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Abstract: We consider a 2 × 2 operator matrix µ, µ > 0, related to the lattice systems describing three particles in 
interaction, without conservation of the number of particles on a d-dimensional lattice. We obtain an analogue of the 
Faddeev type integral equation for the eigenfunctions of µ. We describe the two- and three-particle branches of the 
essential spectrum of µ via the spectrum of a family of generalized Friedrichs models. It is shown that the essential 
spectrum of µ consists of the union of at most three bounded closed intervals. We estimate the lower and upper bounds 
of the essential spectrum of µ with respect to the dimension d ∈  of the torus d , and the coupling constant µ > 0. 
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1. Introduction and statement of the problem
In this paper we study the essential spectrum of the 2 × 2 operator matrix of the form

11 12
*
12 22

: , 0
A A
A Aµ

µ
µ

µ
 

= > 
 


                                                      

acting in the Hilbert space

1 2: = ⊕  

with 2 d
1 : ( )L=   and 2 d 2

2 sym: (( ) )L=  . Here d  is the d-dimensional torus, the cube (-π, π]d with appropriately identified 
sides equipped with its Haar measure and 2 d 2

sym (( ) )L   stands for the subspace of 2 d 2(( ) )L   consisting of symmetric 
functions (with respect to the two variables). The matrix entries :ij jA →  , i ≤ j, i, j = 1, 2, are given by

d11 1 1 1 1 1 1 12 2 1 2 1( )( ) ( ) ( ), ( )( ) ( , ) , A f k w k f k A f k f k t dt= = ∫

22 2 1 2 2 1 2 2 1 2( )( , ) ( , ) ( , ), , 1, 2.  i iA f k k w k k f k k f i= ∈ =

Here µ > 0 is a coupling constant, the functions w1( )⋅  and w2 ( , )⋅ ⋅  have the form

1 1 1 2 1 2 1 1 2 2
1( ) : ( ) , ( , ) : ( ) ( ( )) ( )
2

 w k k w k k k k k kε γ ε ε ε= + = + + +

with γ ∈  and the dispersion function ε ( )⋅  is defined by
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*
12A  denotes the adjoint operator to A12 and

*
12 1 1 2 1 1 1 2 1 1

1( )( , ) ( ( ) ( )),
2

 .A f k k f k f k f= + ∈

Under these assumptions, the operator µ is bounded and self-adjoint. An important problem of the spectral theory of 
such operator matrices is the study of the number of eigenvalues located outside the essential spectrum, i.e. the finiteness 
or infiniteness of the discrete spectrum. In the analysis of the discrete spectrum to know more detailed information on the 
bounds of the two-particle and three-particle branches of the essential spectrum of µ is important.

We point out that the rank 2 perturbation of µ has been considered before in [4, 5, 10, 18], which were studied 
its essential and discrete spectrum. Non compact perturbation of µ was considered in [15, 16] and the structure of its 
essential spectrum was described; in addition, conditions for the infiniteness of the number of eigenvalues located inside, 
in the gap and below of the bottom of the essential spectrum were found.

It is remarkable that, the results about the essential spectrum and the number of the eigenvalues of µ were announced 
without proofs in [19], and this paper is devoted to the detailed discussions of the results related to the essential spectrum 
of µ.

In the present paper we obtain the following results:
(i) We derive an analogue of the Faddeev type integral equation for eigenfunctions of µ;
(ii) We describe the location of the essential spectrum of µ, via the spectrum of a family of generalized Friedrichs

models µ(k), k d∈ ;
(iii) We introduce a new branches of σess(µ) and show that it consists of the union of at most 3 bounded closed

intervals;
(iv) We estimate the lower and upper bounds of the essential spectrum of the operator matrix µ for all dimensions

d∈ 


 of the torus d and all values of µ > 0.
The next sections are devoted to the discussion of these problems. For the convenience of the reader, we have 

added an appendix on the relation of µ with the lattice systems describing three particles in interaction, without 
conservation of the number of particles.

The abstract results on the essential spectrum in [2] do not apply since the required compactness assumptions 
on certain auxiliary operators are violated mainly due to the non-compactness of partial-integral operators. For the 
present approach, since the last diagonal entry is a multiplication operator, it turned out to be natural to use singular 
sequence (the Weyl criterion) to describe one part of the essential spectrum and to employ a Faddeev equation approach 
to describe the second part.

It is important that in [19] it was found the critical value µ0 of the coupling constant µ, to establish the existence of 
infinitely many eigenvalues lying in both sides of essential spectrum of µ0 and to obtain an asymptotics for the number of 
these eigenvalues. The latter assertion seems to be quite new for the discrete models and similar result has not been 
obtained yet for the three-particle discrete Schrödinger operators and operator matrices in Fock space. In this sense the 
results obtained here plays a crucial role in the next investigations of the spectrum of µ.

We mention that the study of the systems of non-conserved number of quasi-particles is reduced to the 
investigation of the spectral properties of self-adjoint operators acting in the cut subspace of the bosonic Fock space [13]. 
The operator matrix µ is related to such systems arising, for example, in the theory of solid-state physics [13], quantum 
field theory [8] and statistical physics [11].

Throughout this paper, we use the following notations. If A is a linear bounded self-adjoint operator from a Hilbert 
space to another, then σ(A) denotes its spectrum, σess(A) its essential spectrum and σdisc(A) its discrete spectrum.

2. Family of generalized Friedrichs models and its spectrum
In this section we study some spectral properties of the family of generalized Friedrichs models. We notice that its
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spectrum, threshold eigenvalues and virtual levels have been studied in detail in [20, 21].
Let H0 : =  . To study the spectral properties of the operator µ, we introduce the following auxiliary family of 

bounded self-adjoint operators (generalized Friedrichs models) µ(k), k d∈ , which acts in 0 1⊕   as 2 × 2 operator 
matrices

00 01

*
01 11

2( ) : ,
( )

2

A A
k

A A k
µ

µ

µ

 
 
 =
 
 
 



with matrix elements

d00 0 0 01 1 1 , ( ) ( ) ,A f f A f f t dtγ= = ∫

11 1 1 1 1 1( ( ) )( ) ( ) ( ), , 0,1  ,k i iA k f k E k f k f i= ∈ =

where the function Ek ( )⋅  is defined by

1 1 1
1( ) : ( ( )) ( ).
2kE k k k kε ε= + +

Let the operator 0(k), k ∈d  act in 0 1⊕   as

0

11

0 0
( ) : .

0 ( )
k

A k
 

=  
 



The perturbation µ(k)-0(k) of the operator 0(k) is a self-adjoint operator of rank 2. Therefore, in accordance with 
the Weyl theorem about the invariance of the essential spectrum under finite rank perturbations, the essential spectrum of 
the operator µ(k) coincides with the essential spectrum of 0(k). It is evident that

0
ess ( ( )) [ ( ); ( )],k m k M kσ =

where the numbers m(k) and M(k) are defined by

d d
1 1

1 1( ) : min ( ) and    ( ) : max ( ).k kk k
m k E k M k E k

∈ ∈
= =

 

This yields σess(µ(k)) = [m(k); M(k)].
For any fixed µ > 0 and k d∈ , we define an analytic function ∆µ( ; )k ⋅  in  \ [m(k); M(k)] by

d

2

( ; ) : .
2 ( )k

dtk z z
E t zµ

µγ∆ = − −
−∫

Usually the function ∆µ( ; )k ⋅  is called the Fredholm determinant associated with the operator µ(k).
The following lemma [4] is a simple consequence of the Birman-Schwinger principle and the Fredholm theorem.
Lemma 2.1 For any µ > 0 and k d∈  the operator µ(k) has an eigenvalue [ ( ); () )( ]z m k kk Mµ ∈  if and only if  

∆µ(k; zµ(k)) = 0.
From Lemma 2.1 it follows that for the discrete spectrum of µ(k) the equality

∫

∫
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disc ( ( )) { [ (  ); ( )] : ( ; ) 0}k z m k M k k zµ µσ = ∈ ∆ = 

holds.
The following lemma describes the number and location of the eigenvalues of µ(k).
Lemma 2.2 For any fixed µ > 0 and k d∈  the operator µ(k) has no more than one simple eigenvalue lying on the l.h.s. 

of m(k) (resp. r.h.s. of M(k)).
The proof of Lemma 2.2 is elementary and it follows from the fact that for any fixed µ > 0 and k d∈  the function 

∆µ( ; )k ⋅  is a monotonically decreasing on (−∞; m(k)) and (M(k); +∞).

3. The Faddeev equation and its symmetric version: main properties
In this section we derive an analogue of the Faddeev type integral equation and its symmetric version for

eigenfunctions corresponding to the discrete eigenvalues (isolated eigenvalues with finite multiplicity) of µ, which plays 
a crucial role in our analysis of the spectrum of µ.

We recall that for λ ∈ and Ω ⊂  , their arithmetic sum is defined as

: { : }λ λ ω ω+ Ω  = + ∈Ω .

To simplify the notation we set

d
disc  : ( ( ) ( ( ))), : [0 .;6d]

k

k kµ µ µ µε σ
∈

Λ = + Σ = ∪ Λ






Here by Lemma 2.1 we may define the set Λµ as the set of all complex numbers [ ( ); ( )]z m k M k∈  such that the 
equality ∆µ(k; z−ε(k)) = 0 holds for some k d∈ .

For each µ > 0 and z µ∈ Σ  we introduce the operator Tµ(z) acting in 1  as

d

2

1
1 1 2 1

( )( ( ) )( )
2 ( ; ( )) ( , )

t dtT z k
k z k w k t zµ

µ

µ
ε

=
∆ − −∫

g
g                                                                                            .

We note that Tµ(z) is the Hilbert-Schmidt operator for each µ > 0 and z µ∈ Σ .
The following theorem is an analog of the well-known Faddeev’s result for the operator µ and establishes a 

connection between eigenvalues of µ and Tµ(z).
Theorem 3.1 For any fixed µ > 0 the number z µ∈ Σ  is an eigenvalue of the operator µ if and only if the number 

λ = 1 is an eigenvalue of the operator Tµ(z). Moreover the eigenvalues z and 1 have the same multiplicities.
Proof. Let µ > 0 be a fixed, z µ∈ Σ  be an eigenvalue of the operator µ and 1 2( , )f f f= ∈  be the corresponding 

eigenvector. Then the functions f1 and f 2 satisfy the system of equations

d1 1 1 1 2 1( ( ) ) ( )  ( , ) 0;w k z f k f k t dtµ− + =∫
(2)

1 1 1 2 2 1 2 2 1 2( ( ) ( )) ( ( , ) ) ( , ) 0.
2

f k f k w k k z f k kµ
+ + − =

The condition [0;6d]z ∈/  yields that the inequality w2(k1, k2) − z ≠ 0. Then from the second equation of the system (2) 
for f2 we have

1 1 1 2
2 1 2

2 1 2

( ( ) ( ))( , )
2( ( , ) )

f k f kf k k
w k k z

µ +
= −

−                                                            · (3)

∫

∫
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Substituting the expression (3) for f2 into the first equation in the system (2), we obtain

d

2
1

1 1 1 1
2 1

( )( ; ( )) ( ) 0.
2 ( , )

f t dtk z k f k
w k t zµ

µε∆ − − =
−∫                                                                                             (4)

By definition of Λµ we have ∆µ(k1 ; z−ε(k1)) ≠ 0 for all z µ∈ Λ/  and k1 d∈ . Therefore, the equation (4) has a nontrivial 
solution if and only if the following equation

d

2
1

1 1
1 1 2 1

( )( )
2 ( ; ( )) ( , )

f t dtf k
k z k w k t zµ

µ
ε

=
∆ − −∫

or the operator equation

1 1 1 1(  ) ,f T z f fµ= ∈                                      (5)

has a nontrivial solution.
Now we prove that moreover the eigenvalues z and 1 have the same multiplicities, that is, the linear subspaces of 

solutions of (2) and (5) have the same dimension.
Let z µ∈ Σ  be an eigenvalue of µ with multiplicity n and the number 1 be an eigenvalue of Tµ(z) with multiplicity 

m. Our next aim is to prove n = m.
Assume n < m. Then there exist the linearly independent eigenfunctions φi, i = 1, ..., m of the operator Tµ(z)

corresponding to the eigenvalue 1. If we define f (i) as ( ) ( ) ( )
1 2( , )i i if f f= , where ( )

1
i

if ϕ=  and the function ( )
2 , 1,...,if i m=  

is defined by (3), then it satisfies the equation µ f 
(i) = zf ( i ) for i = 1,..., m. Since n < m, there exists a non-trivial vector 

1( , , ) m
mc c… ∈  such that 

1
0

m

i i
i

cϕ
=

≠∑  and ( )

1
0

m
i

i
i

c f
=

=∑ . We have

( )
1 1

1( )

1 ( )
2 1 2

1

( )
0

(
 

, )

m
i

im
ii

i m
i i

i
i

c f k
c f

c f k k

=

=

=

 
 
 = =
 
 
 

∑
∑

∑

1
1

1
2 1 2 1 2

1

( )
0

(2( ( , ) ) ( ( ) ( ))

m

i i
i

m

i i i i
i

c k

w k k z c k c k

ϕ

µ ϕ ϕ

=

−

=

 
 
 = ≠
 

− − + 
 

∑

∑
                   .

This contradicts the fact that n < m.
Let now n > m. In this case there exist linearly independent eigenvectors ( ) ( ) ( )

1 2( , )i i if f f= , i = 1, ..., n of the operator 
µ corresponding to the eigenvalue z. It is obvious that the function ( )

1 , 1,...,i
i f i nϕ = = , is an eigenfunction of Tµ(z) 

corresponding to the eigenvalue 1. By the assumption n > m there exists non-trivial vector 1( , , ) n
nd d… ∈  such that 

1
0

n

i i
i

d ϕ
=

=∑ . But in this case due to the linearly independence of eigenvectors  f (i), i = 1,..., n we obtain ( )

1
0

n
i

i
i

d f
=

≠∑  Hence

∫

∫
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d f k k

=

=

=

 
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∑
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( )
1 1

1

1 ( ) ( )
2 1 2 1 1 1 2

1

( )
0

(2( ( , ) ) ( ( ) ( ))

n
i

i
i

n
i i

i
i

d f k

w k k z d f k f kµ

=

−

=

 
 
 = =
 

− − + 
 

∑

∑
                 ·

This contradicts the fact that n > m. Therefore, n = m.
Remark 3.2 We point out that the matrix equation (5) is an analogue of the Faddeev type integral equation for 

eigenfunctions of the operator µ and it plays a crucial role in the analysis of the spectrum of µ.
Let

min max : min , : max .a aµ µ µ µ= Σ = Σ

We notice that by the definition of the quantity minaµ  for any µ > 0, k d∈  and z < minaµ  (resp. z > maxaµ  )), the function 
∆µ(k; z−ε(k)) (resp. −∆µ(k; z − ε(k))) is positive and hence, its positive square root exists.

In our analysis of the discrete spectrum of µ the crucial role is played in the following compact operator 
min maxˆ ( ), [ ; ]T z z a aµ µ µ∈ , acting in the space L2( d∈ ) as integral operator

d

2

1
1 1 2 1

( )ˆ( ( ) )( ) ,
2 ( ; ( )) ( ; ( ))( ( , ) )

t dtT z k
k z k t z t w k t zµ

µ µ

µ
ε ε

=
∆ − ∆ − −∫

g
g

for z < minaµ , and

d

2

1
1 1 2 1

( )ˆ( ( ) )( ) ,
2 ( ; ( )) ( ; ( ))( ( , ) )

t dtT z k
k z k t z t w k t zµ

µ µ

µ
ε ε

= −
−∆ − −∆ − −∫

g
g

for z > maxaµ .
The following theorem establishes a connection between the eigenvalues of µ and ˆ ( )T zµ .
Theorem 3.3 For any fixed µ > 0 the number min max[ ; ]z a aµ µ∈  is an eigenvalue of the operator µ if and only if the 

number λ = 1 is an eigenvalue of the operator ˆ ( )T zµ . Moreover the eigenvalues z and 1 have the same multiplicities.
Proof. In the proof of Theorem 3.1 we show that the number z µ∈ Σ  is an eigenvalue of the operator µ if and 

only if the equation (4) has a nontrivial solution, and the linear subspaces of solutions of µ f = z f and (4) have the same 
dimension.

By the definition of Λµ the inequality ∆µ(k; z − ε(k)) > 0 (resp. − ∆µ(k ; z − ε(k)) > 0) holds for any µ > 0, k d∈  and z < 
minaµ  (resp. z > maxaµ ).

Therefore, the following equation

d

1/22
min

1
2 11 1

( ( ; ( ))) ( )
( ) ,

( , )2 ( ; ( )
,

)
 

t z t t dt
k z a

w k t zk z k
µ

µ
µ

εµ
ε

−∆ −
= <

−∆ − ∫
g

g                                                                                                                                             (6)

resp.

∫

∫

∫
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d

1/22
max

1
2 11 1

( ( ; ( ))) ( )
( ) , 

( , )2 ( ; ( ))
,

t z t t dt
k z a

w k t zk z k
µ

µ
µ

εµ
ε

−−∆ −
= − >

−−∆ − ∫
g

g                                                            (7)

has a nontrivial solution if the system of equations (4) has a nontrivial solution. Moreover, the linear subspaces of 
solutions of (6) (resp. (7)) and (4) have the same dimension.

4. Essential spectrum of µ and its new branches
In this section applying the statements of sections 2 and 3, the Weyl criterion [22] we describe the location of the

essential spectrum of µ, then we define its two- and three-particle branches.
Denote by   ⋅‖‖ and (  , )⋅ ⋅  the norm and scalar product in the corresponding Hilbert spaces.
For the convenience of the reader we formulate Weyl’s criterion for the essential spectrum of µ as follows. First, a 

number λ is in the spectrum of µ if and only if there exists a sequence {Fn} in the space  such that || Fn || = 1 and

lim  ( ) 0.nn
E Fµ λ

→∞
− =‖‖                                               (8)

Here E is an identity operator on . Furthermore, λ is in the essential spectrum if there is a sequence satisfying this 
condition, but such that it contains no convergent subsequence (this is the case if, for example {Fn} is an orthonormal 
sequence); such a sequence is called a singular sequence.

The following theorem describes the location of the essential spectrum of the operator µ by the spectrum of the 
family µ(k) of generalized Friedrichs models.

Theorem 4.1 For the essential spectrum of µ the equality σess(µ) = Σµ holds. Moreover, the set Σµ consists of no 
more than three bounded closed intervals.

Proof. We starts the proof with the inclusion Σµ ⊂ σess(µ). Since the set Σµ has form Σµ = Λµ ∪ [0; 6d] first we show 
that [0; 6d] ⊂ σess(µ). Let λ0 ∈ [0; 6d] be an arbitrary point. We prove that λ0 ∈ σess(µ). To this end it is convenient to 
use Weyl criterion [22], i.e. it is suffces to construct a sequence of orthonormal vector-functions {Fn} ⊂  satisfying (8).

From continuity of the function w2 ( , ⋅ ⋅) on the compact set (∈d )2 it follows that there exists some points 
0 0 d 2
1 2( , ) ( )k k ∈   such that 0 0

0 2 1 2( , )w k kλ = .
For n ∈   we consider the following neighborhood of the point 0 0 d 2

1 2( , ) ( )k k ∈  :

0 0
1 2: ( ) ( ),n n nW V k V k= ×

where

0 d 0
1 1 1 1

0 0

1 1( ) : :  | | 
1

{ }nV k k k k
n n n n

= ∈ < − <
+ + +



is  the punctured neighborhood of  the point 0 d
1 0 and k n∈ ∈  is chosen in such way that 0 0

1 2( ) ( )n nV k V k∩ = φ  for  all 
n ∈   (provided that 0 0

1 2k k≠ ).
Let mes(Ω) be the Lebesgue measure of the set Ω and χ Ω ( )⋅  be the characteristic function of the set Ω. We choose the 

sequence of functions {Fn} ⊂  as follows:

1 2 2 1

01: .
( , ) ( , )2mes( ) n n

n
W Wn

F
k k k kW χ χ

 
=  + 

It is clear that {Fn} is an orthonormal sequence.
For any n ∈ 


 let us consider (µ − λ0E)Fn and estimate its norm:

∫
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d
11 2

2 2 0 2
0 2 1 2 0 1 1

( , )
) sup | ( , ) |  2mes( ( )) max | ( .) |

n
n n

kk k W
E F w k k V k v kµ λ λ

∈∈
− ≤ − +‖‖




From the construction of the set 0
1( )nV k  and from the continuity of the function w2(  , )⋅ ⋅  it follows 0( ) 0nE Fµ λ− →‖ ‖ .  

as n → ∞, i.e. λ0 ∈ σess (µ ). Since the point λ0 is an arbitrary we have [0; 6d] ⊂ σess(µ).
Now let us prove that Λµ ⊂ σess(µ). Taking an arbitrary point zµ ∈ Λµ we show that zµ ∈ σess(µ). Two cases are 

possible: zµ ∈ [0; 6d] or zµ ∉ [0; 6d]. If zµ ∈ [0; 6d], then it is already proven above that zµ ∈ σess(µ). Let zµ ∈ Λµ \ [0; 
6d]. Definition of the set Λµ and Lemma 2.1 imply that there exists a point 1 d

1k ∈  such that 1 1
1 1( ; ( )) 0k z kµ µ ε∆ − = .

We choose the sequence of orthogonal vector-functions {Φn} in the following form

( )
1 1

( )
2 1 2

( )
: ,

( , )

n

n n

k
k k

φ
φ

 
Φ =  

 

where

1
1

1 1( )( )
1 1 1

1

( ) ( )
( ) : ;

mes( ( ))
n

n V kn

n

c k k
k

V k

χ
φ =

( ) ( )
( ) 1 1 1 2
2 1 2

2 1 2

( ( ) ( ))( , ) : .
2( ( , ) )

n n
n k kk k

w k k zµ

µ φ φφ +
= −

−

Here cn ( )⋅  ∈ L2( d∈ ) is chosen from the orthonormality condition for {Φn}, that is, from the condition

1 1
1 1

2

21 1 ( ) ( )
21 1

( ) ( )( , ) 0
( ( , ) )2 mes( ( )) mes( ( )) n m

n m
n m V k V k

n m

c s c t dsdt
w s t zV k V k µ

µ
Φ Φ = =

−∫ ∫
(9)

for n ≠ m and ||Φn||= 1.
The existence of {cn ( )⋅ } is a consequence of the following proposition.
Proposition 4.2 There exists an orthonormal system {cn ( )⋅ } ∈ L2( d∈ ) satisfying the conditions supp cn ( )⋅  ⊂ 1

1( )nV k
and (9).

Proof of Proposition 4.2. We construct the sequence {cn ( )⋅ } by the induction method. Suppose that 

( )1
1 1

1
1

1 1 1 1 1( )
( ) : ( ) mes( ( ))

V k
c k k V kχ

−

 = . Now we choose the function 2 1
2 2 1( ) ( ( ))c L V k⋅ ∈  so that 2 ( ) 1c ⋅ =‖ ‖  and (2)

2 1( ( ), ( )) 0c ξ⋅  ⋅ = , 
where

1 d2 1

(2) 1
1 1 1 2( )

2 1

( )( ) : ( ) .
( ( , ) )V k

c t dtk k
w k t zµ

ξ χ =
−∫

Set 1
1 1

2 1 2 2 1( )
( ) : ( ) ( )

V k
c k c k kχ =  . We continue this process. Suppose that c1(k1), . . . , cn(k1) are constructed. Then the 

function 2 1
1 1 1( ) ( ( ))n nc L V k+ +⋅ ∈  is chosen so that it is orthogonal to all functions

1 d1 1

( 1)
1 1 2( )

2 1

( )( ) : ( ) ,  1, ,
( ( , ) )n

n m
m V k

c t dtk k m n
w k t zµ

ξ χ
+

+  = = …
−∫

∫∫

∫

∫
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and 1( ) 1nc + ⋅  =‖ ‖ . Let 1
1 1

1 1 1 1 1( )
( ) : ( ) ( )

n
n n V k

c k c k kχ
+

+ +=  . Thus, we have constructed the orthonormal system of functions {cn ( )⋅ } 
satisfying the assumptions of the proposition. Proposition 4.2 is proved.

We continue the proof of Theorem 4.1. Now we are in a position to show

lim ( ) 0.nn
z Eµ µ→∞

 − Φ  =‖‖

To this end for n ∈   we consider (µ − zµE)Φn and estimate its norm as

1
1 1

2 1 2
1 1 1

( )
( ) ( ) mes ( ( )) 2 sup | ( ; ( )) |

n

n n
k V k

z E C V k k z kµ µ µ µµ ε
∈

− Φ ≤   + ∆ −‖ ‖                                                                                                                                             (10)

for some C(µ) > 0.
Since 

1
1 1

1 2
1 1 1

( )
mes ( ( )) 0  and sup | ( ; ( )) | 0

n

n
k V k

V k k z kµ µ ε
∈

 →  ∆ − → as n → ∞,  from the estimate (10) it follows that

||(µ−zµE)Φn|| → 0 as n → ∞. This implies zµ∈ σess(µ). Since the point zµ is an arbitrary, we have Λµ ⊂ σess(µ). 
Therefore, we have proved that Σµ ⊂ σess(H).

Now we prove the inverse inclusion, i.e. σess(µ) ⊂ Σµ. For each z µ∈ Σ  the operator Tµ(z) is a compact-operator-
valued function on z µ∈ Σ . Then from the self-adjointness of µ and Theorem 3.1 it follows that the operator (I − Tµ(z))-1 
exists if z is real and has a large absolute value. The analytic Fredholm theorem (see, e.g., Theorem VI.14 in [22]) implies 
that there is a discrete set Sµ µ⊂ Σ  such that the operator-valued function (I − Tµ(z))-1 exists and is analytic on   \ (Sµ 
∪ Σµ) and is meromorphic on z µ∈ Σ  with finite-rank residues. This implies that the set σ (µ) \ Σµ consists of isolated 
points, and the only possible accumulation points of Σµ can be on the boundary. Thus

disc ess( ) ( ) ( ) ( ).µ µ µ µ µσ σ σ σΣ ⊂ =     

Therefore, the inclusion σess(µ) ⊂ Σµ holds. Finally we obtain the equality σess(µ) = Σµ.
By Lemma 2.2 for any k d∈  the operator µ(k) has no more than one simple eigenvalue on the l.h.s. (resp. r.h.s) of 0 

(resp. 6d). Then by the theorem on the spectrum of decomposable operators [22] and by the definition of the set Λµ it follows 
that the set Λµ consists of the union of no more than two bounded closed intervals. Therefore, the set Σµ consists of the 
union of no more than three bounded closed intervals. Theorem 4.1 is completely proved. 

In the following we introduce the new subsets (branches) of the essential spectrum of µ.
Definition 4.3 The sets σtwo(µ) : = Λµ and σthree(µ): = [0; 6d] are called two- and three-particle branches of the 

essential spectrum of µ, respectively.
The definition of the set Λµ and the equality

[ ]
d

( ) ( ); ( ) ( ) [0; 6d]
k

k m k k M kε ε
∈

+  + =  


 

together with Theorem 4.1 give the equality

{ }
d

ess ( ) ( ) ( ( )) .
k

k kµ µσ ε σ
∈

= +




                                                                (11)

Here the family of operators µ(k) have a simpler structure than the operator µ. Hence, in many instance, (11) 
provides an effective tool for the description of the essential spectrum. 

Since for any z µ∈ Σ  the kernel of the integral operator Tµ(z) is a continuous function on ( d∈ )2, the Fredholm 
determinant Ωµ(z) of the operator I − Tµ(z), where I is the identity operator in  1, exists and is a real-analytic function on  

z µ∈ Σ .
According to Fredholm’s theorem [22] and Theorem 3.1 the number z µ∈ Σ  is an eigenvalue of µ if and only if 

Ωµ(z) = 0, that is,
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disc ( ) { : ( ) 0}.z zµ µ µσ = ∈ Σ  Ω = 

5. Estimates for the bounds of the essential spectrum of µ
In this section, we estimate the lower and upper bounds of the essential spectrum of µ for all dimensions d ∈   of

the torus d∈  and for all values of a coupling constant µ > 0.
It is easy to show that the function w2(  , )⋅ ⋅  has a unique non-degenerate minimum (resp. maximum) at the point 

d 2 d 2(0, 0) ( )  (resp. ( , ) ( ) )π π∈ ∈   and

d d
1 2 1 2

2 1 2 2 2 1 2 2
, ,
min ( , ) (0, 0) 0,  max ( , ) ( , ) 6d,

k k k k
w k k w w k k w π π

 ∈ ∈
 =  =  =  =

 

where d0 : (0, ,0), ( , : , )π π π = …  = … ∈ . A trivial verification shows that 

ess essmin ( (0)) (0) 0,  max ( ( )) ( ) 4d.m Mµ µσ σ π π= = = = 

Therefore, in order to study the bounds of the essential spectrum of µ it is necessary to study the eigenvalues of 
(0) (resp. ( ))µ µ π   smaller than 0 (resp. bigger than 4d). So, in the remainder of this section we work with the functions 

0 ( ) and ( )E Eπ⋅ ⋅ :

1 1 1 1 1 10 ( ) ( / 2) ( ),  ( ) (( ) / 2) ( ).E k k k E k k kπε ε ε π ε= + = + +

By the construction of the function ε ( )⋅  there exist positive numbers δ, C1, C2 such that

2 2
1 2| | ( / 2) ( ) | | ,  (0).C t t t C t t Uδε ε≤ + ≤ ∈                                                                                                                                             (12)

Using the Lebesgue dominated convergence theorem we obtain that there exist the positive (finite or infinite) limits

d d

d d

0

4d 0

lim ;
( / 2) ( ) ( / 2) ( )

lim .
( (( ) / 2) ( )) 4d ( (( ) / 2) ( ))

z

z

dt dt
t t z t t

dt dt
z t t t t

ε ε ε ε

ε π ε ε π ε

→−

→ +

=
+ − +

=
− + + − + +

∫ ∫

∫ ∫

 

 

d d

d d

0

4d 0

lim ;
( / 2) ( ) ( / 2) ( )

lim .
( (( ) / 2) ( )) 4d ( (( ) / 2) ( ))

z

z

dt dt
t t z t t

dt dt
z t t t t

ε ε ε ε

ε π ε ε π ε

→−

→ +

=
+ − +

=
− + + − + +

∫ ∫

∫ ∫

 

 

An easy computation shows that

d d
.

4d ( (( ) / 2) ( )) ( / 2) ( )
dt dt
t t t tε π ε ε ε

=
− + + +∫ ∫ 

For the cases d = 1, 2 we show that the latter integral is not finite.
Let d = 1. From the additivity of the integral it follows that

1 1 (0)
.

( / 2) ( ) ( / 2) ( ) ( / 2) ( ) ( / 2) ( )U

dt dt dt dt
t t t t t t t tδ

δ δ

δ δε ε ε ε ε ε ε ε− −
= + ≥

+ + + +∫ ∫ ∫ ∫  

Applying (12) we deduce that

2
2

1 .
( / 2) ( )

dt dt
t t C t

δ δ

δ δε ε− −
≥ = +∞

+∫ ∫

∫

∫

∫

∫ ∫ ∫ ∫

∫ ∫

∫

∫

∫
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Taking into account above mentioned facts we get

0 4 0
lim (0; ) ,  lim ( ; ) .
z z

z zµ µ π
→− → +

∆ = ∞  − ∆ = +∞ 

Then from monotonicity and continuity property of ∆µ(k; ( )⋅ ), and from the equalities

lim (0; ) ,  lim ( ; )
z z

z zµ µ π
→−∞ →+∞

∆ = +∞ ∆  = −∞

it follows that for any µ > 0 there exist two points ( ) ( ) ( )( ; 0) and (4; ) such (0; ) 0l r lE E Eµ µ µ µ∈ −∞  ∈  + ∞ ∆  =  and ∆µ(π; ( )rEµ ) = 
0. So, by Lemma 2.1 for any µ > 0 the operator µ(0) has a unique negative eigenvalue ( )lEµ  and the operator µ(π) has a 
unique eigenvalue ( )rEµ  bigger than 4.

By the definitions of the quantities minaµ  and maxaµ  introduced in Section 3 we have

min max
ess essmin{ : ( )},  max{ : ( )}.a aµ µ µ µλ λ σ λ λ σ= ∈ = ∈ 

Then, minaµ , maxaµ  ∈ σess(µ) and they are called the lower and upper bounds of the essential spectrum of µ, 
respectively.

From the construction of the sets σtwo(µ) and σthree(µ) it follows that

min ( )
two three

max ( )
two three

min ( ) (0) min ( ) 0

max ( ) ( ) max ( ) 6

l

r

a E

a E
µ µ µ µ

µ µ µ µ

σ ε σ

σ ε π σ

= ≤ + < =

= ≥ + > =

 

 

                                                                                                      ;
min ( )

two three

max ( )
two three

min ( ) (0) min ( ) 0

max ( ) ( ) max ( ) 6

l

r

a E

a E
µ µ µ µ

µ µ µ µ

σ ε σ

σ ε π σ

= ≤ + < =

= ≥ + > =

 

                                                                                                          .

We now turn to the case d = 2. In the same manner we can see that

2 2(0) (0)
2

1 .
( / 2) ( ) ( / 2) ( ) | |U U

dt dt dt
t t t t C tδ δε ε ε ε

≥ ≥
+ +∫ ∫ ∫

Now, passing to the polar coordinate system

1 2sin ,  cos ,  0 ,  0 2 ,t r t r rα α δ α π= = ≤ ≤ ≤ ≤

we can assert that

2(0)
.

| |U

dt
tδ

= +∞∫

Therefore, for the lower and upper bounds of the essential spectrum of µ we get

min ( )
two threemin ( ) (0) min ( ) 0la Eµ µ µ µσ ε σ= ≤ + < =                                                                                                       ;

max ( )
two threemax ( ) ( ) max ( ) 12ra Eµ µ µ µσ ε π σ= ≥ + > =                                                                                                            ·

Summarizing, we have the result about bounds of the essential spectrum of µ.
Theorem 5.1 Assume d = 1, 2. Then for any µ > 0 we have the following estimates for  the bounds of the two- and 

three-particle branches of the essential spectrum of µ:

∫ ∫ ∫

∫
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min ( )
two threemin ( ) (0) min ( ) 0;la Eµ µ µ µσ ε σ= ≤ + < = 

max ( )
two threemax ( ) ( ) max ( ) 6d.ra Eµ µ µ µσ ε π σ= ≥ + > = 

This result is important in the proof of the finiteness of the number of eigenvalues of µ in the cases d = 1, 2. 
Suppose d ≥ 3. The additivity property of the integral implies

d d (0) (0)
.

( / 2) ( ) ( / 2) ( ) ( / 2) ( )U U

dt dt dt
t t t t t tδ δε ε ε ε ε ε

= +
+ + +∫ ∫ ∫                                                                                                                                              (13)

Since the integrand of the first summand on the r.h.s. of (13) is continuous function on a compact set d (0)Uδ  , it is 
finite. Applying (12) we deduce that

2 2 2 2
1 2 3

1 2 32
2 2 2 2(0) (0) { }

1 1 1 2 3

1 .
( / 2) ( ) | |U U k k k

dt dt dtCdt dt
t t C t C t t tδ δ δε ε + + <

≤ ≤
+ + +∫ ∫ ∫

Now, passing to the spherical coordinate system

1 sin cos ,t r ψ ϕ=

2 sin sin ,t r ψ ϕ=

3 cos ,  0 ,  0 2 ,  0 ,t r rψ δ ϕ π ψ π= ≤ ≤ ≤ ≤ ≤ ≤

we can assert that

2 2 2 2
1 2 3

1 2 3
2 2 2{ }
1 2 3

4 .
k k k

dt dt dt
t t tδ

πδ
+ + <

= < ∞
+ +∫

We introduce the following quantities

d

1/2
0 ( ) : for 0;

( / 2) ( )l
dt

t t
µ γ γ γ

ε ε

−
 

 = > 


 
+

∫

d

1/2
0 ( ) : 4d for 4d.

( / 2) ( )r
dt

t t
µ γ γ γ

ε ε

−
 

 = − <
 

 +∫

By the definition of 0 ( )lµ γ  and 0 ( )rµ γ  one can conclude that
if γ ∈ (0; 2d), then 0 ( )lµ γ  < 0 ( )rµ γ ;
if γ = 2d, then 0 ( )lµ γ  = 0 ( )rµ γ ;
if γ ∈ (2d; 4d), then 0 ( )lµ γ  > 0 ( )rµ γ .

The modification of the following two Theorems are proved in [20] for the case d = 3, but they still hold for the case  
d > 3 due to the finiteness of the integral on the l.h.s. of (13).

Theorem 5.2 (i) If γ ≤ 0, then for any µ > 0 the operator µ( 0 ) has a unique negative eigenvalue.
(ii) Let γ > 0. Then

∫ ∫ ∫

∫ ∫ ∫

∫

∫

∫
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(ii1) for any µ ∈ (0; 0 ( )lµ γ ] the operator µ( 0 ) has no negative eigenvalues;
(ii2) for any µ > 0 ( )lµ γ  the operator µ( 0 ) has a unique negative eigenvalue.

Theorem 5.3 (i) If γ ≥ 4d, then for any µ > 0 the operator ( )µ π  has no eigenvalues bigger than 4d.
(ii) Let γ < 4d. Then
(ii1) for any µ ∈ (0; 0 ( )rµ γ ] the operator ( )µ π  has no eigenvalues bigger than 4d; 
(ii2) for any µ > 0 ( )rµ γ  the operator ( )µ π  has a unique eigenvalue in (4d; +∞).

Since 0 ( )lµ γ(2d) = 0 ( )rµ γ(2d), setting µ0: = 0 ( )lµ γ(2d) let us mention an important consequence of Theorems 5.2 and 5.3.
Corollary 5.4 (i) If γ ∈ (0; 2d], then for µ = 0 ( )lµ γ(γ) the operator µ(0) has no negative eigenvalues and the operator 

( )µ π  has no eigenvalues, bigger than 4d;
(ii) If γ ∈ (2d; 4d), then for µ = 0 ( )rµ γ(γ) the operator µ( 0 ) has an unique negative eigenvalue and the operator ( )µ π  has 
no eigenvalues, bigger than 4d.

First we recall that the equalities minσthree(µ) = 0 and maxσthree(µ) = 6d hold for any µ > 0. We can now state the 
detailed information on bounds of the essential spectrum of µ for the case d ≥ 3 with respect to the spectral parameters γ 
∈  and µ > 0:

Case I. Let γ ≤ 0. Then for any µ > 0 we have

min ( )
twomin ( ) (0) 0;la Eµ µ µσ ε= ≤ + <

moreover,
• maxaµ  = 6d, if µ ∈ (0; 0 ( )rµ γ ];
• max ( ) 0

twomax ( ) ( ) 6d, if ( ).r
ra Eµ µ µσ ε π µ µ γ= ≥ + > >

Case II. Let γ ∈ (0; 2d]. Then

• min max 00 and 6d, if ( ; ( )]la aµ µ µ µ γ= = ∈ −∞  ;
• min ( ) max 0 0

twomin ( ) (0) 0 and 6d,  if ( ( ); ( )]l
l ra E aµ µ µ µσ ε µ µ γ µ γ= ≤ + < = ∈   ;

• min ( ) max ( ) 0
two twomin ( ) (0) 0 and max ( ) ( ) 6d,  if ( ( ); ).l r

ra E a Eµ µ µ µ µ µσ ε σ ε π µ µ γ= ≤ + < = ≥ + > ∈ +∞ 
Case III. Let γ ∈ (2d; 4d). Then
• min max 00 and 6d,  if ( ; ( )]ra aµ µ µ µ γ= = ∈ −∞ ;
• min max ( ) 0 0

two0 and max ( ) ( ) 6d,  if ( ( ); ( )]r
r la a Eµ µ µ µσ ε π µ µ γ µ γ= = ≥ + > ∈ ; 

• min ( ) max ( ) 0
two twomin ( ) (0) 0 and max ( ) ( ) 6d,  if  ( ( ); ).l r

la E a Eµ µ µ µ µ µσ ε σ ε π µ µ γ= ≤ + < = ≥ + > ∈ +∞ 
Case IV. Let γ ≥ 4d. Then for any µ > 0 we have maxaµ  = 6d; moreover,
• min 00,  if (0; ( )]laµ µ µ γ= ∈ ;
• min ( ) 0

twomin ( ) (0) 0,  if ( ).l
la Eµ µ µσ ε µ µ γ= ≤ + < >

All assertions mentioned above play crucial role in the study of the number of discrete eigenvalues of µ lying outside 
of its essential spectrum.

6. Appendix: lattice systems with non-conserved number of particles
The quantum systems with variable but finite number of particles occur naturally in quantum field theory, condensed 

matter physics, statistical physics and the theory of chemical reactions. It is remarkable that the study of such lattice 
systems with at most three particles is reduced to the investigation of the spectral properties of self-adjoint 3 × 3 operator 
matrix of the form

00 01 02
*
01 11 12
* *
02 12 22

: ,
A A A

H A A A
A A A

µ

µ µ
µ µ
µ µ

 
  =  
 
 

acting in the Hilbert space 0 1 2⊕ ⊕   . Here the matrix elements : $,$ ,  , 0,1, 2ij j iA i j i j→ ≤ =  , : $,$ ,  , 0,1, 2ij j iA i j i j→ ≤ =   are defined by
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d00 0 0 0 01 1 1 02,  ( ) ( ) ,  0;A f w f A f v t f t dt A= = =∫

d11 1 1 1 1 1 1 12 2 1 2 1( )( ) ( ) ( ),  ( )( ) ( ) ( , ) ;A f k w k f k A f k v t f k t dt= = ∫

22 2 1 2 2 1 2 2 1 2( )( , ) ( , ) ( , ),  ,  0,1, 2,i iA f k k w k k f k k f i= ∈ =

where w0 ∈  ; µ > 0 is a coupling constant, v ( )⋅ , w1 ( )⋅  are real-valued continuous functions on d∈  and w2(  , )⋅ ⋅  is a real-
valued continuous symmetric function on ( d∈ )2.

We remark that the operators A01 and A12 resp. *
01A  and *

12A  are called annihilation resp. creation operators, respectively. 
A trivial verification shows that 

* *
01 0 1 01 0 1 1 0 0 0: ,  ( )( ) ( )  ;,  A A f k v k f f→ = ∈  

* *
12 1 2 12 1 1 2 2 1 1 1 1 2 1 1

1: ,  ( )( , ) ( ( ) ( ) ( ) ( )),  .
2

A A f k k v k f k v k f k f→ = + ∈  

These operators have widespread applications in quantum mechanics, notably in the study of quantum harmonic 
oscillators and many-particle systems [7]. An annihilation operator lowers the number of particles in a given state by one. A 
creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. 
In many subfields of physics and chemistry, the use of these operators instead of wave-functions is known as second 
quantization. In this paper we consider the case, where the number of annihilations and creations of the particles of the 
considering system is equal to 1. It means that Aij ≡ 0 for all |i − j| > 1.

We should note that if the parameter functions of the operator Hµ are defined as

0 1 1 1 2 1 2 1 2s,  ( ) s ( ),  ( , ) s ( ) ( ),w w k k w k k k kε ε ω ε ω ω= = − + = − + +

then we can use this operator to study in detail the spectral properties of the lattice model radiation with a fixed atom and at 
most two photons [14, 17]. Here s = ±, ε > 0; ω(k1) is the energy of photon with momentum k1 (the free field dispersion), v ( )⋅  
is a continuous function related with the interaction between the atom and photons, and µ > 0 is a coupling constant.

It is well-known that the three-particle discrete Schrödinger operator Ĥ  in the momentum representation is the 
bounded self-adjoint operator on the Hilbert space L2(( d∈ )3). Introducing the total quasimomentum K ∈ d∈  of the system, 
it is easy to see that the operator Ĥ  can be decomposed into the direct integral of the family dˆ{ ( ), }H K K ∈  of self-
adjoint operators [1, 3, 9]:

d
ˆ̂ ( ) ,H H K dK= ⊕∫

where the operator Ĥ (K) acts on the Hilbert space L2(ΓK) (ΓK ⊂ ( d∈ )2 is some manifold). 
Observe that Hµ enjoys the main spectral properties of the three-particle discrete Schrödinger operator Ĥ (0) (see [1, 

3, 9]), and the generalized Friedrichs model plays the role of the two-particle discrete Schrödinger operator. For this reason 
the Hilbert space 0 1 2⊕ ⊕    is called the three-particle cut subspace of the bosonic Fock space 2 d

b ( ( ))L   over L2( d∈ ), 
while the operator matrix Hµ is called the Hamiltonian of the system with at most three particles on a lattice. Here the space 

2 d
b ( ( ))L   is defined by

2 d 2 d 2 d 2 2 d 3
b sym sym( ( )) : ( ) (( ) ) (( ) )L L L L = ⊕ ⊕ ⊕ ⊕…   

∫

∫

∫
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We write elements F of the space 2 d
b ( ( ))L   in the form

0 1 1 2 1 2 1 2{ , ( ), ( , ), , ( , , , ), }n nF f f k f k k f k k k= … … …

of (equivalence class of) functions of an increasing number of variables (k1, . . . , kn), ki ∈ d∈ ; the functions are symmetric 
with respect to the variables ki, i = 1, . . . , n, n ∈  . The norm in 2 d

b ( ( ))L   is given by

d

2 2 2
0 1 1( )

1
: | | | ( , , | .)

n n n n
n

F f f k k dk dk
∞

=

  = + … …∑∫‖‖


Sometimes it is useful to consider the partition of the matrices to blocks. We consider the operator Hµ with respect to 
the decomposition 0 1 2{ }⊕ ⊕    and rewrite it as sum of two operator matrices

 

 



 



0

00 01 00 01

* *
01 01

: :

0 0

0 0
H

A A A A

A A
H

µ µ

µ
µµ

µ µ

µ µ
= =

    
   = = +         









with matrix entries

  

11 12
00 0100 01 *

12 22

: , : ( 0), : .
A A

A A
A

A
A

A µ
µ

µ
 

 =    =      =  
 



From the definitions of the operators µ and  µ one can see that if

1 1 1 1 2 1 2 1 1 2 2
1( ) 1,  ( ) ( ) ,  ( , ) ( ) ( ( )) ( ),
2

v k w k k w k k k k k kε γ ε ε ε≡ = + = + + +

and the dispersion function ε ( )⋅  has form (1), then we obtain µ ≡  µ.
Since the operators A00 and A01 are of rank 1, the operator µ  is a bounded self-adjoint operator of rank 2. Therefore, 

in accordance with the invariance of the essential spectrum under the finite rank perturbations the essential spectrum of Hµ 

coincides with the essential spectrum of µ.
If 0( ) ( )z H Hµ µρ ρ∈ ∩  then it is easy to see that

1 0 1: ( ) ( )H zE H zEµ µ µ µ
− − = − − 

and 0 1 1( ) ,  ( )H zE H zEµ µ
− −− −  are bounded operators. Now using the relation for rank of product of bounded operators

1 2 1 2rank( ) min{rank ,  rank ,  ,  rank },n nA A A A A A≤ …

we have rank rankµ µ≤  .
Since rank 2µ = , for all 0( ) ( )z H Hµ µρ ρ∈ ∩  for the rank of the difference of resolvents we have

1 0 1rank(( ) ( ) ) 2.H zE H zEµ µ
− −− − − ≤

∫

rank

rank rank min rank rank 
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For an interval ∆ ⊂  , let E∆(Hµ) stands for the spectral subspace of Hµ corresponding to ∆. Let us denote by N(a; b) (Hµ) 
the number of eigenvalues of the operator Hµ, including multiplicities, lying in (a; b) ⊂   \ σess(Hµ), that is,

( ; ) ( ; )( ) dim ( )a b a bN H E Hµ µ= .�

Then taking into account 0
disc disc( ) {0} ( )Hµ µσ σ= ∪   from Theorem 9.3.3 in [6] we obtain

min max

( ; ) ( ; )

( ; ) ( ; )

( ) ( )
lim lim 1.

( ) ( )
z z

z a z a
z z

N H N H
N Nµ µ

µ µ

µ µ

−∞ +∞

 
−∞ +∞

= =
  

As a conclusion we notice that, the results obtained for µ plays crucial role in the investigations of the essential and 
discrete spectrum of the energy operator of the lattice systems describing three particles in interaction, without conservation 
of the number of particles on a d-dimensional lattice and the lattice spin-boson model with at most two photons.
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