posed by FIDE. One 
noteworthy feature of the presented algorithm is its applicability to a broad spectrum of FIDE, encompassing both 
linear and nonlinear instances. This adaptability renders the algorithm a valuable tool for researchers and practitioners 
confronting a diverse array of mathematical problems.

An inherent strength of the developed algorithm lies in its ability to yield highly accurate approximate solutions 
while requiring only a modest number of retained modes within the Fibonacci expansion. This efficiency is particularly 
advantageous, as it not only expedites the computational process but also mitigates the computational burden associated 
with solving complex FIDE. The algorithm’s capacity to achieve substantial accuracy with a limited number of modes 
underscores its efficacy in delivering precise numerical solutions, offering a practical advantage in scenarios where 
computational resources may be constrained.

Moreover, the algorithm’s versatility positions it as a versatile tool across various scientific and engineering 
domains, enabling researchers to explore and understand the dynamics of complex systems described by FIDE. The 
incorporation of the Fejér-quadrature method ensures a robust numerical foundation, while the spectral collocation 
method enhances the algorithm’s precision in capturing intricate details of the underlying mathematical models.

In essence, this algorithm contributes to the evolving landscape of numerical methods for FIDE, providing a potent 
and accessible tool for researchers seeking efficient and accurate solutions to a broad class of problems. As we delve 
into the details of the algorithm and its applications, the potential for advancing our understanding of complex fractional 
systems becomes evident, opening avenues for further exploration and refinement in the realm of numerical analysis 
and computational mathematics. All codes were written and debugged by Mathematica 11 on HP Z420 Workstation, 
Processor: Intel (R) Xeon(R) CPU E5-1620-3.6 GHz, 16 GB Ram DDR3, and 512 GB storage.
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