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Abstract: Iron oxide, Silver, Aluminium oxide, these nanoparticles individually or combined help in drug delivery 
especially aluminium oxide nanofluid used in an anti-blood pressure drug called ‘Telmisartan’. Alumina and silver 
particles are used in manufacturing nanocomposites which have more antimicrobial properties. This is the reason for 
the current study of ternary nanofluids natural convective flow and efficacy of energy transfer in a bi-directionally sheet. 
Currently, ternary nanofluids (Fe3O4, Ag, Al2O3) are being taken for analysis. Usual water (H2O) is the conventional 
base fluid. Two different combinations of ternary nanofluids are used to get the average heat transfer rate, mixture 
ratios (Fe3O4 + Ag) and (Fe3O4 + Ag + Al2O3) when subjected to a variety of physical influences, including thermal 
radiation, magnetic fields, heat production and absorption, and nanoparticle volume amount. It is possible to solve the 
developed set of equations numerical results using the Keller box (finite differences) method with the help of MATLAB 
programming. This method helps in solving higher order partial differential equation (PDEs) to ordinary differential 
equation (ODEs). The investigations findings demonstrated that the ternary hybrid nanofluids specific heat capacity is 
directly impacted by temperature. Numerical solutions for Nusselt number, velocity profile, skin friction coefficient, 
temperature profiles have represented with the help of graphs and tables. The ternary hybrid nanoflow (Fe3O4 + Ag + 
Al2O3/H2O) transmits more energy for increasing volume fractions, comparing to the hybrid nanofluid (Fe3O4 + Ag/
H2O). The study reveals the fact that metal oxides transfer more heat from the system than that of metals. The estimated 
error of heat transfer rate is higher in alumina nanoflow followed by silver and iron oxide nanofluid flows. The 
streamlines are equally spaced, but the energy flow amount is higher for the case M, S = 1 than M, S = 2. But in the case 
of stretching ratio parameter, the amount energy flow in α = 0.5 > α = 1.0. An equal amount of energy flow is observed 
for varied Biot number. 
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Nomenclature

Dimensional Variables Non-Dimensional Variables

u, v, w, x & y Velocity components & axes η Similarity variable

β Casson parameter f, g Stream function

B0 Magnetic field strength θ Temperature

T Local Temperature M Magnetic force

Tw, T∞ Wall and Ambient Energy Rd Radiation 

ρ Density (kg/m3) Pr Prandtl number

μ, v Dynamic & Kinematic viscosity Bi Thermal conjugate parameter 

α Thermal diffusivity α Stretching ratio 

ht Wall heat transfer coefficient S Unsteadiness parameter 

K Thermal conductance (W/m K) Nu Wall heat transfer rate

vwuw Stretching Velocities Cf Wall friction

k* Coefficient of mean absorption Re Reynolds number

σ* Stefan-Boltzmann constant A1, A2, A3, A4 Constants

τw Shear stress ϕ1, ϕ2, ϕ3 Fe2O3, Al2O3, Ag nanoparticle volume fraction

θw Energy flux

Suffix

s1, s2, s3 Solid nanoparticles 

qr Radiative heat flux thnf, nf, f Ternary, nano, fluids

n, a, b, c, a0, b0, A, B, h0 Constants r, s Thermal indices

σ Electrical conductivity(s/m)

Abbreviations

HNF Hybrid nanofluids

THNF Ternary Hybrid Nanoflows

KBM Keller Box Method

RKM Runge-Kutta Method

Cp Energy capacitance (J/kg K)

BL Boundary Layer

ODE Ordinary Differential Equation

PDE Partial Differential Equations
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1. Introduction
To address the requirements and expectations of the work, researchers have focused their efforts on creating new 

energy measurements across time. Their goal is to design systems with the greatest heat transfer possible. Applications 
in the extrusion of polymer sheets from a dye and the drawing of plastic films highlight the significance of viscous 
fluid flow across a stretched sheet. In order to achieve the necessary thickness, molten silt is issued and then stretched 
throughout the manufacturing process of these sheets. To achieve the intended product properties, the stretching 
procedure and cooling rate have a significant influence. Sakiadis et al. [1] first looked at behaviour of boundary 
layers on continuous solid surfaces. Li et al. [2] discussed on analysis of the ternary nanofluid flow across a stretched 
sheet. Souayeh et al. [3] examined ternary nanoflow over an exponential extensible sheet. Devi et al. [4] analysed the 
extending sheet exposed to Newtonian heating affected by Lorentz force. Prasad et al. [5] investigated the variable fluid 
characteristics effects on heat transmission and MHD flow over a stretched sheet with varying thickness.

The nanofluids that Choi introduced and developed were used as heat transfer fluids in a variety of sectors to speed 
up the evacuation of heat from a system [6]. Using nanoparticles to improve fluids thermal conductivity. Khan et al. [7] 
completed the first research on the Nanofluid boundary-layer flow past a stretched sheet. Alrihieli et al. [8] analysed the 
dissipative properties are affected by concentration, slip, and heat. Stretching sheet-induced Casson-Maxwell nanofluid 
flow. Kumar et al. [9] investigated the water/Ag-Al2O3 hydromagnetic hybrid nanofluid irreversibility investigation 
across a stretched sheet. Rao et al. [10] analysed the analytical investigation of heat transfer for radiation-heated Casson 
nanoflow over a porous stretched sheet. Elatter et al. [11] examined the discharge concentration of waste in Eyring-
Powell nanoflow through a deformable horizontal plane surface. Sumathi et al. [12] analysed the impact of radiation on 
Casson Nanofluid flow across an inclined slanted surface. Sharanayya et al. [13] investigated Casson Nanoflow over 
a stretching sheet with Soret and Heat source/sink imbedded in permeable media. Najiyah et al. [14] analysed a non-
linearly permeable shrinking sheet in three dimensions with bidirectional nanofluid flow and MHD radiation.

The mechanical properties of the finished product are impacted when a sheet is stretched because the elastic 
material taken on a unidirectional orientation. Foresaid study has only addressed 2D boundary layer issues resulting 
from unidirectional stretching. A standard base fluid combined with more than one type of nanoparticle is referred to 
as a mixed nanofluid. Due to their unique features, hybrid nanofluids have been proven to perform better in terms of 
heat transmission than traditional fluids. Hybrid nanofluids are also dependable and reasonably priced. Hayat et al. [15] 
analysed the Fe3O4 and Al2O3 immersed thin film flow on stretching surface. Isa et al. [17] investigated the alumina 
and copper nanoparticle-suspended water-based hybrid nanoflow. Reddy et al. [18] analysed the mass-energy transport 
properties of a hybrid nanofluid across a stretching or shrinking sheet with slip effects. Alabdulhadi et al. [19] analysed 
the asymmetrical thin film flow of Al2O3/Water nanofluid across an inclined stretching sheet. Javad zadeh et al. [20] 
described the immunisation of Al2O3 and Fe3O4 nanoparticles on chitosan and cellulose nanopapers for the specific 
adsorption of free fatty acids from refined oil.

Heat loses or heat gain in a fluid flow process occurs frequently. It is an inevitable factor when we study energy 
and species transfer system in a boundary layer theory. Quite good examples of these situations are in building designs, 
in computers, the CPU, electronic circuits, etc. This generation concept is to enhance the fluid conductivity whilst the 
other reduces fluid energy. Its term is inevitable only when there finds a huge temperature difference and because of this 
property, energy generation/absorption has greater importance in MHD flows. Fewer applications are in functioning 
of brain i.e., in neurobiology, magnetized employment of energy generation/absorption has a crucial role. These 
applications were well discussed by the researchers in their early works [21-23]. Paul et al. [24] thermally stratified 
Cu-Al2O3/water hybrid nanofluid flows over a vertically extending cylinder under the influence of an angled magnetic 
field and a heat source or sink. Asogwa et al. [25] studied the magnetic and radiation nanofluids past a Riga plate with 
a heat sink that accelerates exponentially. Alqawasmi et al. [26] discoursed an analytical method for ternary hybrid 
nanofluid flow across a disc using a nonlinear heat source-sink and Fourier heat flux model. Singh et al. [35] analysed 
Ternary hybrid nanofluid (TiO2-SiO2-MoS2/kerosene oil) flow over a rotating disk with quadratic thermal radiation 
and Cattaneo-Christov model. Yaseen Moh et al. [36] analysed Ternary hybrid nanofluid flow containing gyrotactic 
microorganisms over three different geometries with Cattaneo-Christov model. Rawat et al. [37] discoursed the 
Designing soft computing algorithms to study heat transfer simulation of ternary hybrid nanofluid flow between parallel 
plates in a parabolic trough solar collector: case of artificial neural network and particle swarm optimization. Ali et al. [38] 
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analysed the Significance of Brownian motion and thermophoresis influence on dynamics of Reiner-Rivlin fluid over a 
disk with non-Fourier heat flux theory and gyrotactic microorganisms. Khan et al. [39] studied the Magnetic dipole and 
thermal radiation impacts on stagnation point flow of micropolar based nanofluids over a vertically stretching sheet.

The foremost purpose of the present exploration is to provide a scientific contribution in literature by considering 
the consequence of convective heat transport in bidirectional water driven hybrid-class Ternary nanofluid using 
nanoparticles (Fe3O4 + Ag + Al2O3/H2O) under the magnetohydrodynamics process. has a lot of applications in 
semiconducting materials science, (Ag) has also a variety of applications in this modern world. The key applications are 
as follows for (Al2O3) Plastics, rubber, ceramics, refractory products, to improve ceramics density, smoothness, fracture 
toughness, creep resistance, thermal fatigue resistance, and polymer products wear resistance, Ideal material of far-
infrared emission. Packaging materials, cutting tools, high purity crucible, winding axle, and furnace tubes, polishing 
materials, glass products, metal products, semiconductor materials, Plastic, tape, and grinding belts. Silver nanoparticles 
(Ag) are increasingly used in various fields, including medical, food, health care, consumer, and industrial purposes, 
due to their unique physical and chemical properties. These include optical, electrical, and thermal, high electrical 
conductivity, and biological properties. The application of Fe3O4 nanotechnology in many medical areas has been 
widely developed, especially in the field of drug/gene delivery.

The use of nanoparticles as carrier systems for drugs or other bioactive therapeutic molecules has been investigated 
with the aim of improving the therapeutic effect and administration of the loaded agents and reducing their side effects. 
Among these nanoparticles, Fe3O4 nanoparticles (NPs) are used extensively in various fields, including biotechnology, 
biosensing, catalysis, magnetic fluids, separation techniques, energy storage, and environmental modification. 
Applications of Fe3O4 NPs in the field of biotechnology involve targeted drug/gene delivery [27], magnetic resonance 
imaging (MRI) [28]. Targeted drug/gene delivery systems are particularly beneficial due to their unique magnetic 
properties, extremely low toxicity, excellent biocompatibility, good biodegradability, and reactive surface that can be 
readily modified with biocompatible coatings.

From the above survey, it is clear that no work on comparing different combinations of nanoparticles and their 
thermal conductivity efficacy under natural convection. So, the present work carries out convective-magneto hybrid 
radiative nanoflow past a bidirectional stretching surface. The modelled boundary layer equations are untangled with 
Thomas Algorithm. The graphs and tables portray the numerically computed values of different physical parameters on 
flow field affecting and interested engineering quantities. 

2. Mathematical formulation
Consider an unsteady bidirectional magnetohydrodynamics (MHD) flow of hybrid-class ternary nanofluid (Fe3O4, 

Ag, Al2O3) touching a stretching obstacle with the incorporation of convective heat transport in xy-plane. It is supposed 

that the device is stretched in both x- and y-directions with velocities ; 0, 0 and ; 0,
1 1w w

ax byu a c v b
ct ct

= > ≥ = ≥
- -

 

respectively. However, the region covered by the hybrid-class (Fe3O4, Ag, Al2O3) ternary nanofluid is above the xy-
plane. Velocity components in x, y and z directions are signified by u, v and w, respectively. Figure 1 describes the 
graphical abstract of the present investigation.

A Newtonian hybrid nanoflow along a bidirectional extensible surface with the following assumptions is taken for 
study:

1. Unsteady, three-dimensional incompressible flow. 

2. Surface is extended along x-axis with a stretching velocity ; 0, 0 and ; 0,
1 1w w

ax byu a c v b
ct ct

= > ≥ = ≥
- -

 and along the y-axis, the flow 

passes at a speed of ; 0, 0 and ; 0,
1 1w w

ax byu a c v b
ct ct

= > ≥ = ≥
- -

 normal to the flow.

3. The temperature of the fluid near the surface is 0 .
1

r s

w
x yT T a

ct∞
 

= +   - 
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4. An uneven magnetic force of strength 0
0 ( )

1
b

B t
ct

=
-

 applied normal i.e., along z-axis. 

5. The fluid medium is filled with ferrous, aluminium oxides and silver NPs with water as base fluid. 
6. The system is exposed to radiation and an asymmetric energy generation/absorption is considered.
7. Wall surface is allowed for convection with a coefficient ht = h0/(1 - ct).
8. Induced magnetic field is neglected and because of the flat plate buoyant forces are feeble, so avoided.
The Schematic representation of this physical model is shown in the Figure 1. 

*
1w
b yv

ct
=

-

0 1

r s

w
x yT T a

ct∞
 

= +   - 

*
1w
a xu

ct
=

-

Ag

Fe3O4

Al2O3

zw

v

u
x

y

Figure 1. The problem’s physical configuration

The above assumptions lead to the system of equations which obeys the present situation and follows the literature 
[29-31].

Governing equations:

0,u v w
t y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
(1)

2
2
02 ,thnf thnf

thnf thnf

u u u u uu v w B u
t x y z z

µ σ

ρ ρ
∂ ∂ ∂ ∂ ∂

+ + + = -
∂ ∂ ∂ ∂ ∂

(2)

2
2
02 ,thnf thnf

thnf thnf

v v v v vu v w B v
t x y z z

µ σ

ρ ρ
∂ ∂ ∂ ∂ ∂

+ + + = -
∂ ∂ ∂ ∂ ∂

(3)

( ) ( )
2

2 .thnf r
thnf

p pthnf thnf

qT T T T T qu v w
t x y z zc cz

µ
α

ρ ρ

′′′∂∂ ∂ ∂ ∂ ∂
+ + + = - +

∂ ∂ ∂ ∂ ∂∂
(4)

Where:
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(5)( )( ) ( )( )( ).w
w

ku
q f T T A B T T

vx ∞ ∞′′′ ′= - + -

The problem’s boundary conditions are given as follows:

( ), , 0,  at 0,
1 1w w f t w
a x b y Tu u v V w k h T T z

ct ct z

∗ ∗ ∂ = = = = = - = - = - - ∂ 

0, 0,  as .u v T T z∞→ → → →∞ (6)

Using the self-similarity analysis [31]

( ) ( ) ( ) ( ) ( ), , ,
1 1 1f

a a x a yz u f v g
v ct ct ct

η η η
∗ ∗ ∗

′ ′= = =
- - -

(7)
( ) ( ) ( )( ) ( ) ( ), .
1

f
w

a v
w f g T T T T

ct
η η θ η

∗

∞ ∞= - + = + -
-

Optically thick fluids need the Rosseland heat approximation for T 
4 linearized using Taylor’s series about T∞ i.e., 

T 
4 = 4TT∞

3 - 3T∞
4 is given below:

(8)( )3 4*

*

4 34 .
3

r
TT T

q
zk

σ ∞ ∞∂ -
=-

∂

Substituting Eqn. (8) in Eq. (4) gives rise to the following form

(9)( ) ( )( )
* 3 2

* 2
16

.
3

w
w Thnf

p

ku TT T T T Tu v w f T T A B T T
t x y z z k c z

σ
α

ν ρ
∞

∞ ∞

 ∂ ∂ ∂ ∂ ∂ ′+ + + = - + - + +
 ∂ ∂ ∂ ∂ ∂ 

Using the similarity variables (Eq. (7)), the following expression may be used to represent Eqns. (2), (3), (9):

(10)( ) ( )2
1 2 0,

2
A f f f g f S f f A Mfη ′′′ ′ ′′ ′ ′′ ′- + + - + - = 

 

(11)( ) ( )2
1 2 0,

2
A g g f g g S g g A M gη ′′′ ′ ′′ ′ ′′ ′- + + - + - = 

 

(12)( ) ( ) ( )3 3
41 Pr 0.
3 2

A F f g r f s g S A Af Bηθ θ θ θ θ θ    ′′ ′ ′ ′ ′ ′+ + + - + - + + + =    
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According to the relevant boundary conditions (Eq. (6))

( ) ( ) ( ) ( ) ( ) ( )0, 1, , 1  at 0,f g f g Biη η η η α θ η θ η′ ′ ′+ = = = =- - =

(13)( ) ( ) ( )0, 0, 0 as .f gη η θ η η′ ′→ → → →∞

The following is a description of the characterising parameters. 

( )2
0 0, , , , Pr ,

p ff f f

f ff

cb vh c bM Bi S
k a ka a a

µσ
α

ρ

∗

∗ ∗ ∗
= = = = =

(14)
* 3

1 2 3 *
4

, , , .thnf thnf thnf

f f f

k T
A A A F

k k k

µ σ σ
ρ σ

∞= = = =

The following may be used to express the local Nusselt numbers and skin friction coefficient along axial and 
longitudinal directions Ahmad et al. [30].

2, ,wywx
fx fy

hnf hnf w
C C

V

ττ
ρ ρ

= =

(15)( ) ( )
4 41  and 1 .

3 3
w w

x y
f w f w

xq y q
Nu Nu

F k T T F k T T∞ ∞

   = + = +   - -   

Where:

(16)
0 0 0

, , .wx thnf wy thnf w thnf
z z z

u v Tq k
z z z

τ µ τ µ
= = =

∂ ∂ ∂     = = = -     ∂ ∂ ∂     

Equations (7) and (16) help Equation (15) to bring in the following expressions Ahmad et al. [30].

( ) ( )
3

21 1Re 0 ; Re 0 ,x fx y fyC A f C A gα
-

′′ ′′= =

( ) ( )
1

2 4Re 1 0 ,
3

thnf
x x

f

k
Nu

F k
θ-   ′= - + 

 

(17)( ) ( )
11

2 24Re 1 0 .
3

thnf
y y

f

k
Nu

F k
α θ
--   ′= - + 

 

The following formula yields the heat transfer rate Estimated error (ER) [30].
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(18)( ) ( )

( )

1 1
2 2

1
2

Re Re
100

Re

x x
R

x

Nu Nanofluid Nu Base fluid
E

Nu Base fluid

- -

-

-
= ×

The thermophysical characteristics of (TiO2, SiO2, Al2O3/H2O) Tri hybrid nanofluid are Manjunatha et al. [32].

Density ( ) ( ) ( ){ }1 2 3 3 3 2 2 1 11 1 1thnf fρ φ φ φ ρ φ ρ φ ρ φ ρ = - - - + + + 

Viscosity
( ) ( ) ( )2.52.5 2.5

1 2 31 1 1
f

thnf
µ

µ
φ φ φ

=
- - -

Thermal conductivity

( )
( )

1 1 1

1 1 1

2 2

2
hnf hnfthnf

hnf hnf hnf

k k k kk
k k k k k

φ

φ

+ - -
=

+ + -

Where:

( )
( )

2 2 2

2 2 2

2 2

2
nf nfhnf

nf nf nf

k k k kk
k k k k k

φ

φ

+ - -
=

+ + -

( )
( )

3 3 3

3 3 3

2 2

2
f fnf

f f f

k k k kk
k k k k k

φ

φ

+ - -
=

+ + -

Electrical conductivity

( ) ( )
( ) ( )

1 1 1

1 1 1

1 2 1 2
1 1

thnf hnf

hnf hnf

σ φ σ φ σ

σ φ σ φ σ

+ + -
=

- + +

Where:

( ) ( )
( ) ( )

2 2 2

2 2 2

1 2 1 2
1 1

hnf nf

nf nf

σ φ σ φ σ

σ φ σ φ σ

+ + -
=

- + +

( ) ( )
( ) ( )

3 3 3

3 3 3

1 2 1 2
1 1

nf f

f f

σ φ σ φ σ

σ φ σ φ σ

+ + -
=

- + +



Contemporary Mathematics 986 | T Poornima, et al.

Table 1. Thermophysical properties of the nanoparticles and the base fluid [33]

[kgm-1]ρ [Sm-1]σ [W(mk)-1]k

H2O 997.1 5.5 × 10-6 0.6071

Fe3O4 5,180 2.5 × 104 9.7

Ag 10,500 6.3 × 107 429

Al2O3 6,310 5.965 × 107 35.0

3. Methodology
Following the mathematical modelling of the actual method, the next step is to build the answer to the modelled 

equation. We opted for Keller-Box approach (KBM), a hidden finite differences methodology, for the computational 
solution of the modelled equations since it combines second-degree validity with the ability of step size adaptation. 
Since its quicker convergence rate relative to conventional numerical techniques, this approach is best suited for solving 
boundary layer flow problems. Using this approach, higher-order PDEs are reduced to first-order PDEs, which are then 
translated into central difference formulas. The decomposition of LU technique is used to solve the matrix-vector form 
of transformed solutions. The material domain [0, ∞) is used throughout the computation procedure is condensed to 

the limited area [η0, η∞] by altering η0 = 0, η∞ = 20, ηp = 1,000 and 0

p
h

η η
η
∞ -

=  to establish the initial approximations 

of the computerised solution, and subsequently increasing the total amount of points on the grid by decreasing the step 
size h to attain the necessary precision, i.e. ε-6. We therefore present a more detailed exposition here. Essentially there 
are four fundamental steps intrinsic to the Keller box scheme. The Keller Box Method has several advantages other 
numerical methods for solving differential equations. Some of them are:

It can deal with complex boundary conditions such as mixed or nonlinear ones. it can achieve high accuracy and 
stability with relatively few boxes and it can be easily implemented on computers using simple algorithm.

Steps involved in this method is explained in detail below:
(A). Reduction of the Nth order partial differential equation system to N 1st order equations.
(B). Finite Difference Discretization.
(C). Quasi-linearization of Non-Linear Keller Algebraic Equations.
(D). Block-tridiagonal Elimination of Linear Keller Algebraic Equations.
Steps involved in this method is explained in detail below:
Step A: The Nth order partial differential equation system reduced to N first-order equations.
We add the most recent set of variables listed below to convert higher-order PDEs to first-order PDEs: p1(ξ, η), 

p2(ξ, η), p3(ξ, η), p4(ξ, η), p5(ξ, η).

1 1 2 2, , , ,f f f P P f P f P′ ′′ ′′ ′′′= = = = =

3 3 4 4, , ,P P P Pθ θ θ′ ′′ ′′= = = =

(19)
5 6 6, , , .g g g P g P g P ′′ ′′ ′′′= = = =
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(20)( ) ( ) ( ) ( ) ( )2
1 2 1 2 1 2 2 1 0

2
A P P f g P S P P A M Pη ′ - + + - + - = 

 

(21)( ) ( ) ( )( ) ( ) ( )2
1 6 5 6 5 6 2 5 0

2
A P P f g P S P P A M Pη ′ - + + - + - = 

 

(22)( )
( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )
4 1 5 3

3 4
3 4 3 1 3

41 Pr 0
3

2

f g P r P s P P
A P

F S P P A A P B Pη

 + - +
  ′ + + =      - + + +    

Boundary conditions

( ) ( ) ( ) ( )1 50 0 0, 0 1, 0f g P P α+ = = =

( ) ( )( )4 0 1 0 , at 0P Bi θ η= - - →

(23)( ) ( ) ( )1 50 0, 0 0, 0 0 as P P θ η→ → → →∞

Step B: The Finite Difference Method
The rectangular net is created whose net points are as follows:

0 10, ,  1, 2, 3, , i i
ik i Iζ ζ ζ -= = + = 

(24)0 10, ,  1, 2, 3, , j j jh j Jη η η -= = + = 

Where kn and hj represent the Δξ and Δη spacing, respectively.

(25)( )
( ) ( ) 1

1 1 1
2 2 2

1
2

i i
i j j

ij kζ

-
- - -

-

-
∂ 

= 
∂ 

(26)( )
( ) ( ) 1

1 1 1
2 2 2

1
2

i i
i j j

jj hη

-
- - -

-

-
∂ 

= 
∂ 

(27)( )
( ) ( )

( )
( ) ( )11 1

2 1
2

, 
2 2

i i i i
j j j ji i

j

-
--

-

- -
= =
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The finite-difference form is computed using the central difference technique.

(28)( )
( ) ( ) ( )11 1 1

11 1
2 2

i i i i
j jj ji

j
j

f fP P
f P P

h
--

-

-+
′ = ⇒ = =

(29)( ) ( )
( ) ( ) ( ) ( )( )1 12 2 11

11 2 2
2 2

i ii i
j jj ji

j
j

P PP P
P P P

h
--

-

-+
′ = ⇒ = =

(30)( ) ( )
( ) ( ) ( ) ( )( )3 34 4 11

13 4 4
2 2

i ii i
j jj ji

j
j

P PP P
P P P

h
--

-

-+
′ = ⇒ = =

(31)( ) ( )
( ) ( ) ( ) ( )( )4 45 5 11

14 5 5
2 2

i ii i
j jj ji

j
j

P PP P
P P P

h
--

-

-+
′ = ⇒ = =

(32)( ) ( )
( ) ( ) ( ) ( )( )5 56 6 11

15 6 6
2 2

i ii i
j jj ji

j
j

P PP P
P P P

h
--

-

-+
′ = ⇒ = =

The following equations (31-35) are centred at the 
1
2 1

2

, 
i

j
ξ η

-

-

 
 
 
 

 locations, which are shown below

( ) ( )
( ) ( )

2
2 2 1

1 2 11 1 1 1
2 2 2 2

i i
j j i ii i

j j j jj

P P
A f g P P

h
-

- - - -

     -     + + - -           

(33)( ) ( ) ( )1 6 2 11 1 1
2 2 2

0
2

ii i

j j j
S P P A M Pη

- - -

    
    + - =         

( ) ( )
( ) ( )

6 6 1
1 6 51 1 1 1

2 2 2 2

i i
j j i ii i

j j j jj

P P
A f g P P

h
-

- - - -

     -     + + - +           

(34)( ) ( ) ( )( )5 6 2 51 1 1
2 2

0
2

i i i
jj j

S P P A M Pη
-- -

 
 + - =
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( ) ( )
( ) ( ) ( ) ( )

4 4 1
3 4 1 5 31 1 1 1 1 1

2 2 2 2 2 2

4 11
3 Pr

i i
j j i ii ii i

j j j j j jj

P P
A f g P r P s P P

h F
-

- - - - - -

     -       = + + + - +             

(35)( ) ( ) ( ) ( )3 3 3 1 31 1 1 1
2 2 2 2

0
2

i i ii

j j j j
S P P A A P B Pη

- - - -

   
   - + + + =
   
   

Boundary conditions are 

( ) ( )0 0 1 50 00, 0, 1, iii if g P P α= = = =

( ) ( )4 00 1iP Bi θ= - -

(36)( ) ( ) ( )1 50, 0, 0.ii i
J JJP P θ= = =

Step C: Newton’s linearization approach

Using well-known techniques ( )1 1 1 1 1 1
1 2 3 4 5, ( ) , ( ) , ( ) , ( ) , ( ) , ,n n n n n n

j j j j j jf p p p p p- - - - - -
  the unknown ( ) ( )1 2 3 4 5 1 2 3 4, ( ) , ( ) , ( ) , ( ) , ( ) , , ( ) , ( ) , ( ) , ( ) , ,n n n n n n

j j j j j j j j j j jf p p p p p f p p p p≡ 

( ) ( )1 2 3 4 5 1 2 3 4, ( ) , ( ) , ( ) , ( ) , ( ) , , ( ) , ( ) , ( ) , ( ) , ,n n n n n n
j j j j j j j j j j jf p p p p p f p p p p≡  are predicted to be 0 ≤  j ≤ J. 

(37)( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 3 4 1 2 3 4, , , , , , , , .nn n nn
j jj j j j j jj jf p p p p f p p p p≡ 

The collection of Equations of central difference is denoted as

(38)
( ) ( )1 1 1 1

2
j j j j

j

P P f f
h

- -+ -
=

(39)
( ) ( ) ( ) ( )2 2 1 11 1

2
j j j j

j

P P P P

h
- -+ +

=

(40)
( ) ( ) ( ) ( )3 34 4 1 1

2
j j j j

j

P PP P

h
- -++

=

(41)
( ) ( ) ( ) ( )6 6 5 51 1

2
j j j j

j

P P P P

h
- -+ +

=
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( ) ( )( ) ( ) ( ) ( )1 1 11 2 2 1 1 2 1 61
2 2 22 2

2jj j j j jj j
A P P h f g P S P Pη

- - - -- -

      - + + - +       

(42)( ) ( )2 11 2 11
22

0jj
P A M P --

- - =

( ) ( )( ) ( ) ( ) ( )1 1 11 6 6 1 1 6 5 61
2 2 22 2

2jj j j j jj j
A P P h f g P S P Pη

- - - -- -

      - + + - +       

(43)( ) ( )2 15 2 51
22

0jj
P A M P --

- - =

( ) ( )( ) ( ) ( ) ( )1 1 11 4 4 1 1 4 3 31
2 2 22 2

41 Pr
3 2jj j j j jj j

A P P h f g P S P P
F

η
- - - -- -

        - + + + - +          

(44)( ) ( ) ( ) ( ) ( )1 11 1 11 5 3 3 1 3
2 22 2 2

0j jj j jr P s P P A A P B P∗ ∗
- -- - -

   
- + + + =   
   

We present the iterates below to use Newton’s method to convert to a nonlinear collection of equations approach.

( ) ( )1n nn
jj jf f f +∆ + =

( )( ) ( )( ) ( )( )1
1 1 1

n n n
j j jp p p +∆ + =

( )( ) ( )( ) ( )( )1
2 2 2

n n n
j j jp p p +∆ + =

( )( ) ( )( ) ( )( )1
3 3 3

n n n
j j jp p p +∆ + =

( )( ) ( )( ) ( )( )1
4 4 4

n n n
j j jp p p +∆ + =

( )( ) ( )( ) ( )( )1
5 5 5

n n n
j j jp p p +∆ + =

( )( ) ( )( ) ( )( )1
6 6 6

n n n
j j jp p p +∆ + =
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This method results in the following linear system (the superscript (n) has been deleted for clarity).

(45)( ) ( ) ( )1 1 1 11 0
2 2
j j

j j j j j
h h

f f p p l- -∆ - ∆ - ∆ - ∆ - =

(46)( ) ( ) ( ) ( ) ( )1 1 2 2 21 1 0
2 2
j j

j j j j j
h h

p p p p l- -∆ - ∆ - ∆ - ∆ - =

(47)( ) ( ) ( ) ( ) ( )3 3 4 4 311 0
2 2
j j

j jj j j
h h

p p p p l--∆ - ∆ - ∆ - ∆ - =

(48)( ) ( ) ( ) ( ) ( )5 5 6 6 41 1 0
2 2
j j

jj j j j
h h

p p p p l- -∆ - ∆ - ∆ - ∆ - =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2 3 4 1 5 11 j jj j j j j jj jG p G p G f G f G p--∆ + ∆ + ∆ + ∆ + ∆ +

(49)( ) ( ) ( ) ( ) ( ) ( ) ( )6 1 7 3 8 3 51 1 0jj j j j j jG p G p G p l- -∆ + ∆ + ∆ - =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 6 2 6 3 4 1 51 j jj j j jj j j jH p H p H f H f H g--∆ + ∆ + ∆ + ∆ + ∆ +

(50)( ) ( ) ( ) ( ) ( ) ( ) ( )6 7 5 8 5 61 1 0jjj j j j jH g H p H p l- -∆ + ∆ + ∆ - =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 4 2 4 3 4 1 51 j j jj j j j jj jI P I P I f I f I g--∆ + ∆ + ∆ + ∆ + ∆ +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6 1 7 3 8 3 9 11j jj j j j j jI g I P I P I P- -∆ + ∆ + ∆ + ∆ +

(51)( ) ( ) ( ) ( ) ( ) ( ) ( )10 1 11 5 12 5 71 1 0j j jj j jI P I P I P l- -∆ + ∆ + ∆ - =

Where:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 11 1
2 2

1 12 1
2 2

13 3
2

* *
2 2 2

* *
2 2 2

*
2

j j
j j j

j j
j j j

j
j j

h h
G A f g S

h h
G A f g S

h
G P

η

η

- -

- -

-

 
= + + - 

 

 
=- + + - 

 

=
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( ) ( )

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

14 3
2

2
5 1 2

2

2
6 1 2

2

17 3
2

18 3
2

1 1 1 1
2 2

2 1 1 1
2 2

3

*
2

* * * *
2 2

* * * *
2 2

*
2

*
2

* *
2 4

* *
2 4

*

j
j j

j j
j j

j j
j j

j
j

j
j

j

j j

j

j j

j

h
G P

h h
G h P S A M

h h
G h P S A M

h
G P

h
G P

h
H A f g S

h
H A f g S

H h P

η

η

-

-

-

-

-

- -

- -

=

 
 = - - -
 
 

 
 = - - -
 
 

=

=

    = + + -      

    = + + -      

= - ( )

( ) ( )

( )

( )

( )

( )

215 2
2

214 5 2
2

5 1
2

6 1
2

7 1
2

8 1
2

* * *
2 2

* * * *
2 2

*
2

*
2

*
2

*
2

j j
j

j j
j j

j
j j

j
j j

j
j j

j
j j

h h
S A M

h h
H h P S A M

h
H u

h
H u

h
H u

h
H u

-

-

-

-

-

-

- -

= - - -

=

=

=

=



Contemporary MathematicsVolume 5 Issue 1|2024| 993

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 3 1 1
2 2

2 3 1 1
2 2

13 4 3
2

14 4 3
2

15 4
2

6 4

4* 1 Pr *Pr* *
3 2 2 2

4* 1 Pr *Pr* *
3 2 2 2

*Pr* * *Pr
2 2

*Pr* * *Pr
2 2

*Pr*
2

*Pr*
2

j j
j j j

j j
j j j

j j
jj

j j
j j

j
jj

j
jj

h h
I A f g S

F

h h
I A f g S

F

h h
I P A A

h h
I P A A

h
I P

h
I P

η

η

- -

- -

∗
-

∗
-

-

    = + + + -      

    = - + + + -      

= +

= +

=

=

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
2

17 3 3
2

18 3 3
2

19 3
2

110 3
2

111 1 4
22

112 1 4
22

* *Pr* * * *Pr
2 2

* *Pr* * * *Pr
2 2

* *Pr*
2

* *Pr*
2

*Pr* * * *Pr*
2 2

*Pr* * * *Pr
2 2

j j
j j

j j
j j

j
j j

j
j j

j j
j jj

j j
j jj

h h
I r P B A

h h
I r P B A

h
I s P

h
I s P

h h
I r P s P S

h h
I r P s P

-

∗
-

∗
-

-

-

--

--

= - +

= - +

= -

= -

 
 = - + -
 
 

 
 = - + -
 
 

* S

With the boundary conditions

( ) ( )0 0 1 50 00,  0,  0,  0,f g P P∆ = ∆ = ∆ = ∆ =
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( )4 00  at 0,P Bi θ η∆ = ∆ =

(52)( ) ( ) ( )1 50,  0,  0 as .J JJP P θ η∆ = ∆ = ∆ = →∞

Step D: Block-tridiagonal Elimination of Linear Keller Algebraic Equations.
The block-elimination approach may be used to solve the linearized difference Eqn. (45)-(52) by Cebeci and 

Bradshaw, because the system is block-tridiagonal in structure. The block-tridiagonal structure is often made up of 
variables or constants, but in this case, an unusual aspect is that it is made up of block matrices, Eqn. (45)-(52) may be 
represented in matrix-vector form as

(53)Q lΩ =

Where:

[ ] [ ]
[ ] [ ] [ ]

1 1

2 2 2

1 1 1

.
.

.
.

j j j

j j

Q R

R Q S

Q

R Q S

R Q

- - -

 
 
 
 
 
 

=  
 
 
            
        

[ ]
[ ]

[ ]
[ ]

1 1

2 2

1 1

. .

. and .

. .

j j

j j

l

l

l

l

l

- -

   
Ω   

   Ω   
   
   

Ω = =   
   
   
      Ω      
      Ω      

The matrix components the following.
Where:

2
jh

z- = -
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[ ]1

2 3 7 1 2 3 7 1

2 5 7 1 4 5 7 1

2 3 5 1 8 10 1

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0

,   
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0

j

z
z z z

z
z z

Q Q
z z z z

G G G G G G G G
H H H H H H H H

C C C C C C C

- 
 - - - - 
  -
 

- - - -   = =  - - - -
 
 
 
 
   2 3 5 1

4 8 2 5

6 8 2

4 6 2

0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

,   
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

j j

C C C

z
z

z
z

R S
z

G G G G
H H H
C C C

 
 
 
 
 
 
 
 
 
 
 
  

- - 
 - 
 - -
 

-    = =    -
 
 
 
 
  

3

7 9 11

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
H

C C C

 
 
 
 
 
 
 
 
 
 
 
  

For the category J ≥ j ≥ 2: 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )1 4 3 2 5 1 4 4 40 0 1 1 10 0
T

P P P P f P P P ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 

for 2 ,j J≤ ≤

( ) ( ) ( ) ( ) ( ) ( ) ( )4 3 2 5 4 4 41 11

T
j jj j j j jj jP P P P f P P P- --

  ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆    

for 1 ,j J≤ ≤

( )

( )

( )

( )

( )

( )

( )

( )

11
2
12
2
13
2
14
2
15
2
16
2
17
2
18
2

j

j

j

j

j
j

j

j

j

l

l

l

l
l

l

l

l

l

-

-

-

-

-

-

-

-

 
 
 
 
 
 
 
 
 
   =   
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The LU decomposition technique may be used to find the solution of a tri-diagonal system. Assuming that matrix A 
is non-singular, it may be factored into the product of two matrices, denoted by the notation A = LU.

Where:

[ ]
[ ] [ ]

[ ] [ ]
[ ][ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ]

1 1 1

1 2 2 2

3 3

1 11 1

... ,   ...

J JJ J

JJ J

a I c
b a I c

L b a U
I cb a

Ib a
- -- -

   
   
   
   = =   
   
   
     

where [aj] and [cj] are (8 × 8) matrices, and [IJ] is the (8 × 8) identity matrix. We may get the elements of these matrices 
using the following equations:

[ ] [ ]1 1A a= (54)

, for  2, 3, , j j j jA b c a j J       = + =        

(55)

, for  1, 2, 3, , 1j j jC a c j J     = = -      

(56)

, for  2, 3, 4, , j jB b j J   = =    

(57)

Since = LU, the equation AΔ = l to the

(58)LU l∆ =

Let

(59)U Z∆ =

Then

(60)LZ l=

Where:
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(61)

[ ]
[ ]
[ ]

[ ]
[ ]

1

1

1

1

.

.

.

J

J

Z

Z

Z

Z

Z

Z
-

 
 
 
 
 
 

=  
 
 
 
 
 
  

Form the equation (63) we get 

[ ] [ ] [ ]1 1 1\Z a l= (62)

[ ]( )1 1\ , for 2j j j jZ a l b Z j j-       = - ≤ ≤        (63)

Then, form equation (62) we get

(64)1 , for 1 1j j j jZ c j j+       ∆ = - ∆ ≤ ≤ -       

(65)[ ] [ ]J JZ∆ =

4. Validation of results
The new findings are compared with prior impressive research that demonstrated great agreement to corroborate 

Keller box approach, and this problem using to the tri-hybrid nanofluid with water as conducting fluid. The nanofluid, 
hybrid nanofluid and tri-hybrid nanoflow combinations. Table 2 describes the Keller box convergence for different grid 
points varying from [500, 2500]. Table 3 shows the corroboration table of our numerical computations (skin friction) 
with KBM and Liu & Andersson [34] with RKM, which shows a fine agreement.

Table 2. A grid-independent method to the Keller-Box solution of the current mathematical model when α = M = S = 0.5, r = s = 1.0 and ϕ1 = ϕ2 = ϕ3 
= 0.05

Grid point -f ''(0) -g''(0) -θ'(0)

500 1.745074 0.811573 0.230769

1,000 1.778522 0.822983 0.230769

1,500 1.778623 0.823102 0.230769

2,000 1.779112 0.823112 0.230769

2,500 1.779113 0.823112 0.230769
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Table 3. Thorough verification of the current outcomes with previous investigations when α = M = S = 0.5, r = s = 1.0, Bi = 0.3 and ϕ1 = ϕ2 = ϕ3 = 0

α Present (KBM)
( f ''(0))

Published Liu and 
Andersson [33] (RKM) 

( f ''(0))
Present (KBM)

(g''(0))
Published (RKM)

Liu and Andersson [33]
(g''(0))

0.00 1.0 1.0 0 0

0.25 1.047793 1.048813 0.194565 0.194565

0.50 1.089624 1.093096 0.465206 0.465206

0.75 1.127791 1.134486 0.794619 0.794619

1.00 1.163369 1.173721 1.163369 1.173721

5. Results and discussion
The influence of various factors on axial velocity ( f ), transverse velocity (g), temperature (θ), stretching 

parameter (α), unsteadiness parameter (S), thermal indices (r, s) and thermal conjugacy number (Bi) is displayed and 
briefly described. Table 1 lists the thermophysical characteristics of the materials in use. The findings of the current 
investigation were achieved for fixed values: Pr = 6.2, S = 0.5, Bi = 0.3, α = 0.5, r = 1.0, M = 0.5, s = 1.0, np = 2,500, 
ξmax = 20, ϕ1 = 0.02, ϕ2 = 0.02, ϕ3 = 0.01. The results are contrasted using the HNF(Fe3O4 + Ag/H2O) and THNF 
(Fe3O4 + Ag + Al2O3/H2O). The leading boundary layer equations are solved using Thomas algorithm and numerical 
computations are carried with MATLAB software to show the impact of various pertinent physical parameters on the 
flow field and engineering quantities through Figures 2-23. 

5.1 Nanoflow momentum analysis

Figures 2-3 show that the transverse velocity (g') and axial velocity ( f ') with varied M (M = 0.5, 1.0, 1.5, 2.0). 
Nanoflow momentum obstructs by induced Lorentzian forces as the strength of magnetic force is increased. Thus, 
momentum BL thins and the fluid velocity in both the axial and transverse directions decelerate. Figures 4-5 represent 
the axial and transverse momentum variations with different S (S = 1.0, 5, 10, 15), unsteadiness parameter. Expansion 
rates a' decreases with improving S values, which has a stronger effect on the behaviour of the system. As a result, the 
nanoflow motion slows down. Additionally, as S increases, the thickness of the boundary layer decreases as well.

Figures 6-7 portray how stretching force ratio (α) influences the nanoflow momentum. Augmenting α, decelerates 
the velocity along x direction whilst stretches more in y direction, accelerating the motion of the flow in both cases i.e., 
axial /transverse velocities increase for improving α. For α = 0, the stretching happens along x axis. On the other hand, 
stretching along the x and y axes are equal when α = 1. As a result, the momentum boundary layer representing the axial 
and transverse velocities coincides. It is evident that the degree of stretching along the surfaces y axis becomes more 
noticeable as a rise in contrast to the stretching along the x axis. Iron oxide and silver suspended water based hybrid 
nanoflow shows higher momentum rates than trihybrid nanofluids in all the physical parameter variations. But in the 
case of surface stretching ratio ternary nanoflow has dominant values than hybrid flows.

5.2 Energy flow analysis

Figure 8 depicts influence of variable magnetic force on the nanoflow energy. Energy profiles of the nanoflow 
enhances as the viscosity of the fluid reduces when exposed to magnetic force along z-axis. Physically, the boundary 
layer becomes hotter as a result of the augmentation of M resulting in a decrease in the amplitude of velocity profiles 
inside the boundary layer. It is seen that steadiness of the flow field is varied, the nanoflow energy profiles diminishes. 
The growth rate falls with increasing S magnitude, moreover, when the unsteady factor increases, the thickness of 
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the thermal boundary layer decreases (Figure 9). Figure 10 illustrate how the temperature changes for different α. 
As stretching ration improves, the temperature drops. The main cause of the thermal decrease is the dominance of 
expansion rates along the y axis over x axis. Figure 11 demonstrates the temperature for different values of Rd. When 
the fluid exposed to radiation, the internal heat of the fluid starts heating up. Physically, the boundary layer becomes 
hotter as a result of the augmentation of the Rd, which results in a decrease in the amplitude of velocity profiles inside 
the boundary layer. The temperature distribution as r and s fluctuate is seen in Figures 12-13. As r, (r = 1.0, 2.0, 3.0, 4.0) 
and s, (s = 1.0, 2.0, 3.0, 4.0) varies, the nanoflow temperature reduces. It is clear that sheet temperature non-uniformity 
affects temperature profiles; greater values of r and s lead to lower temperatures and thinner thermal boundary layers, 
respectively. Additionally, a larger temperature distribution is produced by negative r and s values than by positive r 
and s values. Figures 14-15 exhibit the temperature for different values of A, B > 0 which represents energy generation 
inside the fluid. As the energy generation parameter enhances, the temperature profiles are enhanced. The parameters 
A, B increased, the energy production improvises and thereby improving the BL thickness of energy. Here in the 
temperature distribution case, the iron oxide, silver, alumina immersed water-based trihybrid nanoflow has higher values 
that hybrid nanoflows.

Table 4. Skin friction values of a ternary hybrid nanofluid (Fe3O4 + Ag + Al2O3) and hybrid nanofluid (Fe3O4 + Ag) at different volume percentages 
of nanoparticles

Physical parameters with

ϕ1 = ϕ2 = ϕ3 = 0.05%

1
2Refx xC

-
-

(Fe3O4 + Ag + Al2O3)

1
2Refy yC

-
-

(Fe3O4 + Ag + Al2O3)

1
2Refx xC

-
-

(Fe3O4 + Ag)

1
2Refy yC

-
-

(Fe3O4 + Ag)

M = 0.5 2.018226597 0.935870847 2.016346487 0.935870847

M = 1.0 2.293835013 1.065012791 2.182713025 1.045011782

M = 1.5 2.680477067 1.288335757 2.460477082 1.165335236

α = 0 2.413036831 0.000000000 2.213026641 0.000000000

α = 0.5 2.018222659 0.935870847 2.002587369 0.935870847

α = 1.0 1.687907702 1.687907702 1.576804504 1.568906852

S = 0 1.871738528 0.856957265 1.648654879 0.756842541

S = 0.5 2.018226597 0.935870847 2.002587642 0.863254124

S = 1.0 2.161194031 1.012640693 2.024638924 1.002554884

A = 0.1 2.156456213 1.235689425 2.025469752 1.014568752

A = 0.2 2.165894251 1.248657825 2.023658742 1.024586521

A = 0.3 2.166789524 1.268456789 2.056321785 1.124563878

Table 4 describes the skin friction values of a ternary hybrid nanofluid (Fe3O4 + Ag + Al2O3) and (Fe3O4 + Ag) 
at different volume percentages of nanoparticles and different values of M, S, α, A, Bi. Axial wall drag coefficient 
seems higher than transverse direction ie., the friction force along x-axis is higher than y-axis. Stretching ratio velocity 
accelerates along axial direction whereas the transversal friction decelerates. Variable magnetic application decreases 
the skin friction coefficient values. Unsteadiness ratio also increments the wall shear stresses. Energy generation 
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improvisation also increments the coefficient of axial and transverse drag friction. 

Table 5. The heat transfer rate and Nusselt number of the nanofluids for different ϕ1ϕ2ϕ3 values 1 2( Re )x xNu -

ϕ1ϕ2ϕ3 

(ϕ1 = ϕ2 = ϕ3 
= 0.05%)

Fe3O4 (ϕ2ϕ3= 0)

 1 2( Re )x xNu -

(ER%)
heat transfer rate 
Estimated error

Ag (ϕ1ϕ3= 0)

 1 2( Re )x xNu -

(ER%)
heat transfer rate 
Estimated error

Al2O3 (ϕ1ϕ3= 0)

 1 2( Re )x xNu -

(ER%)
heat transfer rate 
Estimated error

0.00 3.789531 0% 3.789531 0% 3.789531 0%

0.01 3.181376 0.63% 3.814163 0.64% 3.815682 0.65%

0.02 3.837762 1.27% 3.838547 1.29% 3.848685 1.31%

0.03 3.885042 2.52% 3.886526 2.55% 3.894624 2.57%

0.04 3.931395 3.47% 3.933440 3.79% 3.956431 3.81%

0.05 3.976798 4.94% 3.979256 5.00% 3.984252 5.02%

Table 6. The heat transfer rate and Nusselt number of the nanofluids for different ϕ1ϕ2ϕ3 values of 1 2( Re )y yNu -

ϕ1ϕ2ϕ3 

(ϕ1 = ϕ2 = ϕ3 
= 0.05%)

Fe3O4 (ϕ2ϕ3= 0)

 1 2( Re )y yNu -

(ER%)
heat transfer rate 
Estimated error

Ag (ϕ1ϕ3= 0)

 1 2( Re )y yNu -

(ER%)
heat transfer rate 
Estimated error

Al2O3 (ϕ1ϕ3= 0)

 1 2( Re )y yNu -

(ER%)
heat transfer rate 
Estimated error

0.00 3.789531 0% 3.789531 0% 3.789531 0%

0.01 3.182453 0.64% 3.826582 0.65% 3.815762 0.66%

0.02 3.849864 1.28% 3.846675 1.31% 3.848786 1.32%

0.04 3.892563 2.53% 3.893562 2.57% 3.894762 2.59%

0.05 3.942564 3.48% 3.946325 3.81% 3.956464 3.83%

0.06 3.986452 4.96% 3.987624 5.02% 3.987346 5.05%

Tables 5-6 illustrate the local energy transfer rates of the nanoflow along x - y directions for different ϕ1ϕ2ϕ3 values 
1 2( Re ).x xNu -  The error estimation also shown in tables. As the NPs volume fractions improves, the energy transmission 

rate of iron oxide nanoflow increases 0.01 ≤ ϕ1ϕ2ϕ3 ≤ 0.06. Similar trend is observed for silver nanofluid and alumina 
nanofluid. When ϕ1ϕ2ϕ3 = 0, ie., viscous flow case heat transfer rate is higher and same in iron and aluminium oxides 
whereas for silver, the value is less. It shows that metal oxides transfer more heat from the system than that of metals 
(Table 4). The estimated error of heat transfer rate is higher in alumina nanoflow followed by silver and iron oxide 
nanofluid flows.
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Figures 16-23 exhibit the streamlines for Fe3O4 (33%) + Ag (33%) + Al2O3 (33%) ternary hybrid nanofluids. These 
level curve represents the intensity of the stream lines. Figures 16-17 show the streamlines for M (M = 1.0, and 2.0) the 
starting and ending points (M = 1.0) 0.94804 to 13.2725, the difference between each set of streamlines is same 0.948 
and for M = 2.0, 0.816 the streamlines difference for M = 1.0 is higher than M = 2.0. The streamlines are equally spaced 
but the energy flow amount is higher in M = 1 than M = 2. Similar trend is observed for unsteadiness parameter too 
i.e., the streamline difference in S = 1 (is 1.02) higher than S = 2 (1.00) (Figures 18-19). Figures 20-21 portray that the 
streamlines for stretching velocity ratio (α = 0.5, and 1.0). It is observed that the streamline difference for is 1.02 whilst 
α = 1.0 is 1.09. Thus, the amount energy flow in α = 0.5 > α = 1.0. Figures 22-23 show the streamlines for Bi (Bi = 0.3, 
and 0.6). There observed an equal amount of energy flow in both the cases. 
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Figure 16. Streamline for ternary fluid flow M = 1.0
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Figure 18. Streamline for ternary fluid flow S = 1.0
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Figure 19. Streamline for ternary fluid flow S = 2.0
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Figure 20. Streamline for ternary fluid flow α = 0.5 
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Figure 21. Streamline for ternary fluid flow α = 1.0



Contemporary Mathematics 1008 | T Poornima, et al.

                       
0 21 30.5 2.51.5

(η)

Bi = 0.3

(ξ
)

0.5

0

1.5

2.5

1

2

3

0 0.5 1 1.5 2 2.5 3

( )

0

0.5

1

1.5

2

2.5

3

(
)

(Bi=0.3)

0 0 0 0

0
0

1.0278

1.0278

1.0278

1.0278
1.0278

2.0557

2.0557

2.0557

2.0557

2.0557

3.0835

3.0835

3.0835

3.0835

4.1113

4.1113

4.1113

4.1113

5.1391

5.1391

5.1391

6.167

6.167

6.167

7.1948

7.1948

7.1948

8.2226

8.2226

9.2505

9.2505

10.2783

10.2783

11.3061

12.3339

13.3618

14.3896

Figure 22. Streamline for ternary fluid flow Bi = 0.3
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Figure 23. Streamline for ternary fluid flow Bi = 0.6

6. Conclusion
The present study examines radiative unsteady irrotational, incompressible ternary hybrid nanofluid flow with 

convective heat transfer across a axisymmetric stretched sheet, as well as MHD and an unstable non-uniform heat source 
and sink. An ODE system is obtained from the flow obeying PDEs with self-similarity variables. Using the MATLAB 
programme, an implicit Keller Box numerical strategy is implemented and the results are produced. A comparison of 
HNF (Fe3O4 + Ag/H2O) and THNF (Fe3O4 + Ag + Al2O3/H2O) nanoparticles suspended in water is studied and their 
behaviour for varied affecting flow field parameters are numerically computed and explained through graphs and tables. 
Some important results are listed here. The viscous flow case heat transfer rate is higher and same in iron and aluminium 
oxides whereas for silver, the value is less

(1) Magnetic nanoparticles help in targeted delivery of drugs particularly to the brain. Application of external 
magnetic field makes the drugs which are encapsulated within nanoparticles can be directly suspended to the brain and 
controlled release can be done. This reduces the need for frequent dosing and improves drug efficacy.

(2) The ternary hybrid nanoflow (Fe3O4 + Ag + Al2O3/H2O) transmits more energy for increasing volume fractions, 
comparing to the hybrid nanofluid (Fe3O4 + Ag/H2O).
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(3) The study reveals the fact that metal oxides transfer more heat from the system than that of metals.
(4) The estimated error of heat transfer rate is higher in alumina nanoflow followed by silver and iron oxide 

nanofluid flows.
(5) The streamlines are equally spaced, but the energy flow amount is higher for the case M, S = 1 than M, S = 2. 

But in the case of stretching ratio parameter, the amount energy flow in α = 0.5 > α = 1.0. An equal amount of energy 
flow is observed for Bi = 0.3, 0.6. 

(6) Axial wall drag coefficient seems higher than transverse direction. 
(7) Stretching ratio velocity accelerates along axial direction whereas the transversal friction decelerates. Variable 

magnetic force decreases the skin friction coefficient values. 
(8) Unsteadiness ratio also increments the wall shear stresses.
(9) Energy generation improvisation also increments the coefficient of axial and transverse drag friction. 
(10) Nano-particles volume fractions improves, the energy transmission rate of iron oxide nanoflow increases for 

the range 0.01 ≤ ϕ1ϕ2ϕ3 ≤ 0.06.
(11) For viscous flow case heat transfer rate is higher and same in iron and aluminium oxides whereas for silver, 

the value is less. 
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