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Abstract: Solar thermal systems utilize solar energy to generate heat, and the incorporation of nanoparticles such as 
Al2O3-Cu-Ni with a water base can elevate their efficiency. These nanofluids, composed of aluminum oxide, copper, 
and nickel nanoparticles dispersed in water, enhance heat absorption and transfer within the system. This improvement 
contributes to heightened overall performance and effectiveness of solar thermal systems. Cupronickel alloy helps in 
the process of desalination. Hence, this study examines the heat exchange properties in the context of a boundary layer 
flow of a trihybrid over a variable-thickness Riga plate stretched and heated by convective heat with non-Newtonian 
fluid (Jeffery) in the presence of thermal radiation. The governing equations of the boundary layer are transformed 
into a system of ordinary differential equations through appropriate similarity transformations, and those equations are 
resolved utilizing a boundary value problem program. The engineering parameters are analyzed through the application 
of multiple linear regression. The key finding of the investigation is that the Prandtl number, and thickness index 
number all have a positive impact on the Nusselt number. The presence of radiation and a uniform heat source improves 
the Nusselt number, physically this energy transfer improvement assists in higher solar collector efficacy; and converts 
that energy to usable heat. The rationale behind selecting trihybrid nanoparticles Al2O3, Cu, and Ni lies in the balance 
and inertness of Al2O3, with metals Cu, and Ni, both possessing more thermal conductivity. 

Keywords: trihybrid nanofluid, solar thermal systems, multiple linear regression, thermal radiation, Jeffery fluid, riga 
plate
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Nomenclature
Ha  Modified Hartmann number
Bi  Biot number
R  Thermal radiation parameter
λ	 	 Heat source parameter
β	 	 Dimensionless parameter to Riga plate
η	 	 Dimensionless variable
ζ  Modified dimensionless variable
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Θ  Dimensionless thermal function
Φ  Dimensionless concentration function
Pr  Prandtl’s number
F  Dimensionless stream function
m  Thickness index
Je  Jeffrey parameter
Rex  Local Reynold’s number
Nux  Local Nusselt number

Dimensional parameters

µ  Dynamic viscosity (Pa.s)
α  Thermal diffusivity (m2.s-1)
ρ  Density (kg.m-3)
ν  Kinematic viscosity (m2.s-1)
α1  Thickness parameter (s-1)
τw  Shear stress at the wall (N.m-2)
k  Thermal conductivity (W.m-1.K-1)
Cp  Specific heat (J.kg-1.K)
qw  Heat flux (W.m-2)
Uw  Stretching velocity (m.s-1)
u,	v  Horizontal and vertical velocity components (m.s-1)
T  Temperature (K)
x,	y  Cartesian coordinates (m)
a  Positive constant for stretching rate (s-1)

Subscripts

f  Base fluid
nf  Nanofluid
hf  Hybrid nanofluid 
tf  Trihybrid nanofluid

1. Introduction
The thermal characteristics of convection-based heat transfer have significant importance in industrial and 

technical domains. Due to the poor thermal conductivity of several fluids, including kerosene, water, and oil, sufficient 
study must be done on the heat transfer mechanism. By incorporating nanoparticles into liquids and referring to them 
as “Nanofluids”, it has been enhanced. Thermal conductivity and other rheological factors in typical nanofluids can 
now be improved by adding hybrid nanoparticles. The researchers created hybrid nanofluids to improve the heat 
transmission properties of the mono nanofluids. In many industrial applications, hybrid nanofluids have replaced 
mono nanofluids because mono nanofluids are incapable of providing the high thermal conductivity required for high 
heat flux devices. Hybrid nanofluids have dramatically altered the dynamics in industrial applications by lowering 
processing time, conserving energy, and extending the life of industrial equipment. All of this is feasible due to an 
increase in the rate of heat transmission of nanofluids. Several investigations [1-15] were conducted to demonstrate a 
considerable increase in the rate of heat exchange in instances of hybrid nanofluids under various situations. All these 
investigations inspired the researchers to develop more effective nanofluids with improved heat transfer and thermal 
conductivity. This resulted in the creation of a new working fluid, trihybrid nanofluid thought. A trihybrid nanofluid 
has three solid nanoparticles that are suspended in a base fluid. These are known as ‘Modified nanofluids’, ‘Trihybrid 
nanofluids’, and ‘Ternary nanofluids’, according to the researchers. In recent years, research has been undertaken to gain 
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a deeper understanding of the components that influence the heat transfer capabilities of such trihybrid nanofluid across 
diverse conditions. Revathi et al. [16] studied a quadratically stretching surface with second-order slip and Radiative 
heat exchange used to study the flow of a ternary hybrid nanofluid using multiple linear regression. Zayan et al. [17] 
studied the rheological properties of a water-based GO-TiO2-Ag trihybrid nanofluid. Kumar et al. [18] investigated the 
numerical and experimental characteristics of an automobile radiator with a novel trihybrid nanofluid coolant. This 
investigation demonstrated a considerable improvement in the coolant’s heat transfer coefficient and a greater engine 
fuel consumption rate. Algehyne et al. [19] studied the modified Buongiorno’s model to examine how activation energy 
and bioactive mixers affect the chemically reacting jet flow of ternary hybrid nanofluid.

Because of their use in physiological and industrial processes, non-Newtonian rheological models have 
become more important than Newtonian fluids. It is noted that Newtonian fluids have only one constitutive relation; 
consequently, the real properties of complex fluids such as blood, oil, and polymer solutions cannot be determined 
using this model. To reveal the complex fluid characteristics, a wide range of rheological models, including the Jeffery, 
Johnson-Segalman, Eyring-Powell, Walters-B, second-grade, Sisko, FENE-P, PPT, Carreau-Yasuda, Casson, Eringen 
micropolar, Burgers’ viscoelastic, Maxwell, and Sutterby fluid models, have been provided by multiple researchers. 
The importance of retardation and relaxing time is highlighted in the rate-type model. Jeffrey fluid, as introduced by 
Jeffrey, is a rate-type model. This model exhibits viscoelastic properties and has several uses in the polymer industry, as 
noted in [20-22]. Dharmaiah et al. [23] studied the nuclear reactor used on Jeffrey fluid flow with Falkner-Skan factor, 
non-linear thermal radiation, Brownian, and thermophoresis effects on the wedge. Garg et al. [24] studied the thermo-
bioconvection movement of Jeffrey fluid including swimming microorganisms into an irregular porous medium.

The phenomena of heat transmission via the linear emission and absorption of electromagnetic radiation are 
referred to as thermal radiation. Electromagnetic waves are the sort of thermal radiation that is emitted by any object 
that is heated above absolute zero. This radiation is energy-carrying and can move heat across objects. Alnahdi et al. 
[25] examined the influences of radiation, dissipation, energy engagement, and tilted magnetized field related to hybrid 
nanofluid flow across a slick surface. Poornima et al. [26] determined the thermal radiation effects on non-Newtonian 
nanofluid flow through a flexible surface with a Newton boundary condition. Ramesh et al. [27] examined the impacts of 
radiation on Sutterby nanofluid via porous medium. Zhang et al. [28] studied the effect of quadratic and linear radiation 
on 3D convective hybrid nanofluid flow in a temperature-varying dissolution of fluids. Bhargavi et al. [29] investigated 
the impact of an electrically conducting and radiating liquid implanted in a porous media via a flat permeable plate on 
internal friction, heat generation, and thermal radiation.

According to our understanding of the literature, no research has been conducted on the movement of (Al2O3-Cu-Ni/
H2O) trihybrid nanofluid through an actively warmed Riga plate of varying thickness with non-Newtonian fluid in the 
presence of thermal radiation till now. As a result, the current study was developed to fill the research gap. The primary 
objective of this endeavor is to examine the parameters that improve the heat exchange of a (H2O) base fluid mixed with 
(Al2O3, Cu, and Ni) trihybrid nanoparticles passing through an actively heated Riga plate of varied thickness with non-
Newtonian fluid in the appearance of thermal radiation. 

Multiple linear regression is employed to analyze and demonstrate technical characteristics such as friction factor 
and heat transfer rate. This work has applications in the condensation of extrusion of polymer sheets, aerodynamic 
extrusion of plastic sheets, metallic plates immersed in a cooling bath, Solar thermal systems, and many more. Tables 
and graphs are presented and briefly explained to demonstrate the influence of several relevant physical parameters on 
the heat exchange rate of the (Al2O3-Cu-Ni/H2O) trihybrid nanofluid. Additionally, a noticeable rate of concordance is 
shown in the method of verification with the present findings and previous results. Solar thermal systems have various 
applications, including Solar water heaters utilizing the sun’s energy to heat water for residential, commercial, or 
industrial use, reducing the need for conventional energy sources. Solar thermal systems can be integrated into buildings 
to provide space heating in colder climates or cooling through absorption chillers in warmer regions.

2. Formulation and geometry of the problem
In this study, Jeffery fluid flow of a (Al2O3-Cu-Ni/H2O) trihybrid nanofluid past a stretching insuperable vertical 

Riga plate under changing width, thermal radiation, heat generation/absorption, and controlled convective heating as 
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shown in Figure 1. For Jeffery model, the relation for extra stress tensor is [30]:

1
1 2

1
=

1
dAS A
d t

µ λ
λ
 + +  

With (λ1, λ2) Jeffery parameters, ( μ) dynamic viscosity, and (A1) first Rivlin-Ericksen tensor.

Figure 1. Physical model of the problem

Let us assume the following assumptions:
• The flow is steady and laminar.
• The Riga Plate’s surface is considered to have varying thicknesses. This non-flatness is defined by the formula 

y = A(x + b)(1 − m)/2, which differs depending on the distance from the origin. However, the thickness is thought to be 
unnoticeable to prevent unfavorable pressure gradient conditions.

• The Riga plate’s stretching velocity has been calculated to be Uw	= U0(x + b)m where b is a number associated with 
the plate’s stretching, m is the velocity exponent, and U0 is a constant (when b = 0 and m = 1 represents a flat stretching 
sheet).

• Furthermore, assume that the induced magnetic field and the electric field formed because of charge separation 
are ignored in this study. Keeping the assumptions in mind, the appropriate governing continuity, momentum, and 
energy equations for the proposed model in Cartesian coordinates x and y are provided below [23, 31].

Continuity equation:

+ 0,u v
x y
∂ ∂ =
∂ ∂

Momentum equation:

( )2 /0
2 ,

1 8
tf a y

tf

v j Mu u uu v e
x y Je y

ππ
ρ

−∂ ∂ ∂+ = +
∂ ∂ + ∂

Energy equation:

( ) ( ) ( )
2 * 4

0
2 *

41 ,
3tf

p ptf tf

QT T T Tu v T T
x y yy k yC C

σα
ρ ρ℘

 ∂ ∂ ∂ ∂ ∂+ = + − − − ∂ ∂ ∂∂ ∂ 

The relevant boundary conditions are [31]:
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u(x, y) = Uw	= U0(x + b)m, v = 0, −ktf	
T
y

∂
∂  = hs(Tw	− T	) at y = A(x + b)(1 − m)/2,

u	→ 0, T	→ T∞	as y	→ ∞.

Similarity transformations are [31]
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∞

∞
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,  .u v
y y
ψ ψ∂ ∂= = −
∂ ∂

where ψ is a stream function and F, Θ are functions of η.
Using equation (5) satisfies continuity equation (1) and transformed equations (2-3) as
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1 1 1
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Je m m
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The changed boundary conditions in (4) as
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Here α1 = A((1 + m)vf	/2a), and prime denotes the derivative with respect to η.
Let

F(η) = f	(η − α1) = f	(ζ	), and Θ(η) = θ(η − α1) = θ(ζ	).

With the use of equation (9) in equations (6-7) as
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The changed boundary conditions in (8) as
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Where the prime notation signifies the derivative ζ.
The dimensionless parameters which obtained from above equations are

(6)
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The following are some significant engineering values:
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The dominant boundary conditions and similarity transformations are applied, and the resulting non-dimensional 
representations of the local Nusselt number and skin friction coefficient are as follows:
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=  is the local Reynold’s number.

3. Numerical procedure
Dimensionless equations (10-12) are used to build a nonlinear boundary value problem. Shooting technique cum 

Runge-Kutta method to exploit this system of nonlinear ordinary differential equations with boundary value solver using 
the MATLAB program. Figure 2 depicts the flowchart of the numerical operation performed by the boundary value 
problem in MATLAB. Before writing code, it is necessary to make the following things. 

f = f	(1), f	'	=	f	(2), f	''	=	f	(3), θ	=	f	(4), θ'	=	f	(5).

Using the assumptions (16) the following system of first order ordinary differential equations by using the 
equations (10-11) and the boundary conditions (12) are obtained.

(13)

(14)

(15)

(16)
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Run the above system and get the required results presented in graphical form after changing it to MATLAB code.

Figure 2. Flow chart of numerical procedure

4. Multiple linear regression for engineering quantities
Multiple linear regression is a statistical technique employed to examine the correlation between a minimum of 

two independent variables and a single dependent variable. The formula for multiple linear regression is expressed as 
follows:
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y = c + c1x1 + c2x2 + c3x3 + ... + cn	xn.

Where ‘xi’ independent variables, ‘y’ dependent variable, ‘c’ y-intercept, ‘ci’ Regression coefficients of ‘xi’ for i = 
1, 2, 3, …, n. When determining the values of ‘ci’ in the context of statistical analysis, if the p-value is found to be less 
than 0.05, it indicates that the relationship between y and xi is considered statistically significant.

The present study employs the below models to investigate the correlation between the engineering parameters of 
interest, such as heat exchange rate, and the characteristics as

Cfx = c + c1Je + c2m + c3Ha + c4β + c5α1.

Nux = d + d1Pr + d2m + d3Bi + d4λ + d5R.

The parameters which affect the momentum equation that are considered in skin friction, and which affect the 
temperature are considered in Nusselt number equation. From MATLAB, we have collected 9 sets of values for skin 
friction and Nusselt number to do regression analysis. Thus, we got the below outputs:

10.6797 0.34499 1.0260 4.0391 1.41297 0.0 .920xCf Je m Ha β α= +− − − − −

2.3700 0.4022 3.7748 8.716 5.1613 0.812 .92xNu Pr m Bi Rλ= + + − − −

5. Discussion on outcomes
Several control variables that surface in this investigation have been changed in this segment to examine their 

effects on the momentum and thermal profiles of the trihybrid nanofluid. Tables, graphs, and figures have all been 
used to display the outcomes. Fixing the relevant parameter values (Pr = 6.2, Je = 4, α1 = 3.5, β = 0.6, Bi = 0.01, R = 
3, m = 0.4, Ha = 0.8, λ = 0.5) and using Tables 1 and 2 allows us to comprehend the problem’s physics. Figure 3 and 
Figure 4 show the velocity profiles as an index of m for scenarios α1 = 0 and α1 ≠ 0. The figures clearly show that when 
α1 ≠ 0, the velocity is negatively impacted by elevation in m. The fluid’s velocity increases as the elevation in m. This 
variation of the velocity profile is caused by fluid deformations when m increases the stretching speed of the Riga plate. 
The width of the velocity boundary layer increases as well. In this situation α1 = 0, there is a reverse trend in velocity. 
Figure 5 illustrates the effects of physical parameter Je, the proportion of relaxation to retardation time on velocity. As 
Je increases, the velocity of fluid decreases. Figure 6 shows that raising α1 values decrease the width of the velocity 
boundary layer and the momentum profile. This is due to growing α1 restricted stretching velocity, and the reason for 
maximum velocity near the plate may be physically read as an assist of the no-slip boundary specifications. Figure 7 
shows that when β values rise, both the velocity profile and the corresponding boundary layer diminish. Figure 8 shows 
the impact of modified Hartmann number Ha seems to improve the profile of velocity. This profile may be caused by 
raising values of the modified Hartmann number, which strengthens the fluid-regulating external electric field. It can be 
seen in Figure 9, that the fluid's temperature profile rises noticeably for α1 ≠ 0 when the velocity power index is less than 
or equal to 1. Physically, the varying thickness of the stretching sheet clarifies that the temperature magnitude is larger 
near the Riga plate for each increased value of the velocity power index. 

In Figure 10 when α1 = 0, the distribution is inverted. The impact of Je on the temperature profile is seen in Figure 
11. The temperature boundary layer spreads as Je rises. But for larger values of the wall thickness parameter, we 
obtain conflicting profiles shown in Figure 12. As we raise the wall thickness parameter, the temperature distribution 
decreases because less heat is transported from the plate to the fluid. As a result, with higher values of the wall thickness 
parameter, a decreasing temperature profile is shown. The existence of a robust magnetic field, characterized by a high 
Hartmann number, has the potential to decrease the heat transfer shown in Figure 13. This phenomenon arises from 
the damping influence exerted by the magnetic field on the motion of the liquid. Figure 14 illustrates the impact of R 
variability on the thermal profile. As R values increase, the temperature profile intensifies, with higher R values exerting 
a dominant influence on conduction. The system experiences a significant heat influx from radiation, leading to an 

(19)

(20)

(22)

(21)

(23)
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elevation in temperature. Because the Riga plate is convectively heated, the Biot number is critical in sculpting the 
temperature boundary layer. The heat exchange coefficient describes the convective heat exchange between the fluid and 
the wall. The heat exchange coefficient is heavily influenced by the thermal boundary conditions. As the Biot numerical 
values are increased, the heat transfer coefficient rises, resulting in greater thermal profiles shown in Figure 15. When 
expected, the thermal profiles in Figure 16 increase dramatically when the heat source parameter value increases. This 
is because greater values of the thermal source parameter raise the temperature of the fluid. In comparison to Newtonian 
and non-Newtonian fluids, (for m = 0.4, 0.5, 0.6, 0.8, 1.0 when α1 ≠ 0) it is evident from Figure 17 and Figure 18 that the 
non-Newtonian fluid leads to drop in liquid velocity and rise in fluid temperature. This is because of the higher shear rate 
in the non-Newtonian fluid. Figure 19 and Figure 20 demonstrate the influence of escalating solid particle concentration 
on velocity and temperature components keeping the remaining parameters as constant. The velocity profile diminishes 
as the quantity of solid nanoparticles rises in the trihybrid nanofluid, a result attributed to increased collisions among 
the suspended nanoparticles. Conversely, temperature profiles exhibit improvement owing to the dissipation of energy 
in the form of heat by the nanoparticles. Furthermore, the appearance of chemical bonds among distinct nanoparticles 
suspended in the fluid contributes to an augmentation in heat exchange. Ultimately, this process leads to an enlargement 
of the thermal boundary layer thickness in the nanofluids.

Table 1. The thermophysical properties encompassing the base fluid and nanoparticles [31] used in this study

Physical parameters H2O Al2O3 Cu Ni

ρ	(kg/m3) 997.1 1,115 8,933 8,900

k	(W/mK3) 0.613 2,430 401 90.7

Cp	(J/kgK) 4,179 0.253 385 444

μ	(mPa/s) 0.891 - - -

Pr 6.2 - - -

Table 2. Equations of thermophysical properties of trihybrid nanofluid [31] used in this study

Properties Trihybrid nanofluid

Dynamic Viscosity
( ) ( ) ( )2.5 2.5 2.5

1 2 31 1 1
f

tf

µ
µ

φ φ φ
=

− − −

Density ( ) ( ) ( )3 2 1 1 1 2 2 3 31 { 1 [ 1 ] }tf fρ φ φ ρ φ ρ φ ρ φ ρ φ= − − − + + +

Heat capacity ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 1 1 2 31 2 3
1 { 1 1 }p p p p ptf f

C C C C Cρ φ φ ρ φ ρ φ ρ φ ρ φ = − − − + + +  

Thermal conductivity

( )
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3 3 3

3 3 3

2 2

2
hf hf

tf hf
hf hf

K K K K
K K

K K K K
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Figure 4. Dominance of m on f	'(ζ	) when α1 = 0

Figure 6. Dominance of α1 on f	'(ζ	)

Figure 3. Dominance of m on f	'(ζ	) when α1 ≠ 0 

Figure 5. Dominance of Je on f	'(ζ	)
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Figure 10. Dominance of m on θ(ζ	) when α1 = 0

Figure 12. Dominance of α1 on θ(ζ	)

Figure 14. Dominance of R on θ(ζ	)

Figure 9. Dominance of m on θ(ζ	) when α1 ≠ 0

Figure 11. Dominance of Je on θ(ζ	)

Figure 13. Dominance of Ha on θ(ζ	)
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Figure 16. Dominance of λ on θ(ζ	)

Figure 18. Comparison of θ(ζ	)

Figure 20. Comparison of θ(ζ	)

Figure 15. Dominance of Bi on θ(ζ	)

Figure 17. Comparison of f	'(ζ	)

Figure 19. Comparison of f	'(ζ	)
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Table 3. Regression analysis for skin friction

Regression Statistics

Multiple R 0.998242821

R Square 0.99648873

Adjusted R Square 0.990636614

Standard Error 0.016574011

Observations 9

Table 4. ANOVA for skin friction

- df SS MS F Significance F

Regression 5 0.233875 0.046775 170.2783606 0.000704209

Residual 3 0.000824 0.000275 - -

Total 8 0.2347 - - -

Table 5. Coefficients of regression for skin friction

- Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -0.679676683 0.050974 -13.3338 0.00091176 -0.841898143 -0.51746

Je -0.344989753 0.267189 -1.29118 0.287132434 -1.19530398 0.505324

m -1.026000661 0.218346 -4.69897 0.018231656 -1.720874026 -0.33113

Ha 4.039095061 1.335597 3.024188 0.056570912 -0.211369481 8.28956

β -1.412968438 0.471779 -2.99498 0.05790006 -2.914379036 0.088442

α1 -0.091983129 0.143465 -0.64115 0.567041177 -0.548552536 0.364586

Table 6. Probability output for skin friction 

Percentile Y

5.555555556 -0.75107

16.66666667 -0.543033

27.77777778 -0.423578

38.88888889 -0.363603

50 -0.336621

61.11111111 -0.275584

72.22222222 -0.256548

83.33333333 -0.241533

94.44444444 -0.23486
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Table 7. Regression analysis for Nusselt number

Regression Statistics

Multiple R 0.974242376

R Square 0.949148207

Adjusted R Square 0.864395219

Standard Error 0.044777088

Observations 9

Table 8. ANOVA for Nusselt number

- df SS MS F Significance F

Regression 5 0.112269219 0.022454 11.198994 0.037169202

Residual 3 0.006014963 0.002005 - -

Total 8 0.118284182 - - -

Table 9. Coefficients of regression for Nusselt number

- Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 2.370018339 2.308781626 1.026523 0.3801797 -4.97755522 9.717591895

Pr 0.402184753 0.245182614 1.640348 0.1994673 -0.37809575 1.182465259

m 3.774754861 7.711578872 0.489492 0.6580511 -20.7669308 28.31644055

Bi -8.716242369 12.43098482 -0.70117 0.5336914 -48.2771841 30.84469933

λ -5.161353263 2.615635627 -1.97327 0.1429909 -13.4854732 3.162766674

R -0.819275048 0.966193495 -0.84794 0.4587642 -3.89413397 2.255583872

Table 10. Probability output for Nusselt number

Percentile Y

5.555555556 0.03988

16.66666667 0.172129

27.77777778 0.255325

38.88888889 0.289464

50 0.291959

61.11111111 0.29908

72.22222222 0.384427

83.33333333 0.393601

94.44444444 0.435449
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The probability plots of the friction factor and the Nusselt number are shown in Figures 21 and 22, respectively, 
presuming that the datasets that fall under investigation are normal distribution. It is possible to infer that the model 
appropriately represented the datasets fall under consideration for friction factor and Nusselt number based upon the 
adjusted-R2 values displayed in Tables 3 and 7. Tables 4 and 8 show the regression model holds statistical significance 
due to P-values in the F-test that are below 0.05 for friction factor and the Nusselt number, respectively. Tables 5 and 9 
present the regression coefficients for friction factor and Nusselt number, respectively. In friction factor, P-values (> 0.05) 
in the T-test indicate that the constants Je, m, Ha, β, and α1 are statistically insignificant. In the Nusselt number, P-values 
(> 0.05) in the T-test indicate that the constants m, and Bi are statistically invalid, however, P-values (< 0.05) indicate 
that the parameters Pr, λ, and R are statistically valid. The probability output for friction factor and Nusselt number are 
shown in Tables 6 and 10.

Figure 21. Probability plot for skin friction

Figure 22. Probability plot for Nusselt number

6. Validation
A comparison of our results with a previously published study by Thakur [31] was performed to validate the code 

and ensure the validity of the results. Table 11 shows several values of −f	''(0) for various values of m for α1 = 0.25 and 
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Table 11. A comparison for values of −f	''(0) for various values of m for α1 = 0.25 and α1 = 0.5 when	Pr = 6.2

m
Thakur et al. [31] Present study

α1 = 0.25 α1 = 0.5 α1 = 0.25 α1 = 0.5

10 1.1433 1.0603 1.14333 1.06034

9 1.1404 1.0589 1.14040 1.05893

7 1.1323 1.0551 1.13229 1.05506

5 1.1186 1.0486 1.11860 1.04862

3 1.0905 1.0359 1.09050 1.03588

1 1.0000 1.0000 1.00001 1.00001

0.5 0.9338 0.9799 0.93383 0.97995

0 0.7843 0.9576 0.78428 0.95764

7. Conclusions
This research introduces a computational mathematical model to analyze the flow of a (Al2O3-Cu-Ni/H2O) trihybrid 

nanofluid, a variable-thickness Riga plate stretched and heated by convective heat with non-Newtonian fluid in the 
appearance of thermal radiation. The primary objective is to examine the influence of different physical parameters 
on the flow of this trihybrid nanofluid, particularly under conditions such as convectively heated Riga plate and non-
flat plate geometry. The findings are depicted in graphs, tables, and results, demonstrating a compelling behavior of the 
trihybrid nanofluid under the specified circumstances. The present research indicates that the influences on trihybrid 
nanofluid are more pronounced compared to hybrid and nanofluids. Multiple linear regression has been employed in 
this study to analyze engineering parameters, encompassing factors such as heat exchange rate and friction factor. To 
assess the accuracy of the current findings, a validation process has been conducted, comparing the outcomes of the 
present study with those of previous investigations. In summary, the conclusions drawn from this study can be outlined 
as follows:

• The presence of radiation and uniform heat source improves the Nusselt number, physically this energy transfer 
improvement assists in higher solar collector efficacy; converts that energy to usable heat. System performance can be 
upgraded as this enhancement allows for lesser operating temperatures which interestingly reduces the energy loss in 
solar thermal systems. 

• The Lorentz force provided parallel to the surface of the Riga plate, as well as the velocity power index (when α1 
≠ 0), aid in the flow of the (Al2O3-Cu-Ni/H2O) trihybrid nanofluid.

• As Je increases, the velocity of fluid falls due to the proportion of relaxation to retardation time on velocity.
• Fluid temperature rises with the rising values of radiation parameter.
• The temperature profile of the trihybrid nanofluid is more noticeable than the plots of hybrid nanofluid, nanofluid, 

and base fluid.
• Je, m, α1, β have a negative influence on surface drag force whereas Ha had a positive influence.
• Pr, and m have a positive impact on the Nusselt number where as R, λ, and	Bi had negative influences.
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