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1. Introduction
In homological algebra, characterizations of rings through appropriate categories of modules holds considerable

significant [1–3]. This idea has led to similar results in both non-commutative and non-additive contexts over the past
few decades: for example the homological classification of monoids [4], or the homological classification of distributive
lattices [5].

In the last few decades, there has been an increasing interest in the theory of modules over quantales and quantaloids,
because of its connections with various fields such as mathematics, computer science, quantum physics among other other
scientifis domains [6–12]. As algebraic objects, quantales are, by definition, monoids in the monoidal category Sl of sup-
lattices, in just the same way that rings are monoids in the monoidal category Ab of abelian groups. Quantaloids are the
“many object” generalization of quantales (precisely like groupoids generalize groups), that is, quantaloids are exactly
categories enriched in Sl. Modules over quantales or quantaloids can therefore be defined in much the same way as one
does for rings.

It is thus natural, When studying quantaloids and their modules, to leverage the similarities in methodologies
and techniques drawn from ring theory. In the theory of modules over rings, homological dimension emerges as a
pivotal concept in providing a measure of a module’s projectivity or injectivity within a category of modules. Central
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to the definition of homological dimension are projective and injective resolutions, which play a fundamental role
in characterizing the length of the longest projective resolution, such as the global dimension of a ring. Moreover,
homological dimensions facilitate comparisons across various classes of modules. A comparison of the projective
dimension of modules over quantaloids, for instance, can unveil similarities or distinctions in their algebraic properties.
These comparative approaches can contribute to the advancement of representation theory in the context of quantaloids
through the exploration of module homology.

Another example that fuels ourmotivation is the ready simulation quantale [13]. In the domain of logic semantics, this
quantale captures the behavior of one system in relation to another. Its application lies in defining a concept of behavioral
equivalence or refinement between concurrent systems. This notion is frequently utilized in the investigation of formal
methods and process algebras, particularly within the framework of labeled transition systems. The underlying principle is
to establish a correspondence between states in different systems, accounting for their potential transitions. The quantale of
ready simulation, denoted asQRS, was thoroughly examined in [13]. The study demonstrated a striking similarity between
this quantale and the algebraic structure of the ring of polynomials. Moreover, they share an analogous homological
characterization: QRS is not semisimple but is coherent, mirroring the characteristics of the ring of polynomials. This
aligns with our perspective, where non-semisimple quantaloids exhibit a higher dimension, with semisimple quantaloids
corresponding to zero projective/injective dimensions and coherent ones having projective/injective dimensions equal to
1.

In this paper, our interest goes specifically to the homological characterization of semisimple quantaloids. This
provides a promising context for advancing homological algebra. While the results are intriguing on their own, they
might also offer a fresh perspective on the “classical” homological algebra applied to rings.

For the reader’s ease, Section 2 covers the preliminaries on quantales, quantaloids, and their modules. Moving on
to Section 3, we introduce the notion of simplicity for quantaloid-modules, and give some algebraic and homological
characterizations thereof. These results will help us in establishing our main results, presented in Section 4, on the
semisimplicity of quantaloid-modules. In Section 5 we make several relations between semisimple quantaloids and other
special quantaloids such as Noetherian, Artinian quantaloids.

2. Preliminaries
For general facts on categories enriched in a symmetric monoidal closed category V (such as V = Ab or V = Sl),

we refer to [14, 15] (or [16] for a short introduction); specifically for quantaloids and their modules we refer to [7], but
see also [8, 12, 17–21].

2.1 Quantaloids, modules
We denote by Sl the symmetric monoidal closed category of complete lattices and supremum-preserving maps (“sup-

lattices and sup-morphisms”), the monoidal structure on Sl being given by the usual tensor product of complete lattices.
A quantaloid is defined as an Sl-enriched category. More specificaly, a quantaloid is a categoryQ in which, for any given
pair of objects A and B, the hom-set Q(A, B) is a sup-lattice, and the composition of morphisms in Q(A, B) is distributive
over suprema:

f (
∨

gi) =
∨

i

f gi and (
∨

fi)g =
∨

i

fig.

A quantale is a quantaloid with a single object, i.e. it is a monoid in Sl. In simpler terms, a quantale Q = (Q,
∨
, ·, 1)

is a sup-lattice (Q,
∨
) equipped with a monoid structure (Q, ·, 1) satisfying the distributivity law mentioned above.

By the same token, a morphism of quantaloids is an Sl-enriched functor F : Q → R; explicitly, it is a functor that
preserves suprema of morphisms:
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When considering quantales (i.e. one-object quantaloids), this corresponds with the expected notion of (homo)morph-
ism, namely a sup-preserving map that preserves the monoid structure. Finally, given two parallel quantaloid morphisms
F : Q → R and G: Q → R, natural transformations α: F → G are defined as for ordinary categories (the Sl-enrichment
does not play any role here).

Throughout the remainder, we denote byQ, a small quantaloid, i.e. a quantaloid whose collection Q0 of objects
forms a set. Let us remark that Sl itself is a quantaloid, but a large one (its objects form a proper class).

A (left, covariant) Q-module M is a morphism of quantaloids M: Q → Sl; so in particular is every object A of Q

mapped to a complete lattice MA, and every morphism f : A → B in Q is mapped to a sup-morphism M f : MA → MB.
These modules are the objects of the category Q-Mod, which has natural transformations as morphisms. Explicitly, a
morphism α: M → N in Q-Mod is a family

α = {αA ∈ Sl(MA, NA) | A ∈ Q}

of morphisms in Sl such that, for every f ∈ Q(A, B), the following diagram in Sl commutes:

MA NA

MB NB

αA

αB

M f N f

The pointwise supremum of Q-morphisms gives rise to a new Q-morphism; moreover the composition of Q-
morphisms is distributive over these suprema on both sides: consequently, Q-Mod is a (large) quantaloid.

As per usual, any object A ∈ Q represents a Q-module, which we shall write as hA: Q → Sl, acting thusly:

(
f : X → Y

)
7→

(
f ◦−: Q(A, X)→ Q(A, Y )

)
.

Similarly, any morphism g: A → B in Q represents a Q-module morphism hg: hB → hA (note the contravariancy),
whose components are given by pre-composition with g. The (Sl-enriched) Yoneda Lemma establishes, for anyQ-module
M and any object A ∈ Q, that

Q-Mod(hA, M)→ MA: α 7→ αA(1A)

is an isomorphism in Sl. As a consequence, this makes for a fully faithful (Sl-enriched) Yoneda embedding Qop →
Q-Mod.

For any quantaloid, the opposite category (obtained by reversing the morphisms, but not the lattice order in the homs)
is also a quantaloid. In particular, a right (contravariant) module on Q is, by definition, a (left) module on Qop. In fact,
the module category Qop-Mod is isomorphic to (Q-Mod)op; this follows easily from the self-duality Sl ∼= Slop (where a
sup-morphism f : A → B is identified with the order-opposite of its right (Galois) adjoint inf-morphism f ∗: B → A).
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Hence, any valid statement in a category of Q-modules has a a corresponding dual statement. In this paper we shall
work with left Q-modules (calling them just Q-modules), but it is clear that all results remain true for right modules.

In every quantaloid, categorical products and sums coincide, often referred to as direct sums; this is thus in particular
the case in Q-Mod. Epimorphisms in Q-Mod are precisely the module morphisms that have surjective components;
analogously, monomorphisms are exactly the module morphisms with injective components. Further, Q-Mod is a Barr-
exact category. Since we have considered Q to be a small quantaloid, it follows from the Yoneda embedding that the
representable Q-modules constitute a small separating set of objects in Q-Mod and that Q-Mod is wellpowered and
co-wellpowered. Thus, strongly complete and strongly cocomplete. All the categorical properties above underline the
similarity between the categories of quantaloid-modules and those of ring-modules.

It follows from general principles in enriched category theory, but can easily be verified ad hoc too, that if we write 2
for the Boolean algebra {0, A}, which we view as a quantale with conjunction as multiplication, then 2-Mod is precisely
the category Sl. Therefore, general Q-module theory is a (“many-typed, many-valued”) generalization of the theory of
complete lattices and sup-morphisms. This perspective will be already be useful in the following few paragraphs.

2.2 Quotients and cyclicity
Quotients of Q-modules, i.e. epimorphisms in Q-Mod, can conveniently be described by means of suitable closure

operators.
First, a closure operator on a poset P is a monotone map Γ: P→P that is expansive and idempotent; it thus co-restricts

to a residuated surjection Γ: P ↠ PΓ onto the poset of its fixpoints PΓ = {x ∈ P | Γx = x}, its right (Galois) adjoint being
simply the inclusion PΓ ↪→ P. This correspondence between closure operators and residuated surjections is (essentially)
bijective: any residuated surjection ρ: P ↠ P′ (with right (Galois) adjoint ρ∗) defines a closure operator Γ = ρ∗ ◦ρ , which
comes with a unique isomorphism between its poset of fixpoints PΓ and P′ that commutes with the surjections P → PΓ and
P↠P′. Specifically, if P is a complete lattice then PΓ is also a complete lattice and Γ: P↠PΓ is a surjective sup-morphism
(but note that the supremum in PΓ is given by the closure of the supremum in P): so quotients in Sl arise precisely from
closure operators.

Now, let M be a Q-module, we define a closure operator Γ on M is to be a family of closure operators on complete
lattices

Γ = {ΓA: MA → MA | A ∈ Q}

such that, for every f ∈ Q(A, B),

M f ◦ΓA ≤ ΓB ◦M f .

This so-called “structural inequality” is precisely required to allow for the construction of the fixpoint module
MΓ: Q → Sl, mapping a morphism f : A → B in Q to the composite

(MA)ΓA ↪→ MA
M f−→ MB ↠ (MB)ΓB .

Moreover, the co-restrictions ΓA: MA ↠ MΓA are the components of an epimorphism Γ: M ↠ MΓ in Q-Mod.
Conversely, if ρ: M ↠ N is an epimorphic Q-module morphism, then each ρA: MA ↠ NA is a surjective sup-morphism,
so has an injective right (Galois) adjoint inf-morphism ρ∗: NA → MA, defining a closure Γ: = ρ∗ ◦ρ on M; and there is
a unique isomorphism N ∼= MΓ commuting with the epimorphisms M ↠ MΓ and M ↠ N.
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So, generalizing the case of complete lattices, quotients of a Q-module M are essentially the same thing as closure
operators on M.

By the Yoneda Lemma, given aQ-moduleM, any element a∈MA uniquely corresponds with aQ-module morphism
µa: hA → M whose components are

(µa)B: Q(A, B)→ MB: f 7→ M f (a).

We say that M is generated by a ∈ MA if µa: hA → M is epimorphic; in that case, we write 〈A, a〉 for that generator of
M. This thus precisely means that, for any b ∈ MB, there exists a (not necessarily unique) morphism fb: A → B in Q such
that M( fb)(a) = b. A Q-module M is cyclic if it has a generator; in other words, M is cyclic if and only if M is a quotient
of a representable module, if and only if it is the fixpoint module of a closure operator on a representable module.

2.3 Submodules and ideals
Let M and N be Q-modules. We say that N is a Q-submodule of M if there is a module morphism N → M whose

components are (set-wise) inclusions; and we write N � M. As submodules of M are ordered (“by inclusion”), we can
express the ascending (descending) chain condition on submodules of M, and thus speak of a noetherian (artinian) Q-
module in the obvious way.

Examples of submodules are the image and the kernel of aQ-morphismα: N →M: indeed Im(α)�M is determined
by Im(α)(A): = {αA(x) | x ∈ NA}, whereas Ker(α) � N is determined by Ker(α)(A): = {x ∈ NA | αA(x) = ⊥MA}. In
particular, any monomorphism α: N ↣ M in Q-Mod determines an isomorphism of N with Im(α), so we can think of N
as a submodule of M (up to this isomorphism).

Furthermore, the zero object in the category Sl being the sup-lattice with just one element, it follows easily that the
zero Q-module (i.e. the zero object in Mod-Q), which we shall write as 1: Q → Sl, is defined by mapping every object
A ∈ Q to the zero object of Sl. We shall say that a Q-submodule E � M is essential, denoted by E �e M, if for any
Q-submodule N � M we have that E ∩N = 1 implies N = 1. To the contrary, a Q-submodule S � M is superfluous,
written S �s M, if for any N � M we have that S+N = M implies N = M. The radical Rad(M) � M is the sum of all
superfluous submodules of M; and the socle Soc(M)� M is the intersection of all the essential submodules of M.

For our study of simple and semimple modules, we will also need a stronger kind of substructure of a Q-module
M. Extending the definition given for quantale-modules by Paseka and Kruml in [9], we say that a submodule I � M is a
Q-ideal if, for any A ∈ Q, if m ∈ IA and n ∈ MA such that n ≤ m, then n ∈ IA; so each IA is a down-closed subset of MA.

In fact, the kernel of any Q-module morphism α: M → N is a Q-ideal in M (but its image need not be Q-ideal of N).
We will use the term ‘weak-ideal of Q’ for the Q-submodules of the representable Q-modules, and use the term ‘ideal of
Q’ for their Q-ideals.

Finally, given a Q-module M, a congruence ≡ on M is defined to be a Q-submodule of the product M ×M which
is also an equivalence relation: explicitly, for each A ∈ Q there is a sup-lattice congruence ≡A on MA, and for each
f : A → B inQ the sup-morphism M f : MA → MB maps≡A-equivalent elements of MA to≡B-equivalent elements of MB.
Therefore, any congruence≡ on M determines a quotient module M ↠ M/≡, whereby M/≡ sends A ∈Q to the quotient
sup-lattice MA/≡A. In particular, any submodule N � M induces a congruence ≡N on M by setting, for each A ∈ Q,

m ≡A
N m′ in MA def.⇐⇒ ∃n, n′ ∈ NA: m∨n = m′∨n′.

We usually write M/N for the quotient Q-module M/ ≡N . (When no confusion can arise, we shall drop the super-
and subscripts for better readability.)
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3. On simpleQQQ-modules
In ring theory, a non-zero module is said to be simple if it has no non-zero proper submodules; this definition can

easily be transposed to the quantaloidal case. In [9], a quantale is said to be simple if it is non-zero and only have the
trivial congruences (i.e. the diagonal and the total congruence); this definition too can easily be generalized to quantaloid-
modules. However, for quantaloid-modules, these two properties do not necessarily coincide (as we shall see in the
examples below).

3.1 Definitions and basic properties
Remark that in the category of modules over a quantaloid, constant homomorphisms are exactly the zero morphism.

In fact, let α: M → N be a constant homomorpism of Q-modules, then α(m) = α(0M) = 0N , for all m ∈ M. Conversly,
a zero homomorphism is trivially constant. Indeed, we can assert the following result:

Proposition 1 For a Q-module M, the following assertions are equivalent:
(1) M has only two congruences (the diagonal and the total congruence);
(2) every surjective Q-module-morphism from M is either an isomorphism or constant.
Proof. (2)→ (1) Let≡ be a congruence on M. Then, we have the following quotient morphism π: M ↠ M/≡ which

is either an isomorphism or constant, by assumption. It is easy to see that the congruence ≡ is either diagonal or total.
(1)→ (2) Let α: M ↠ H be a quotient morphism. Define the following congruence, for A ∈ Q, m, n ∈ MA m ≡α n

if and only if αA(m) = αA(n). It is clear that ≡α is a congruence on M, hence it is either total or diagonal. Totality of
≡α leads to α being constant. Diagonality of ≡α leads to α being injective, which in addition to its surjectivity gives the
desired result. □

Hence, we have two kinds of simplicity in Q-Mod:
Definition 2 A non-trivial Q-module M is weakly-simple if it has only two congruences (the diagonal and the total

congruence).
A non-trivial Q-module M is simple if it has no proper Q-submodules, or equivalenty, if the only closure operators

on M are the identity and the zero closure operator.
Example 3 • The quantale 2: = {0, 1} is weakly-simple and also simple.
• End(L ), for an integral linear sup-lattice L , is weakly-simple but not simple. For similar argument, see [22].
• Lawvere’s quantale (Q = [0, ∞], +, ∨, 0) is neither simple nor weakly simple. It is easy to see that the intervals

[a, ∞], for a ∈ Q, are indeed submodules and Q-ideals of Q.
• If we consider the quantale of Lawvere (Q = [0, ∞],+, ∨, 0), the Q-module of integers (Z,+,≤) is simple under

the action r.z = E[r].z with r ∈ Q and z ∈ Z.
• Consider the quantaloid of the powerset quantaloid over a set X , i.e;, for a set X consider the quantaloid (P(X),⊆).

Consider the module of natural numbers over this quantaloid with:
For A ∈ P(X), n ∈ N, A.n = n if n ∈ A, and A.n = 0 otherwise.
An easy computation using the properties of congruences will show that this module is both simple and weakly

simple.
The following result provides a characterization of weakly-simple Q-modules through their ideals:
Lemma 4 M is weakly-simple then it has only two Q-ideals (zero and M itself).
Proof. Let N be a non-zero Q-ideal of M. And consider the congruence ≡N on M associated to N, then ≡N is either

the diagonal congruence or the total one. Remark that≡N can not be diagonal. Take A ∈Q0, and let n ∈ NA, then n ≡N ⊥
since n =⊥∨n. Hence, ≡N is the total congruence on M, i.e., for all A ∈ Q0, and all m ∈ MA, m ≡N ⊥ and so there exist
n ∈ NA such that m∨n ∈ NA, since N is a Q-ideal, we get that m ∈ NA and so M = N. □

Remark 1 For Q-modules, congruences and Q-ideals are strongly related. Indeed, for any congruence, the class
zero also called the kernel of the congruence is a Q-ideal, conversly for any Q-ideal I we have a universal congruence
whose kernel is the ideal I. Hence, having only two Q-ideals (1 and I)can not imply having only two congruences. Still,
we can assure that the only congruences we may have are those whose kernel is either 1 or I.
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In the following, we will characterize homomorphisms on simple modules.
Lemma 5 • A module M: Q → Sl is simple if and only if every morphism to M is either constant or surjective.
• If M: Q → Sl is simple then every morphism from M is either constant or injective. Consequently, simple implies

weakly simple
Proof. • Let M: Q → Sl be a simple module and α: N → M is a module homomorphism. Then, Im(α) as a

submodule, of a simple module, is either zero or M itself; which leads to α being either constant or surjective.
Conversly, let N: Q → Sl be a submodule of M and consider the inclusion homomorphism i: N → M. By assumption,

i is either constant or surjective. Hence, N is either zero of M; which proves the simplicity of M.
• The second statement is followed immediately by examining the correspondence between submodules and

congruences. □
In ring theory, we characterize simple modules via their quotient modules. In the following, we will give a

characterization of simple modules over a quantaloid via its quotient by a closure operator, which will lead us to the
statement that every simple module is cyclic.

Proposition 6 A Q-module M: Q → Sl is simple if and only if M ∼= (hA)Γ for some A ∈ Q and a maximal closure
operator Γ.

Proof. Suppose that M: Q → Sl is simple. Then, there exist A ∈ Q such that MA is not trivial. Consider hA: =
Q(A, −) the Q-module representable by A ∈ Q. Since, M is simple then β : hA → M is surjective. And so, there exist a
closure operator Γ on hA such that M ∼= (hA)Γ.
Now, suppose that there exist another operator ω on hA such that Γ ≤ ω < id, hence hA � (hA)ω � (hA)Γ, where (hA)ω
is a submodule of M ∼= (hA)Γ, which is simple and so (hA)ω ∼= (hA)γ which implies that γ = ω . And so, γ is maximal.

Conversly, suppose that M ∼= (hA)γ for some maximal closure operator γ and let N be a non zero submodule of M,
hence there exist β a closure operator on hA such that N = (hA)β with γ ≤ β < id. Then γ = β and so M is simple. □

And, so it is immediate that:
Corollary 7 Every simple Q-module is cyclic.
Another very known result for ring modules (see Corollary 2.17, [3]) holds again for simple Q-modules:
Lemma 8 If U is a maximal Q-ideal of L, then L/U : = L/∼=U is weakly-simple.
Proof. Let U be a maximal Q-ideal of L. Suppose their exist a submodule N of L such that L/N � L/U ; then by

definition∼=U≤∼=N which implies that∼=N is either equal to∼=U or equal to the total congruence. Consequently, L/N = L/U
or L/N = L(= L/ f rm[o]). Hence, L/U is simple which implies weakly-simple. □

As a consequence, we get the following property of simple modules:
Corollary 9 If every submodule is a direct summand of aQ-moule M then every non-zero submodule of M contains

a weakly simple module.
Proof. Let N be a non-zero submodule of M, hence there exist A ∈ Q and n ∈ NA such that n 6= ⊥. The finitely

generated submodule L generated by 〈A, n〉 contains a maximal submoduleU . Hence, by assumption, there exists M1 �M
such that M =U ⊕M1.

L being a Q-ideal [All direct summands of M are Q-ideals of M.], it is easy to conclude that L = (M1 ∩L)⊕U. And
so L/U ∼= M1 ∩L ⊆ M which is weakly simple. □

In the following, we will characterize weakly simple modules via its universe and then via the annihilator of its
elements. For this purpose, we will define the annihilator congruence:

m ≡Ann n if and only if Ann(m) = Ann(n)

where Ann(m) = { f ∈ Q(A, B)|M( f )(m) =⊥} for m ∈ MA.
Lemma 10 ≡Ann is a congruence on any module M: Q → Sl. If M is weakly simple then it is the diagonal

congruence.
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Proof. The proof of the previous lemma is very straightforwarrd from the properties of the module M and the bottom
element of each lattice MA for A ∈ Q. □

Using this lemma, we get two characterizations of simpleQ-modules. First, simpleQ-modules are either isomorphic
to some simple right ideal of Q or the only possible morphism between them is the zero morphism.

3.2 Structure properties of simpleQQQ-modules

Lemma 11 Let Q be an integral quantaloid, M be a simple Q-module and N a weakly-simple cyclic Q-ideal of Q,
we have either M ∼= N or HomQ(M, N) = 0.

Proof. Assume there exists a non-zero morphism α: M → N. By Lemma 5, α is injective. It remains to prove that
it is surjective. Indeed, let 〈A, m〉 be a generator of M (since it is cyclic).

By weak-simplicity of N, the congruence ≡α(M) on N is the total congruence. And so, all the element of N are in
congruence via ≡α(M).

Let 〈B, a〉 be a generator of N. Using the assertion [for more details see definition 10.1 in [7]]: for every element x
in NE, for some E ∈ Q, x = N(γ)(a) where γ: B → E, a simple computation leads to: a ≡α(M) ⊥ in NB. Hence, there
exist n and n′ in αB(M)(= α(MB)⊆ NB) such that α = n′. Consequently,

N(u)(a)∨N(ν)(αA(m)) = N(ν ′)(αA(m))

where u: B → B, ν , ν ′: A → B.
A simple computation leads to Ann(a) = Ann(N(ν ′)(α(m)). And so,

a = N(ν ′)(αA(m)) = αB(M(ν ′)(m)).

Hence α is surjective, which completes the proof. □
The second result is the following generalization of Corollary 8.7 in [6] to non-commutative unital quantales. For

that, letL be a unital quantale [The definition stands for quantales, since quantales are just quantaloids with one object],
M: L → Sl be an L -module and f ∈ L , . We define the set M f : = {m ∈ M: M( f )(m) =⊥}. It is easy to conclude that
M f is a submodule of M.

Proposition 12 For a quantale L , an L -module M: L → Sl is weakly simple if and only if the underlying lattice
M is either zero or contains exactly one non-trivial element.

Proof. Let M: L → Sl be a weakly simple module. And let f ∈ L . Consider ≡ f to be the relation on M associated
to M f . By simplicity, either ≡ f is diagonal or total. Hence, either M f = 1 or M f = M.

Now, if m, n ∈ M \{⊥} then m ≡Ann n and so m = n. Consequently, either M = {⊥} or M = {⊥, >}. □
By a strong ideal of Q, we mean an ideal I such that, for all f , g ∈ Q(A, B), f ∨ g ∈ I implies that f , g ∈ I. And by a
prime ideal of Q, we mean an ideal I of Q such that f ◦ g ∈ I implies that either f ∈ I or g ∈ I for all f ∈ Q(A, B) and
g ∈ Q(C, A) where A, B, C ∈ Q0.
Now, we will characterize weakly simple module via the annihilators of its universe element.

Proposition 13 Every Q-module M: Q → Sl such that, for every A ∈ Q0, MA contains exactly one non-trivial
element mA, is weakly-simple.

Conversly, let M : = {(A, MA)|A ∈ Q, MA ∈ Sl} such that each MA contains exaclty one non-trivial element (mA).
If Ann(mA) is a strong prime ideal of Q, then a weakly-simple Q-module can be defined by the family M .

Proof. Suppose that M: Q → Sl as defined in the proposition is weakly simple. And prove that Ann(mA) is a
strong prime ideal of Q. To prove the primness, let f ∈ Q(B, A) and g ∈ Q(C, B) such that f ◦ g ∈ Ann(mA), i.e.,
M( f ◦g)(mA) = ⊥ so M(g)(M( f )(mA)) = ⊥. Hence, M( f )(mA) ∈ M f . By weak simplicity of M, M f is either trivial or
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equal to MA. Hence either M( f )(mA) = mA or M( f )(mA) =⊥ and either f ∈ Ann(mA) or g ∈ Ann(mA). As for Ann(mA)

being strong, it follows directly from the fact that M( f ∨g)(mA) = M( f )(mA)∨M(g)(mA) for f , g(B, A).
Now, suppose that Ann(m) is a strong prime ideal, and prove that M can be endowed with a structure of a weakly-

simpleQ-module. In fact, let A, B ∈Q, and let f ∈Q(B, A). We define M( f )(mA) =⊥ if f ∈ Ann(mA) and M( f )(mA) =

mA otherwise. And M( f )(⊥) = ⊥ for all f ∈ Q(B, A). It is very easy to check that via this modulation, M is a weakly
simple Q-module. □

We end this section on simple Q-modules by characterizing the lattice EndQ(M) for a simple Q-module M.
Proposition 14 Let Q be a quantaloid and M be either a simple Q-module or a weakly-simple cyclic Q-module,

then the endomorphism quantaloid EndQ(M) is isomorphic to the Boolean quantale 2.
Proof. For this, we need to prove that every non-zero endomorphism on M is the identity on M. For that, let

α: M → M be a endomorphism on M. Remark that the simplicity of M implies that it is cyclic, and so proving that α is
the identity on M is equivalent to prove that αA(u) = u where 〈A, u〉 is a generator of M. Since α is injective (by simplicity
of M), then Ann(n) = Ann(αA(u)) and so again using the simplicity of M, we get that n = α(u).

Hence, for a simple Q-module M, End(M) = {0, idM} which completes the proof. □

4. On semisimpleQQQ-modules
As in ring theory, we will define a semisimple Q-module M to be a direct sum of simple Q-modules. This section

is dedicated to give several algebraic and homological characterizations of these modules, getting full inspiration of such
results from ring theory.

Firstly, we establish that semisimple Q-modules can be expressed as a finite direct sum of their simple Q-ideals.
Additionally, we will provide characterizations of semisimple modules through projective and injective modules, subtly
introducing the notion of homological dimension. Finally, we will conclude this section by examining the radical structure
of such modules.

We begin by recalling the definition of a semisimple Q-module
Definition 15 A Q-module M: Q → Sl is said to be (weakly-)semisimple if it is a direct sum of its (weakly-)simple

submodules.

4.1 Properties of semisimpleQQQ-modules

Remark that in the definition there is no condition of finitness on the direct sum that generates semisimple modules
beacause for this special kind of modules all finitness conditions are equivalent, see Proposition 32. But, for the very
special case of the Q-module Q, the finiteness of the direct sum is a result as shown in the following:

Lemma 16 If Q is a direct sum of non-zero weak-ideals, then it is a direct sum of a finite number of these weak-
ideals.

Proof. Let Q =⊕i∈γ Ii where Ii is a weak-ideal of Q for every i ∈ γ and suppose that γ is infinite.
For A ∈ Q, we have 1A =

∨k
j=1 ei j for k ∈ N, i j ∈ γ and ei j ∈ Ii j .

Let i ∈ γ{i1, · · · , ik} and consider an element ni ∈ Ii \ {⊥}. Then, we have ni = ni ◦ 1A =
∨k

j=1 ni ◦ ei j , which the
uniqueness of the decomposition of ni. Consequently, γ is finite. □

Remark that for a Q-module M, every direct summand N of M is a Q-ideal: the only property that needs a check-up
is: If a∨ b ∈ N and b ∈ N then a ∈ N. In fact, suppose that M = N ⊕L, then a = n∨ l for some n ∈ N, l ∈ L. and so
n∨ l ∨b ∈ N Hence n∨ (l ∨b) ∈ N, since the sum is direct, then l ∨b =⊥ and so a ∈ N.

As in ring theory, ideals of semisimple module carry some of its strucutre such as being a direct sum of simple
modules. In quantaloid modules, we have a similar statement, that is ideals of semisimple modules are also semisimple.

Lemma 17 Let Q be a (weakly) semisimple quantaloid, where Q =Q1 ⊕·· ·Qn. Then, every ideal of Q is a direct
summand and moreover I =⊕ j∈JQ j, for some set J ⊆ {1, · · · , n}.
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Proof. Let I be an ideal of Q, J: = { j ∈ {1, · · · , n}|I ∩Q j 6= 1}, QJ : = ⊕ j∈JQ j and QJ̄ : = ⊕ j∈J̄Q j where
J̄ = {1, · · · , k}\ J.

For j ∈ J, 1 6= I ∩Q j ⊆ Q j and so I ∩Q j = Q j consequently I = QJ ⊕ (QJ̄ ∩ I).
Now, suppose that QJ̄ ∩ I = 1. Let A ∈ Q, so 1A = a1 ∨ ·· · ∨ an for some ai ∈ Qi. Then, for every qi ∈ Qi, we

have, qi = qi ◦1A = qi ◦a1 ∨ ·· ·∨ qi ◦an. Since each qi ◦a j ∈ Q j and the sum is direct we get, for i 6= j qi ◦a j = ⊥ and
qi ◦ai = qi.

Now, let α =
∨

j∈J̄ αi ∈ I ∩QJ̄ . For every j ∈ J̄, α j = α ◦ a j and so α j ∈ I ∩Q j and so α j = ⊥ and consequently
α = 0. Which completes the proof. □

Slightly modifying the proof of Lemma 17, we get the same result but for any Q-module:
Proposition 18 Let M: Q → Sl be a (weakly-)semisimple module and I a submodule (or particularly, a Q-ideal) of

M. Then, I is direct summand of M and it is also direct sum of (weakly-) simple modules.
Proof. Let M: Q → Sl be a (weakly-)semisimple module and I a submodule (or particularly, a Q-ideal) of M. Let

J: = { j ∈ {1, · · · , n}|I ∩M j 6= 1}, MJ : =⊕ j∈JM j and MJ̄ : =⊕ j∈J̄Q j where J̄ = {1, · · · , k}\ J.
For j ∈ J and A ∈ Q0, 1A 6= IA∩MA j ⊆ MA j and so I ∩M j = M j consequently I = MJ ⊕ (MJ̄ ∩ I).

Now, suppose that MJ̄ ∩ I = 1. Let A ∈ Q0, so 1A = a1 ∨ ·· · ∨ an for some ai ∈ Mi. Then, for every mi ∈ Mi, we
have, mi = mi ◦1A = mi ◦a1 ∨·· ·∨mi ◦an. Since each mi ◦a j ∈ M j and the sum is direct we get, for i 6= j mi ◦a j =⊥ and
mi ◦ai = mi.

Now, let α =
∨

j∈J̄ αi ∈ I ∩MJ̄ . For every j ∈ J̄, α j = α ◦ a j and so α j ∈ I ∩M j and so α j = ⊥ and consequently
α = 0. Which completes the proof. □

We also have the following result concerning modules spanned by its simple submodules:
Lemma 19 Let (Mα)α∈Γ be a set of simple submodules of the Q-module M. If M = ∑Γ Mα then for K � M there

is Λ ⊆ Γ such that (Mi)i∈Λ is a family of independent [A family (Ma)a∈A of Q-modules is said to be independent if, for
any a ∈ A, we have Ma

∩
(∑b∈A, b6=a Mb) = 1 ] Q-modules such that M = K ⊕ (⊕ΛMi).

Proof. Let K � M. Applying Zorn’s lemma, there exist Λ ⊆ Γ maximal with respect to (Mi)i∈Λ is independent and
K ∩ (∑i∈Λ Mi) = 1. Then, the sum N = K +(∑i∈Λ Mi) is direct.

Remains to prove that N = M. For that, let j ∈ Γ. Since M j is simple then M j ∩N is either equal to M j or 1. The
Latter contradicts the maximality of Λ. □

We recall that a short exact sequence 1 → M → N → L → 1 is split if the surjective or the injective morphism in the
sequence have a retraction or equivalently M is a direct summand of M or again equivalenty L is a direct summand of N.
As an immediate sequence we have the following result:

Corollary 20 M is a (weakly-)semisimple Q-module then any short exact sequences of the form

1 L M N 1f g

splits and consequently N and L are also semisimple.
Proof. We only prove the result for weakly semisimple. The proof for semisimple is done similarly using kernels

instead of images. (→) Let M =⊕α∈ΓMα . Since Im( f ) is an ideal of M, by Lemma 17, Im( f ) is a direct summand of M
and so the sequence splits. Now, N ∼= M/Im( f ) And so N ∼= ⊕ΛMλ where Λ ⊆ Γ.But M = ⊕ΛMλ ⊕ (⊕Γ\ΛMα) so that
⊕Γ\ΛMα ∼= Im( f ). □

Remark 2 From the previous result, one can rem that the notions of weak-semisimplicity and semisimplicity
coincide for Q-modules. And so, as long as a Q-module is a direct sum of its simple-like module, we get all the possible
characterization we have done previously, weather it is weak semiplicity or not.
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4.2 Homology of semisimpleQQQ-modules

The last result of the previous subsequence states that every submodule and every epimorphic image of semisimple
module are also semisimple. And every submodule is a direct summand. As we will see later on, this charcterize only
semisimple modules.

Therefore, we present the following fundamental characterizations of semisimple modules which is an exact
counterpart of Theorem 9.6 in [23].

Proposition 21 The following assertions are equivalent:
(i) M: Q → Sl is semisimple;
(ii) M is the sum of its simple modules;
(iii) M is the sum of some set of simple modules;
(iv) M is generated by simple modules;
(v) Every submodule of M is a direct summand and consequently direct summands are exactly Q-ideals;
(vi) Every short exact sequence 1 → N → M → L → 1 of Q-modules splits.
Proof. The implication (vi)→ (v) is immediate from the properties of split sequences, (iv)→ (i) is by Lemma 19

for K = 1. The equivalences (ii)⇔ (iii)⇔ (iv) are trivial.
Finally, (v)→ (ii) Let N be the sum of all simple submodules of M. Then M = N⊕L for some L � M. By Corollary

9, L = 1 and so M = N as desired. □
Now, we give a homological characterization of semisimple quantaloids; which is a counterpart of Corollary 8.2.2

in [24].
Theorem 22 For an integral quantaloid Q, the following assertions are equivalent:
(i) Q is semisimple;
(ii) All Q-modules are projective;
(iii) All Q-modules are injective;
(iv) All Q-modules are semisimple;
(v) All short exact sequences of Q-modules are split;
(vi) All weak ideals are direct summand and consequently all direct summands are exactly ideals of Q and so ideals

and weak ideals of Q coincide;
(vii) Q is weakly-semisimple.
(viii) Q has a projective semisimple generator.
Proof. The implication (iv)→ (i) is trivial. And (ii)⇔ (iii)⇔ (v) are easy to see from the mutual definition of split

short exact sequences, projectivity and injectivity.
For (i)→ (iv), it suffices to remark that:

• For any non-zero element m of a non trivial lattice MA, for some A ∈ Q, the submodule LA, m generated by 〈A, m〉
are semisimple as an epimorphic image of a semisimple module;

• M is a sum of all the submodule LA, m, A ∈Q and m ∈ MA.And so it is semisimple as a sum of semisimple modules.
Now, (iv)⇔ (v)⇔ (vii) and (i)⇔ (vi) follows from Lemma 17.

Finally, for (vii)⇔ (i), suppose that Q has a semisimple left generator A. Then A generates Q and it is a sum of simple
submodules. Hence,Q is also a sum of simple submodules which implies semisimplicity.

For the converse, suppose that Q is semisimple. By Lemma 11, we can consider Q1, · · · , Qn to be a complete set of
representatives of simple modules I1, · · · , Im of Q (that is, each I j is isomorphic to one and only one of the Qi). Let R be
the (co-)product of Q1, · · · , Qn. Then R is certainly finitely generated projective and it generates each I j , so it generates
Q. And so, it is a progenerator, which is semisimple as a module over a semisimple Q-module. □

In order to prove a weak version of the well-know Artin-Wedderburn theorem, we need the following result, which
follows directly from Theorem 22.

Corollary 23 Let Q be an integral quantale. A Q-module is semisimple if and only if its quantale of matrices
Mat(Q) is semisimple.
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Hence, using all the result in the previous setions, we can give a decomposition of semisimple quantaloids via the
quantaloid of matrices over some special quantales which is a weak counterpart of the Artin-Wedderburn theorem (for
rings, see [25]).

Proposition 24 For any integral quantale Q, the following statements are equivalent:
(i) Q is a left semisimple quantale;
(ii) Q ∼= Mn1(B)×·· ·×Mnk(B) where B is a 2-module, and k ≥ 0 and ni, i ∈ {1, · · · , k} are positive integers;
(iii) Q is a right semisimple quantale.
Proof. (i) → (ii) Let Q be a left semisimple quantaloid, then Q is a finite direct sum of its simple left ideals.

Applying Lemma 11 and taking classes of summands according to their isomorphism types, we obtain

Q ∼= In1
1 ⊕·· ·⊕ Ink

k

where the right ideals I1, · · · , Ik of Q are mutually nonisomorphic simple.
Remark that each Ii for i ∈ {1, · · · , k} is a direct summand of Q, and consequently it is cyclic and projective and so

isomorphic to hAu for some idempotent u ∈ Q. And so, EndQ(Ii)∼= B for i ∈ {1, · · · , k},
Since HomQ(Ii, I j) = {⊥} for i 6= j, we have

End(Q)∼= End(In1
1 ⊕·· ·⊕ Ink

k )

∼= End(In1
1 )×·· ·×End(Ink

k )

Finally, by noticing that End(In)∼= Mn(I) for any Q-module I, we conclude that

Q ∼= Mn1(B)×·· ·×Mnk(B)

(ii) → (i) It suffices to show the semisimpleness of a matrix quantaloid Mat(B), which follows directly from
proposition 14 and proposition 23.

The equivalence (ii)⇔ (iii). is immediate using the properties of the symmetry. □

4.3 Radical structure of semisimpleQQQ-modules

In the theory of modules, the radical and its dual, the socle, serves as a fundamental element in the classification of
structures. Hence, we define the socle of a module M, as in ring theory, to be the sum of all its simple submodules. We
present the following extension of the socle characterization of semisimple modules.

Proposition 25 For a Q-module M, the following assertions are equivalent:
(i) M = Soc(M);
(ii) M is a semisimple Q-module;
(iii) M has no proper essential Q-ideals.
Proof. (i)→ (ii) is trivial.
(ii)→ (i) If Soc(M)⊊ M, there exists a nonzero submodule N � M such that M = Soc(M)⊕N and Soc(M)∩N = 1.

However, the latter contradicts the fact that the submodule N contains a simple submodule; therefore, Soc(M) = M.
(ii)→ (iii) Let E be an essentiel submodule of M. Then there exists N � M such that M = E ⊕N and E ∩N = 1;

and therefore, N = 1 and M = E.
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(iii)→ (ii) For a submodule K � M, consider thefamily F = {N � M | K ∩N = 1}. By Zorn’s lemma, there exists
a maximal element N ∈ F . We prove that K ⊕N is an essentiel submodule of M, and therefore, K ⊕N = M. Indeed,
if (K ⊕N)∩L = 1 for a submodule L � M, then K ∩ (N +L) = 1. By maximality of N, we conclude that L = 1, as
desired. □

Corollary 26 Let M be a Q-module and N ⊆ M, then Soc(N) = N∩Soc(M), in particular, Soc(Soc(M)) = Soc(M).
Proof. For a submodule K of a Q-module of M, it is easy to see that Soc(K) � K ∩ Soc(M). Since K ∩ Soc(M) is

a Q-ideal, there exists a submodule N ⊆ K ∩Soc(M) such that K ⊆ Soc(M) = Soc(K)⊕N and Soc(K)∩N = 1 Now, if
N 6= 1 then, by Corollary 9, N would contain a simple submodule, and consequntly, Soc(K)∩N 6= 1. Thus, N = 1, and
K ∩Soc(M) = Soc(K). □

Corollary 27 Let M be a Q-module. Then, Soc(M) is the intersection of all essential Q-ideals of M.
Proof. The inclusion ∩{A|A is essential in M} � Soc(M) is clear. From Corollary 26, we have

Soc(M)(∩{A|A is essential in M})

=∩{A|A is essential in M}∩Soc(M)

=∩{A|A is essential in M}.

□
Similarly to modules over rings, we call a module M finitely cogenerated if for every set A of submodules of M,

∩A = 1 if and only if ∩F = 1 for some finite F ⊆ A , we also have:
Corollary 28 Let M be a Q-module. Then M is finitely cogenerated if and only if Soc(M) is finitely cogenerated

and Soc(M) is an essential submodule of M.
Proof. Since Soc(M) is finitely cogenerated once M is finitely cogenerated. The second part follows from Corollary

27 immediately since

Soc(M)∩L = 1 if and only if ∩{A|A is essential in M}∩L = 1

for any submodule L of M. The converse follows again for the same reason. □

4.4 Disscussion
The definition of quantaloids reveals their inherent structure as 2-categories, where relations serve as 2-homomorph-

isms. In the study of semisimple 2-categories, in [26], the author established an intresting result: every semisimple 2-
category is Cauchy-complete. This finding extends the notion of Cauchy completeness from quantaloids to 2-categories,
forming a bridge between purely categorical/algebraic concepts and the analytical Cauchy completeness of metric spaces.
Specifically, considering the Lawvere quantale of positive numbers, it was showen, in [12], that a Cauchy complete Q-
category corresponds to a Cauchy complete generalized metric space.

The equivalence between the semisimplicity of quantaloids and their Cauchy completeness is not merely a theoretical
insight. It holds practical significance, motivating our forthcoming exploration into the homology of quantaloids and their
modules. Beyond the scope of comparison and classification, our objective is to establish meaningful connections between
quantaloids and various contexts using suitable categories.
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5. Noetherian and artinianQQQ-modules
In ring theory, the notions of Noetherian and Artinian rings are very important, due to their role in simplifying the

ideal structure of a ring. Also, these two notions are very related to the notion of semisimplicity, since all semisimple
rings are Artinian and Noetherian. Here, in this section, we investigate if this property stands true for quantaloids. In
other words, whether semisimple rings are Artinian and Noetherian.

Definition 29 A quantaloid Q is said to satisfy the the ascending chain condition (ACC) (resp. descending chain
condition (DCC)) on a family I of ideals of Q if for every ascending sequence

I1 ⊆ I2 ⊆ I3 ⊆ ·· ·(resp. I1 ⊇ I2 ⊇ I3 ⊇ ·· ·)

of ideals in I , there exists a positive integer n ∈ N such that

In = In+1 = In+2 = · · · .

We say that a quantaloid Q is left Noetherian (resp. left Artinian) if it satisfies the ACC (resp. DCC) on its left ideals.
A very important example of Noetherian and Artinian modules are semisimple modules. Recall from Proposition

21 that all ideals in a semisimple quantaloids are direct summands. So we give the following proposition on quantaloids
satisfying the ACC on direct summand.

Proposition 30 A quantaloid Q satisfies the ACC on direct summands if and only if it satisfies the DCC on direct
summands.

Proof. Suppose that M satisfies the DCC on direct summands. Let I1 ⊆ ·· · ⊆ Ii ⊆ ·· · be an ascending chain of direct
summands of M. For every i ∈ N, there exists a submodule Ni of M such that M = Ii ⊕Ni.

We have M = I1 ⊕N1. Since I1 ⊆U2, we have I2 = I1 ⊕ (I2 ∩N1), where

M = I2 ⊕N2 = I1 ⊕ (I2 ∩N1)⊕N2.

Since I2 ∩N1 ⊆ N1, we get that N1 = (I2 ∩N1)⊕ (N1 ∩ (I1 ⊕N2)), hence

M = I1 ⊕N1 = I1 ⊕ (I2 ∩N1)⊕ (N1 ∩ (I1 ⊕N2)).

Let L1: = N1 and L2: = N1 ∩ (I1 ⊕N2), we have I1 ⊕L1 = M = I2 ⊕L2 where L2 ⊆ L1. Since M = I2 ⊕L2 and I2 ⊆ I3,
it follows that I3 = I2 ⊕ (I3 ∩L2), hence

M = I3 ⊕N3 = I2 ⊕ (I3 ∩L2)⊕N3.

Since I3 ∩L2 ⊆ L2, we have then L2 = (I3 ∩L2)⊕ (L2 ∩ (I2 ⊕N3)). Putting L3: = L2 ∩ (I2 ⊕N3), we get that L3 ⊆ L2

and

M = I2 ⊕L2 = I2 ⊕ (I3 ∩L2)⊕L3 = I3 ⊕L3.
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Repeating this reasonning, we obtain a descending chain

L1 ⊇ ·· · ⊇ Li ⊇ ·· ·

of direct summands of M such that M = Ii ⊕Li for every i ∈ N. By our assumption, the descending chain must be finite,
i.e. there exists some k ∈ N such that Li = Lk for every i ≥ k.

Now, for every i ≥ k, we have Ik ⊆ Ii, M = Ik ⊕Lk and so Ii ∩Li = 1 consequently

Ii = Ik ⊕ (Ii ∩Lk) = Ik ⊕ (Ii ∩Li) = Ik.

Thus the ascending chain I1 ⊆ ·· · ⊆ Ii ⊆ ·· · is also finite. □
This observation can be stated in a more general form:
Corollary 31 A quantaloid Q is Noetherian if and only if it is Artinian.
Hence, to prove that semisimple modules are Artinian and Noetherian, it suffices to prove either Noethernianity or

Artinianity. Indeed:
Proposition 32 If Q is a semisimple, then it is Noetherian.
Proof. Let I1 ⫌ I2 ⫌ · · · ⫌ Ik ⫌ · · · be an infinite strictly descending chain of Q-ideals of Q. By assumption, there

exists some ideal Jk � Q such that Q = Jk ⊕ Ik, for every k ∈ N. The ideals Ik and Jk are non-zero as the chain is infinite.
Since I1 ⊇ I2 and Q = I2 ⊕ J2, we have then I1 = I2 ⊕ (I1 ∩ J2). And so, L1: = I1 ∩ J2 is a non-zero Q-ideal of Q and
I1 = I2 ⊕L1.

Repeating this process, we obtain at the kth step, a non-zero ideal Lk � Q such that Ik = Ik+1 ⊕Lk and I1 = L1 ⊕
·· ·⊕Lk ⊕ Ik+1. Let L̃i: = K1 ⊕ ·· ·⊕Ki for each i ∈ N. Then, we have Q = L̃i ⊕ Ii+1 ⊕ J1 where L̃ is an ideal. And so,
L: = ∪i∈NL̃i is also an ideal.

By assumption,Q= L⊕J for some ideal J ofQ. Thus, forA∈Q, 1A = l∨ j for some unique l ∈ LA and j ∈ JA. Since
l ∈ L̃iA for some i ∈N, it can be written in a unique way as l = l1 ∨·· ·∨ li for some unique lk ∈ L̃kA, for k ∈ {1, 2, · · · , i}.

Now, since, for any A ∈ Q, L̃i+1A ⊆ LA, then L̃i+1 +J is a direct sum and so L1 + · · ·Li+1 +J is also direct. Whence,
putting U : = L1 ⊕·· ·⊕Li ⊕ J, we get that the sum U +Li+1 is direct. Finally, let αi+1 ∈ Li+1A\{⊥}, then we have

αi+1 = αi+1 ◦1A = αi+1 ◦ (l1 ∨·· ·∨ li ∨ j) = αi+1 ◦ l1 ∨·· ·∨αi+1 ◦ li ∨αi+1 ◦ j

with αi+1 ◦ lk ∈ LkA for k ∈ {1, 2, · · · , i} and αi+1 ◦ j ∈ JA. Consequently, αi+1 ∈ Li+1A∩ JA = {⊥} which contradicts
the assumption on αi+1. So, the descending chain {Ii}(i∈N) must be finite. Hence Q is Artinian. □

Hence, we can only focus on using either the ACC or DCC to get the desired results. First, we have the following
result on the structure of quantaloids satisfying the ACC on direct summands. For that, we say that a submodule N of a
Q-module M is a maximal direct summand of M if and only if N is a direct summand of M with N 6= M and for any ther
direct summand L of M such that NA ⊆ LA ⊆ MA, for all A ∈ Q, then either L = N or L = M. And a direct summand N
of M is called an indecomposable summand if and only if 1 is a maximal direct summand of N.

Proposition 33 If Q satisfies the ACC on direct summands then Q = I1 ⊕ I2 ⊕ ·· · ⊕ In where each Ii is an
indecomposable summand of Q, i ∈ {1, · · · , n}, for some n ∈ N.

Proof. If Q has no non-trivial direct summand, then 1 is the maximal summand of Q, thus Q is an indecomposable
summand. If not, let S0 be a non-trivial direct summand of Q. Then consider the non-empty family

D : = {S0 ⫋ S|S is a direct summand o f Q}.
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Using our asumption on Q, every descending chain (Sk)k∈J D terminates and has a lower bound Hence, it follows
by Zorn’s Lemma, that D has a minimal element, say D1. Since there is no direct summand between S0 and D1, we see
that S0 is a maximal summand of D1.

The same reasoning applied to the family

A : = {S ⫋ S0|S is a direct summand o f Q}

leads to proving the existence of a maximal element of A say A1 and A1 is a maximal summand of S0. We proved that
every non-trivial direct summand is a maximal summand of a direct summand and has a maximal summand.

Next, let A0 be a non-trivial direct summand of Q hence there exists a direct summand A1, of Q, such that A0 is a
maximal summand of A1. If A1 is non-trivial, then there exists A2, a direct summand of Q, such that A1 is a maximal
summand of A2. Repeating this reasonning again and again, we obtain an ascending chain A0 ⫋ A1 ⫋ A2 ⫋ · · · of direct
summands ofQ, which should terminate. Hence, there exists n∈N such thatA0 ⫋A1 ⫋A2 ⫋ · · ·An =Q andAi is maximal
summand of Ai+1 for i ∈ {0, 1, · · · , n− 1}. Since A0 is a non-trivial direct summand of Q, A0 has maximal summand
A−1. If A−1 is non-trivial, then A−1 has maximal summand A−2. Again, we obtain a descending chain A0 ⫌ A−1 ⫌ · · ·
of direct summands of Q. Thus, there exists m ∈ N such that A0 ⫌ A−1 ⫌ · · ·A−m = 1 and A−i is maximal summand of
A−i+1 for i ∈ {1, 2, · · · , m}. Combining the two sequences obtained, we get

An = Q ⫌ An−1 ⫌ · · ·⫌ A1 ⫌ A0 ⫌ A−1 ⫌ · · ·⫌ A−m+1 ⫌ 1 = A−m

is an ascending chain of direct summands of Q with each Ai is a maximal summand of Ai+1 for i ∈ {−m, −m +

1, · · · ,−1, 0, 1, · · · , n−1}. LetQ =Ai⊕Di, for i∈ {−m,−m+1, · · · ,−1, 0, 1, · · · , n−1}. Then, putting Li: =Ai∩Di−1,
we get

Q = An = L−m+1 ⊕L−m+2 ⊕·· ·⊕Ln.

Suppose that Li is a reducible summand for some i ∈ {−m+1,−m+2, · · · , n}. Then, there exists a direct summand
L of Li such that 1 6= L ⫋ Li. Let Li: = L⊕N, then Q = Ai ⊕Di = Ai−1 ⊕Li ⊕Di = Ai−1 ⊕L⊕N ⊕Di, it follows that
Ai−1 ⊕L is a direct summand of Q such that Ai−1 ⫋ Ai−1 ⊕L ⫋ Ai, which contradicts the maximality of Ai−1. And so, the
proof is complete. □

The previous result provides an other way to prove the spatiality of semisimple quantaloids. In fact, in [27], Theorem
6 gives a suffisiant condition for aQ-module to admit a decomposition by indecomposable ideals which is being a finitely
spatialQ-module. In Proposition 33, we provide a necessary and a suffisiant condition to admit such decomposition which
is satisfying the ACC or DCC on direct summands. Notice that semisimple Q-modules satisfy such condition and so are
a good example of such result.

We also have the following result concerning Noetherian quantaloids.
Proposition 34 If Q is a quantaloid such that every short exact sequence of modules 1 → N → Q → I → 1 is

splitting, then Q is Noetherian.
Proof. Let J0 ⫋ J1 ⫋ · · ·⫋ Jk ⫋ · · · be a non-terminating ascending chain of Q-ideals of Q. Notice that J: = ∪n∈NJn

is a Q-ideal of Q, hence (by assumption) the following short exact sequence

1 J Q Q/J 1i π
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of modules is splitting. Let α: Q → J be a Q-homomorphism such that α ◦ i = idJ . Then, for A ∈ Q, αA(1A) ∈ J, that is
αA(1A) ∈ Ji for some i ∈ J. If we take x ∈ Ji+1 \ Ji, then

x = (αA ◦ iA)(x) = αA(x) = αA(x◦1A) = x◦α(1A) ∈ Ji.

Which is absurd and consequently Q is Noetherian. □
Corollary 35 If Q is a quantaloid such that every Q-ideal is injective, then Q is a Noetherian quantaloid.
Using the previous two results, it is easy to see that semisimple quantaloids are indeed Noetherian.

6. Conclusion
As we have seen through this paper, the category of modules over a quantaloid is very rich in structure and it reaches

various subjects of mathematics. Which motivates a deep study of this aspect of quantaloids.
As established earlier, the connection between semisimplicity and Cauchy completeness is significant. Cauchy

completeness plays a pivotal role in the exploration of fixed-point theorems in both analytical and categorical contexts
(a categorical fixed-point theorem is outlined in [28]). Showing that the homological classification of quantaloids opens
up to extend the study of fixpoint theorems. Homological dimensions, with their capacity to determine the existence of
resolutions and facilitate diagrams that transfer algebraic or analytic properties, become instrumental in this context. The
interplay between homological classifications and fixpoint theorems becomes a focal point for our future investigations.

Applications of Q-modules extend into the field of image processing (for further details, refer to [29]). Specifically,
homomorphisms between modules over a quantale can be interpreted as transformations between distinct image
representations. Thesemorphisms effectively capture the relationships between images, enabling the formulation of image
processing functions that preserve specific algebraic properties encoded by the quantale. Consequently, the homological
study of modules over a quantale proves applicable in image analysis. Through the definition of homological invariants
associated with image representations, tools can be developed for characterizing and classifying images based on their
underlying algebraic properties. This has the potential to advance methods in image recognition, classification, and
retrieval, showcasing the versatility and relevance of Q-modules in the context of image processing.

In conclusion, the homological study of quantaloid modules transcends disciplinary boundaries, offering a versatile
toolkit for exploring the intricacies of quantaloids and their interactions with diverse mathematical theories. This research
not only enhances our theoretical understanding but also paves the way for practical applications in quantum computing,
computer science, and other emerging fields. This study is a promising road not only to deepen our understanding of the
structural aspects of quantaloids but also to elucidate their relationships with diverse mathematical landscapes, providing
a rich tapestry of interconnected insights.
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