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Abstract: The study of Sierpiński triangle network and extended Sierpiński graph is quite interesting in the field of
fractal networks. In nature, fractal networks (FN) and silicate structure networks (Sio4) play vital roles and in architecture
to analyze the dimension of the above-mentioned FN and Sio4 networks it is necessary to identify the number of copies of
the network. In this paper, we introduced a silicate triangle fractal network (Sin) which is a planar fractal and it is created
using a related sequence of graphs named (Sin)n≥0, where n is the nth level of silicate triangle fractal network. We analyze
the topological indices (TI) of the silicate triangle fractal network Sin graph and compare the calculated topological indices
to the number of copies of silicate structure (Sio4) in each iteration of Sin for a sequence of a graph.
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1. Introduction
Fractal geometry is a fascinating field that explores self-similar shapes and patterns that can be observed ubiquitously

in nature, including trees, rivers, coastlines, mountains, shells, and hurricanes. In 1975, Mandelbrot proposed fractal
geometry as a new geometry of nature and developed it as a modern field of pure and applied mathematics. G. F.
Cantor, J. H. Poincare, H. Von Koch, W. Sierpinski and others have contributed their ideas to the development of fractal
geometry. Fractal geometry has proven to be a powerful tool for measuring the structures of idealized and naturally
occurring phenomena. It is being used in a wide range of scientific fields and art fields [1–3]. Fractals are patterns that
repeat constantly with approximate or exact self-similar. In [4], iteration is one of the most prevalent sources of self-
similarity. This self-similarity property is the persistent distribution of degree under renormalization or the self-repeating
pattern for the network structure. It is common practice to generate recursively specified sets using the iterated function
system. By Mandelbrot’s definition [5], a fractal is a set whose Hausdorff dimension is strictly greater than its topological
dimension. The fractal dimension [6] characterizes the fractal property of the network, which is estimated using the power
law relation using the number of boxes and their size. Cantor set, Sierpiński gasket, and Koch curve are well-known self-
similar fractals. The Sierpiński gasket [7] is a good illustration of a self-similar fractal lattice. It is not like square or
honeycomb lattices, which have translational invariance, but self-similar lattices have scaling invariance.
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Sierpiński gasket was introduced by Sierpiński in 1915 [8], it is known as a typical graph and also the first non-trivial
“fractal” type graph and known for its crossing number, see [9]. In [10], the average canonical distance between points
on the Sierpiński gasket has been studied by Hinz and Schief. It is used in numerous fields of probability, topology, graph
theory, and complex networks. In [11], various network covering algorithms have been reviewed and different dimensions
are used to describe the fractal property of networks with their application.

A topological index is a connectivity index and it is a form of molecular descriptors. The topological index is a
numerical quantity for molecular graphs in a chemical compound, that is helpful to determine the chemical properties of
molecular graphs. These descriptors are amply used in the chemical graph theory of QSAR/QSPR investigations. This
investigation applies physicochemical properties, medical drugs, and quantum mechanically calculated parameters as
descriptors. More than 200 above topological indices are investigated in QSAR/QSPR investigations. In this investigation,
several degree based topological indices give better results.

For few authors discussed degree based topological matrix of eigen values and normalized Laplacian matrix. The
author [12] defined upper bound of topological matrix in a simple graph G. In [13], the authors established the energy of
graphs of some vertex degree based topological indices (TI) and also related the normalized Laplacian energy with TI.

Particularly, degree based Randic and geometric-arithmetic indices are correlatedwell with alkane physical properties
in [14]. The degree based indices are an effective tool to find a positive correlation of cancer drugs [15]. The authors [16]
tested standard heats of formation and normal boiling points of octane isomers at the hand of degree-based topological
indices and found augmented Zagreb index and the atom-bond connectivity index yield the best results. In [17], the authors
investigated Sombor type degree-based topological indices of graph invariants for antiviral drugs and their correlation
of the chemical structure of the molecules with different physicochemical properties such as boiling point, enthalpy of
vaporization, critical pressure and volume, molar volume, polarizability. Few authors used the method of topological
indices for the fractal networks to find their dimensions. Among many chemical structures, only a few structures one can
convert as a fractal network and identify their dimension through topological indices.

For specific complex networks various degree based topological indices have been analyzed by [18]. Various Zagreb
indices have been studied for a Sierpiński triangle networks by [19]. Various authors [11, 20, 21] have been discussed
the entropy of fractal-type networks, topological properties of Sierpiński network, and the fractal dimension of Sierpiński
triangle network respectively. The authors [22] have contributed few degrees based topological indices for the Sierpiński
rhombus (SRn) and Koch snowflake (KSn) graphs.

In this direction, we are motivated to work firstly on various degree based topological indices of silicate triangle
fractal network (Sin) and compare with the copies of each iteration with the obtained topological indices for some n
sequence of a fractal graph.

The structure of this article is as follows: In Section 1.1 the preliminaries needed for the construction of a silicate
triangle fractal network (Sin) and fractal dimension of Sin are presented. In Section 2, the sequence of topological indices
are examined for Sin. In Section 3, the comparison graphs are discussed for the various topological indices of Sin. Finally,
the conclusion is given in Section 4.

1.1 Preliminaries

This section begins with a brief discussion about silicate (Sio3) and the construction of silicate (Sio3) triangle fractal
network using a sequence of graph. Further iterated function for silicate triangle fractal network (Sin) is presented.

1.2 Silicate triangle fractal network (Sin)

Silicate is prepared by fusing metal carbonates or metal oxides with sand. Silicate (Sio4) contains silicon and oxygen.
It is a tetrahedron structure with a center of silicon atoms and oxygen atoms at the corners in a 2D plane (see Figure 1a)
that assembles a silicate network. Silicate material is most commonly used for microchip production. It is widely used in
electronic products, telecommunications equipment, architecture, and various chemical networks.

A silicate triangle fractal network (Sin) whose Si0 initiator is an equilateral triangle (see Figure 1a) connecting with
the center of vertex. It resembles Sierpiński triangle. Corner oxygen atoms of three sides produce 3 silicates of the initiator
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to get Si1 (see Figure 1b). In this sequence, each iteration of corner oxygen produces 3n silicates to form a nth level silicate

triangle fractal (Sin) network (see Figure 2). Sin contains 3(
3n+1 −1

2
)+1 vertices and 3(3n+1)−3 edges. Consequently

Si0 ⊆ Si1, repeat the process until Sin sets increase with Si0 ⊆ Si1 ⊆ Si2 . . . . Therefore the construction is repeated an
infinite number of times.

Figure 1. Silicate triangle fractal network (a) intiator Si0 and (b) first iteration (Si1)

Figure 2. nth iteration of Silicate triangle fractal network Sin

The fractal dimension (D) is calculated by dividing logN by log
1
r
, where N is the number of boxes intersecting the

object and r is the size of the box [23]. Therefore, D≈ N
1
r

. The fractal dimension of the Sierpiński triangle is
log3
log2

≈ 1.585

and the Sierpiński triangle network is d f ≈ 1.4556 [11]. The number of boxes intersecting silicate triangle fractal network

is 3 and its size of box is
1
2
then fractal dimension of silicate triangle fractal network (Si) is estimated by
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D ≈ N
1
r

=
3
2
≈ 1.584

Hence, the fractal dimension of Silicate triangle fractal network (Si) is 1.584.

1.3 Definition of topological indices

Let G be a graph with vertex set X and edge set Y . The number of edges incident with vertex x is called the degree
of vertex x, it is denoted by dx.

In 1972, Gutman and Trinajstić introduced a first degree index named the first [24] and second Zagreb [25] indices
as follows:

M1(G) = ∑
xy∈Y (G)

(dx +dy),

M2(G) = ∑
xy∈Y (G)

(dx ×dy).

The sum connectivity index (S(G)) is proposed by Zhou and Trinajstić [26]

S(G) = ∑
xy∈Y (G)

1√
dx +dy

.

Platt index [27] of a graph G is defined as

P(G) = ∑
xy∈Y (G)

(dx +dy −2).

Bollobás et al. [28] and Amić et al. [29] suggested additional information on Randic index and its significant features,
it is known as the generalized Randic index

Rα(G) = ∑
xy∈Y (G)

(dx ×dy)
α .

where α is an arbitrary real number. The Randic index, general Randic index and second Zagreb index are obtained from
the generalized Randic index by putting α =

−1
2
, −1 and 1 respectively.

The Milan Randić is developed by Randic (R−1/2) index as
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R−1/2(G) = ∑
xy∈Y (G)

1√
dx ×dy

,

R−1(G) = ∑
xy∈Y (G)

(dx ×dy)
−1,

R1(G) = M2(G) = ∑
xy∈Y (G)

(dx ×dy).

Estrada et al. [30] defined the atom bond connectivity (ABC) index, which is

ABC(G) = ∑
xy∈Y (G)

√
dx +dx −2

dx ×dy
.

The Harmonic index of G is given by

H(G) = ∑
xy∈Y (G)

2
dx +dy

.

The geometric arithmetic (GA) index is defined by Vukičević et al. [31] as follows

GA(G) = ∑
xy∈Y (G)

2
√

dx ×dy

dx +dy
.

The Forgotten index [32] is defined as

F(G) = ∑
xy∈Y (G)

(d2
x +d2

y ).

The augmented Zagreb index (AZI) is firstly introduced by Furtula et al. in [33]

AZI(G) = ∑
xy∈Y (G)

(
dx ×dy

dx +dx −2
)3.

The following is the exponential indices of atom bond connectivity (eABC) index, second Zagreb index eM2 and Platt
index eP respectively.
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eABC(G) = ∑
xy∈Y (G)

e
√

dx+dx−2
dx×dy ,

eM2(G) = ∑
xy∈Y (G)

e(dx×dy),

eP(G) = ∑
xy∈Y (G)

e(dx+dy−2).

2. Topological indices of silicate triangle fractal network (Sin)
In this section, we computed topological indices of first and second Zagreb index, general Randic index, atom bond

connectivity index, Harmonic index, geometric arithmetic index, and forgotten index.
Theorem 1 Let Sin be the Silicate triangle fractal network. Then
(i) M1(Sin) = 3n+3 +6(3n+1)+108(3n−1)−45,
(ii) M2(Sin) = 27(3n+1)+324(3n−1)−162,
(iii) S(Sin) = 0.741(3n+1)−0.732+2.598(3n−1),
(iv) R−1/2(Sin) = 0.569(3n+3)+1.5(3n−1)−0.293,

(v) R−1(Sin) =
6(3n+1)+9(3n−1)

36
,

(vi) P(Sin) = 21(3n+1)−39,
(vii) F(Sin) = 63(3n+1)−297+648(3n−1),
(viii) ABC(Sin) = 1.289(3n+1)−1.291+4.743(3n−1),
(ix) GA(Sin) = 1.941(3n+1)−3.174+9(3n−1),
(x) H(Sin) = 0.556(3n+1)−0.333+1.5(3n−1),
(xi) AZI(Sin) = 28.393(3n+1)−228.927+419.904(3n−1).
proof. Consider a sequence of silicate triangle fractal network (Sin) graph. The symbol of X j and Yj is assigned to

the collection of vertex degrees dx and edge degrees dxy respectively. The vertex set degrees and edge set degrees of Sin
in each iterations are X j = {3, 6} and Yj = {33, 36, 66} respectively. The cardinality of the vertex sets and edge sets are

3(
3n+1 −1

2
)+1 and 3(3n+1)−3 respectively. The vertex sets are divided into two groups depending on its degrees. For

Sin, we have |X3| = 3(3n−1 +1), |X6| =
3
2
[(3n −1)−2(3n−1)]. The edge sets are divided into the corresponding sum of

the degrees of end vertices. It is divided by three sets. Y1 edge set containing end vertices of degree dx = 3 and dy = 3
such that 33 ∈ Y (Sin), then cardinality of Y1 is 3n+1. Y2 edge set contains end vertices of degree dx = 3 and dy = 6 such
that 36 ∈Y (Sin), then cardinality of Y2 is 3n+1+3. Y3 edge set contains end vertices of degree dx = 6 and dy = 6 such that
66 ∈ Y (Sin), then cardinality of Y3 is 3[1−3(1−3n−1)]. By definition of M1 index of Sin,

Volume 5 Issue 2|2024| 2481 Contemporary Mathematics



M1(Sin) = ∑
xy∈Y (Sin)

(dx +dy)

= ∑
33∈Y (Sin)

(3+3)+ ∑
36∈Y (Sin)

(3+6)

+ ∑
66∈Y (Sin)

(6+6).

On simplifying the above form, we obtain the following equation,

M1(Sin) = 3n+3 +6(3n+1)+108(3n−1)−45.

By definition, M2 index of Sin is computed as follows

M2(Sin) = ∑
xy∈Y (Sin)

(dx ×dy)

= ∑
33∈Y (Sin)

(3×3)+ ∑
36∈Y (Sin)

(3×6)

+ ∑
66∈Y (Sin)

(6×6).

After simplifying the above form, we obtain following the equation

M2(Sin) = 27(3n+1)+324(3n−1)−162.

By definition, S index of Sin is computed as follows

S(Sin) = ∑
xy∈Sin

1√
dx +dy

= ∑
33∈Y (Sin)

1√
3+3

+ ∑
36∈Y (Sin)

1√
3+6

+ ∑
66∈Y (Sin)

1√
6+6

.

After simplifying the above form, we have the equation

S(Sin) = 0.741(3n+1)−0.732+2.598(3n−1).
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By definition, general Randic index Rα of Sin is computed as follows for α =−1/2

R−1/2(Sin) = ∑
xy∈Sin

1√
dx ×dy

= ∑
33∈Y (Sin)

1√
3×3

+ ∑
36∈Y (Sin)

1√
3×6

+ ∑
66∈Y (Sin)

1√
6×6

.

On simplify the above form, we obtain the following equation,

R−1/2(Sin) = 0.569(3n+3)+1.5(3n−1)−0.293.

For α =−1

R−1(Sin) = ∑
xy∈Sin

(dx ×dy)
−1

= ∑
33∈Y (Sin)

(3×3)−1 + ∑
36∈Y (Sin)

(3×6)−1 + ∑
66∈Y (Sin)

(6×6)−1.

We simplify the above, we have the following equation

R−1(Sin) =
6(3n+1)+9(3n−1)

36
.

By definition, P index of Sin is computed as follows

P(Sin) = ∑
xy∈Sin

(dx +dy −2)

= ∑
33∈Y (Sin)

(3+3−2)+ ∑
36∈Y (Sin)

(3+6−2)+ ∑
66∈Y (Sin)

(6+6−2).

We simplify the above form, we obtain following the result

P(Sin) = 21(3n+1)−39.

By definition, F index of Sin is computed as follows
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F(Sin) = ∑
xy∈Y (G)

(d2
x +d2

y )

= ∑
33∈Y (Sin)

(32 +32)+ ∑
36∈Y (Sin)

(32 +62)+ ∑
66∈Y (Sin)

(62 +62).

We obtain following the result after simplifying the above form,

F(Sin) = 63(3n+1)−297+648(3n−1).

By definition, ABC index of Sin is computed as follows

ABC(Sin) = ∑
xy∈Y (G)

√
dx +dx −2

dx ×dy

= ∑
33∈Y (Sin)

√
3+3−2

3×3
+ ∑

36∈Y (Sin)

√
3+6−2

3×6
+ ∑

66∈Y (Sin)

√
6+6−2

6×6
.

We obtain following the result after simplifying the above form,

ABC(Sin) = 1.289(3n+1)−1.291+4.743(3n−1).

By definition, GA index of Sin is computed as follows

GA(Sin) = ∑
xy∈Y (G)

2
√

dx ×dy

dx +dy

= ∑
33∈Y (Sin)

2
√

3×3
3+3

+ ∑
36∈Y (Sin)

2
√

3×6
3+6

+ ∑
66∈Y (Sin)

2
√

6×6
6+6

.

We obtain following the result after simplifying the above form,

GA(Sin) = 1.942(3n+1)−3.174+9(3n−1).

By definition, H index of Sin is computed as follows
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H(Sin) = ∑
xy∈Y (G)

2
dx +dy

= ∑
33∈Y (Sin)

2
3+3

+ ∑
36∈Y (Sin)

2
3+6

+ ∑
66∈Y (Sin)

2
6+6

.

We obtain following the result after simplifying the above form,

H(Sin) = 0.556(3n+1)−0.333+1.5(3n−1).

By definition, AZI index of Sin is computed as follows

AZI(Sin) = ∑
xy∈Y (G)

(
dx ×dy

dx +dx −2
)3

= ∑
33∈Y (Sin)

(
3×3

3+3−2
)3 + ∑

36∈Y (Sin)
(

3×6
3+6−2

)3 + ∑
66∈Y (Sin)

(
6×6

6+6−2
)3.

We obtain following the result after simplifying the above form,

AZI(Sin) = 28.393(3n+1)−228.927+419.904(3n−1).

Theorem 2 Let Sin be the Silicate triangle fractal network. Then,
(i) eABC(Sin) = 3.431(3n+1)+11.907(3n−1)−3.507,
(ii) eM2(Sin) = e9(3n+1)+3.e18 +3n+1e18 −6.e36 +3(3n−1)e36,
(iii) eP(Sin) = 1151.23(3n+1)−128868.87+198238.14(3n−1).
Proof. Consider a sequence of silicate triangle fractal network (Sin) graphs. The vertex is divided into two groups

depending on its degrees. we have |X3|= 3(3n−1 +1), |X6|=
3
2
[(3n −1)−2(3n−1)]. Edge set is divided by three sets. Y1

edge set containing end vertices degree dx = 3 and dy = 3 such that 33 ∈ Y (Sin), then cardinality of Y1 is 3n+1. Y2 edge
set contains end vertices of degree dx = 3 and dy = 6 such that 36 ∈Y (Sin), then cardinality of Y2 is 3n+1 +3. Y3 edge set
contains end vertices of degree dx = 6 and dy = 6 such that 66 ∈ Y (Sin), then cardinality of Y3 is 3[1−3(1−3n−1)]. By
definition, eABC index of Sin is computed as follows

eABC(Sin) = ∑
xy∈Y (G)

e
√

dx+dx−2
dx×dy

= ∑
33∈Y (Sin)

e
√

(3+3−2)
3×3 + ∑

36∈Y (Sin)
e
√

(3+6−2)
3×6 + ∑

66∈Y (Sin)
e
√

(6+6−2)
6×6 .
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On simplifying the above form, we obtain the following equation,

eABC(Sin) = 3.431(3n+1)+11.907(3n−1)−3.507.

By definition, eM2 index of Sin is computed as follows

eM2(Sin) = ∑
xy∈Y (G)

e(dx×dy)

= ∑
xy∈Y (Sin)

(dx ×dy)

= ∑
33∈Y (Sin)

e(3×3)+ ∑
36∈Y (Sin)

e(3×6)+ ∑
66∈Y (Sin)

e(6×6).

On simplifying the above form, we obtain the following equation,

eM2(Sin) = e9(3n+1)+3.e18 +3n+1e18 −6.e36 +3(3n−1)e36.

By definition, eP index of Sin is computed as follows

eP(Sin) = ∑
xy∈Y (G)

e(dx+dy−2)

= ∑
33∈Y (Sin)

e(3+3−2)+ ∑
36∈Y (Sin)

e(3+6−2)+ ∑
66∈Y (Sin)

e(6+6−2).

We obtain following the result after simplifying the above form,

eP(Sin) = 1151.23(3n+1)−128868.87+198238.14(3n−1).

3. Comparison of topological indices for Sin
The comparison is made between the copies of each iteration of the silicate triangle fractal network (Sin) with the

obtained topological indices (TI) for some sequence n and results are presented in Figure 3, where x-axis represents the
number of iterations (n) and y-axis represents the TIs’ for silicate triangle fractal network (Sin) corresponding to the
number of iterations n. The obtained degree sum topological indices and exponential degree sum topological indices of
the silicate triangle network (Sin) is plotted in Figure 3 using the Matlab tool The graph shows degree based topological
indices and exponential degree based TIs’ namely M1(Sin), M2(Sin), R−1(Sin), R−1/2(Sin), F(Sin), ABC(Sin), GA(Sin),
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H(Sin), S(Sin), P(Sin) and eM2(Sin), eABC(Sin), eP(Sin) respectively. As the number of iteration increases (n), the value of
the topological indices also increases accordingly. Increasing topological indices relates copies of silicate structure in each
iteration of Sin network, we have represented a stem graph of obtained degree sum topological indices and exponential
degree sum topological indices in Figure 3(a) and 3(b) respectively.

Figure 3. Graphs for (a) degree sum and (b) exponential degree sum
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Table 1 shows the calculated values of TIs with 3 silicate copies in each iteration n and R−1(Sin) index gives 3 copies
in the first iteration (n = 1) itself while other indices give 3 copies in different iterations n. So, it is successfully proposed
that the R−1(Sin) index gives the fractional dimension of the Sin more than other indices.

Table 1. Topological indices of 3 silicate copies of Sin

S.No Topological indices 3 copies of silicate in iteration n

1. M2(Sin) n = 14

2. F(Sin) n = 14

3. S(Sin) n = 13

4. GA(Sin) n = 13

5. R−1(Sin) n = 1

6. AZI(Sin) n = 14

7. eABC(Sin) n = 13

8. eP(Sin) n = 15

Further it is noticed that in Figure 3(a) and 3(b), the general Randic index (R−1(Sin)) attains a maximum in Figure
3(a) and exponential atom bond connectivity index (eABC(Sin)) attains a maximum in Figure 3(b). While comparing all
the indices it is observed that those maximum values are closely related to the number of the copies of the silicate structure
(Sio4) in silicate triangle fractal network (Sin). In [16] augmented Zagreb index and the atom-bond connectivity index
yield the best results in standard heats of formation and normal boiling points of octane isomers. But in this paper, from
all the obtained topological indices the general Randic index gives (R−1(Sin)) the better approximation with a smaller
number of iterations to find the number of copies of silicate structure (Sio4) and fractal dimension of silicate triangle
fractal network (Sin).

4. Conclusion
In this study, various types of topological indices namely atom-bond connectivity index, geometric arithmetic index,

harmonic index, general Randic index, first and second Zagreb index, forgotten index, Platt index, exponential ABC
index, exponential second Zagreb index and exponential Platt index are discussed for a sequence of silicate triangle fractal
network (Sin). Further, the comparison of all topological indices with respect to the number of iterations are presented
in Figure 3. It is noted that few topological indices give three silicate copies such as the second Zagreb index (M2(Sin)),
Forgotten index (F(Sin)), sum connectivity (S(Sin)) index, geometric arithmetic (GA(Sin)) index, generalized Randic
index (Rα(Sin)), and Platt index (P(Sin)) among all the obtained topological indices. However if α = −1, the general
Randic index gives the first three silicate copies for the graph Sin.

This paper is an eye-opener for researchers in the sense that the same Sin network can be derived from neighborhood
degree, eigen degree matrix and Laplacian matrix to the number of copies of silicate structure in each iteration, fractal
dimension of Sin. In this sequel, the properties of various topological indices will be investigated for complex fractal
networks with large values for n.
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