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1. Introduction

In various fields of engineering and research, including chemistry, physics, electrodynamics, acrodynamics of complex
media, polymer rheology, control of dynamical systems, etc., fractional calculus [1, 2] is used more frequently. Recently,
new fractional derivatives (FDs) have been discovered that interpolate the Riemann Liouville, Caputo, Hilfer, and Hadamard
as well as their generalization. For further information, see [3—6].

Jarad et al. introduced a novel generalized fractional calculus in their work [ 7], delineating a special case of proportional
derivatives characterized by a fractional operator kernel involving exponential functions. This novel approach establishes
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a distinct class of fractional operators derived from modified conformable derivatives, encompassing Riemann-Liouville
and Caputo fractional derivatives and integrals as specific instances.

These generalized fractional derivatives offer a powerful framework for characterizing the memory and hereditary
properties exhibited by diverse materials and processes [8—10]. Numerous researchers have directed their focus towards
establishing existence results for solutions in both initial value and boundary value problems involving generalized fractional
differential equations. Noteworthy contributions include studies by Ahmad et al. [11-16]. Specifically, Ahmad et al. [17]
delved into the existence and uniqueness of solutions concerning fractional differential equations accompanied by nonlocal
multi-point and integral boundary conditions:

“DP(“DIX(1) + h(t,X(1)) = 5(LX(1), t€[0,1,0<p,q>1,

%(0) = iﬁjxm

bx(1) = a/o1 X(s5)dA (s)+ Zn;E,- /;l X(s)ds,

The notation D" represents the Caputo fractional derivative of order (r = p,q). Functions b and 3 are given as
continuous functions. Additionally, consider the conditions where 0 < 0; < & <1; < 1,a,b € R, E;,Bj e Rfori=1,2,...,n
and j = 1,2,...,m. The function (.) is characterized as a function of bounded variation.

In [18], the authors researched the existence and uniqueness results for a Langevin differential equation with nonlocal
boundary conditions:

CDEPY(COPY +2)2(1) = §(1,2(1)), 1 € [ed),

2(a) = 0,2(b) = ¢&(n),
where f : [c,d] X R is given nonlinear term, y,& € R,0 < a, 8 < 1, and p € (0,1]. Note that v(r) considers a strictly
increasing continuous function on [¢,d]. The notation IC,QZP " indicates for the Caputo fractional proportional derivative
(CFPD) with respect to the function v of order (i = o, ). Inspired by the aforementioned research, the focus of this paper is
to investigate the existence and uniqueness of solutions for a specific nonlinear differential equation. This equation features
two distinct nonlinear terms and is accompanied by Caputo fractional proportional type slit-strips and Riemann-Stieltjes
boundary conditions.

CDUPP(CDURPOx(t) +h(t,x(1))) = f(t,x(t)), 1€ [a,b], M
@) = A8,

o 1 Moty . B .

izzl&x(‘gi) = W [alfa e P (B (m)—( ))(ﬁ(nl)_ﬁ(f))y IX(T)ﬁ(T)dT o
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where D% ¥ and ¢D%P-? denote the Caputo fractional proportional derivative (CPFD) with respect to the function ©
of order 0 < o; <1 (i = 1,2), where y > 0. Additionally, ¥(¢) is a strictly increasing function defined on the interval [a, b].
Functions  : [a,b] x R — Rand f : [a,b] x R — R are continuous. Furthermore, p € (0,1,a<m <& <& <. <€y <
M < b,and & (i=1,2,---,m) represent real constants. A € R, and 6[x] = [ f x(s)dE(s) represents the Riemann-Stieltjes
integral with respect to the function E : [a,b] — R, where x(¢) € C([a,b],R).

The boundary conditions in the aforementioned problem involve two types of integral conditions. Firstly, slit-strips
conditions refer to contributions from finite strips of arbitrary lengths positioned at (a,n;) and (1, b) on the interval [a, b].
These conditions are linked to the values of the unknown functions at nonlocal points & (1) < & <& < ... <&, < M),
located anywhere within the apertures (slits), which form the boundaries of the strips. Examples of these boundary
conditions include scattering by slits [19-21], and silicon strip detectors used in scanned multi-slit X-ray imaging [22].
Secondly, integral conditions of Riemann-Stieltjes type play a fundamental role in blood flow problems by providing a
flexible mechanism to handle changes in the geometry of blood vessels [23]. These conditions are also useful in regularizing
ill-posed problems [24].

Additionally, our study extends to the multivalued analogue of the boundary value problem (1)—(2). In particular, we
delve into the existence of solutions concerning the following inclusion problem:

C PP (C0P () 4 h(t,x(t))) € F(t,x(t)), 1€ la,b], (3)

x(a) = A01x],

Y (&) = ST [al "M () — ()7 a(e)d(e) ae @

b — ~
+ar / "7 P02 (9(p) — (1)) x(0) D (1) d
2

the function F : [a,b] x R — P(R) represents a multivalued map, where P(R) denotes the collection of all nonempty
subsets of R. The remaining variables maintain the same definitions as outlined in the boundary value problem (1)—(2).
This paper is organized as follows. In Section 2, we recall some basic definitions and preliminary results related to our
work. Section 3 contains the existence and uniqueness results for the boundary value problem (1)—(2). The technique
for solving the given problem is converted to a fixed point problem. Then, by applying fixed point theorems, the main
results are obtained. The existence results for multivalued problem (3)—(4) are presented in Section 4. Moreover, we give
examples for the main results.

2. Preliminaries

In this section, we demonstrate the basic notions and related preliminaries concerning fractional calculus [9, 10], and
some fixed points results which are used throughout the paper [25, 26].

Definition 1. Forp € (0,1], z € C with Re(z) > 0, I1 € € ([a, b],R) satisfying 11 (¢) > 0, we define the Riemann Liouville
fractional proportional integral of f : [a,b] X R — R with respect to I1 as
1 p-l

_ F L IO-TIO) () (1) — T1(s))2 ()T (s) ds
@) 0 = Sy [ 0T w0 -ne) e )as
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Definition 2. For p > 0, z € C with Re(z) > 0, and I1 € € (|a, D], R) satisfying I () > 0, we define the left fractional
derivative of f : [a,b] x R — R with respect to v as

(DPPTLF) (1) =D 2T )

I
D;'lap

gy [T )~y O ),

where n = [Re(z)] + 1,
and

peAl — ppllpp Il pp Il
- -

n-times

Definition 3. Forp € (0,1], z € C with Re(z) > 0, I1 € €([a, D], R) satisfying IT'(t) > 0, we define the left derivative of
Caputo type starting at a by

(SDPPIF) (1) =" P (DT ) 1)

s [ O ) 1) (D ) () s,

where n = [Re(z)] + 1.

Proposition 1. Let z,b € C satisfy Re(z) > 0 and Re(b) > 0. Considering any p > 0 and setting n = |Re(z) | + 1, the
following assertions hold:

1.

(e 0160 = 10 ) () = P ) ~ 1)

2. IfRe(b) > n, then

(ach,p,HeP;lH(x)(H(x)_H(a))b1) (0) = p’T'(b) e%ﬂ(t)(n(t)_n(a))bflfz'

3. Fork=0,1,...,n—1, we have

Il
=

1
In particular, (gD“’eppn(x)) (1)

CoPPI (P (1) = w(t):
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(DI (M) (1) = w(r).

Theorem 1. Ifp € (0,1], Re(z) > 0, and Re(b) > 0. Then, for f : [a,b] x R — R is continuous functions and defined for
t > a, we have

LT (PPTE) (1) = (PP (22T ) (1)

= (alz"p"nf) (t)

Theorem 2. Let 0 <m < |Re(z)| + 1 and f : [a,b] x R — R be integrable function in each interval [a,t],t > a, then

DI P f) (1) = (7" PEF) ().

Corollary 1. Let 0 < Re(b) < Re(z), m—1 < Re(b) <mand f : [a,b] x R — R. Then we have

(DPPIIPI (1) = (7P PTF (1),

Theorem 3. Forp >0, n=|Re(z)|+ 1, and f : [a,b] x R — R, we have

n—1 k;p,IT a
JPT(EDHPI ) (1) = f(1) - k;) (Dl;kkfz)()

p—1

(I1(r) — II(a) ke ® (MO,

In the next, the following fixed point theorems play a crucial role in deriving our main results.

Theorem 4 (Leray-Schauder Nonlinear Alternative [25]). Let E be a Banach space, € a closed, convex subset of E, U
an open subset of ¢, and 0 € U. Suppose that F : U — € is a continuous, compact map (meaning F(U) is relatively
compact in €). Then either:

(i) F has a fixed point in U, or
(ii) There exists a u € dU (the boundary of U in €) and x € (0,1) with u = xF(u).

Theorem 5 (Krasnoselskii’s Fixed Point Theorem [27]). Let 2~ be a nonempty subset of a Banach space % that is
bounded, closed, and convex. Suppose @) and ¢, are operators mapping X into % satisfying the following conditions:

(i) For any x1,xp € Z', Q1x1+ @rxp € Z';
(ii) @1 is both compact and continuous;
(iii) @, is a contraction mapping.
Then, there exists x3 € 2 such that x3 = Q1x3 + P2x3.

The following Remark explains that using GPF operators allows to unify the different fractional integrals and,
consequently, to solve some initial and boundary value problems with different types of fractional integrals and derivatives
in an unified way.

Remark 1. Some of the special cases from equation (1) are listed below:
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1. Let h(t,x(t)) = Ax(t), where A is a constant.

COUPICOPI L )a(t) = £(1,5(0). ©

(i) IfT1(t) =t, equation (5) reduces to a Langevin equation with two Caputo fractional proportional derivatives

=P (CDPP 4 A)x(t) = f(t,x(1)). (6)

(ii) For p =1, equation (5) reduces to a Langevin equation with ©-Hilfer fractional derivatives.

CEP(CDOP 1 A)x(t) = f(t,x(t)). (7)

(iii) Forp =1, II(t) =t, equation (5) reduces to a Langevin equation with two Caputo fractional derivatives.

€D+ A)x(t) = £(t,x(1)). (8)

(iv) Forp =1, II(t) = Int, equation (5) reduces to a LE with two Caputo-Hadamard fractional derivatives.

CH2(CHH® L 2)x(t) = f(t,x(1)). ©9)

(v) Forp=1II(t) =t,z— 1,b — 1, then equation (5) reduces to the equation of motion with non-linear damping.

DD+ M)x(t) = f(t,x(t)). (10)

2. (i) Forp=1, Il =t, the boundary conditions mentioned in equation (2) transform into the Riemann-Liovville

type of slit-strips boundary conditions.

(i) If 11 =y =1, Il =t, the boundary conditions stated in equation (2) simplify to the conventional slit-strips
boundary conditions.

The following lemma plays a pivotal role in converting the problem (1) into a fixed point problem.

Lemma 1. Let p € (0,1], and f,h € €(|a,b],R). The unique solution of the linear fractional differential equation

Copd (%“%Pﬁﬁy) () =g(t), O<on,au<1, t€]a,bl. (11)

supplemented with the boundary conditions (2) yields
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-1
(1) = 17500 g(1) — 1P Py(1) " OOy (1)

n —
[p?’cli‘l(y) / ' epTl(l‘/‘(m)*l’(f)) (O (m) —d(2)"! (Itx1+a27pﬂ9g(1-) ,[06271?719),(1)) o' (t)dt

a

o)

/b epT—l(ﬁ(b)—ﬂ(r))w(b) — (1))} (1a1+az,p-,z9g(r) —[0527P715‘y(1)> V(1) (12)
n

2

m

m —1
- 26i1°‘1+°‘27p7ﬂg<¢,~>+zaizazvpvﬂy<é,»>] e Dy
i=1

i=1

[A /ab <Ia1+a2,p,ﬂg<r) _Iocz,p,ﬂy(,c)) dE(T)],

where

_ 1 01(9(b) —¥(a))™
nul(t)_; <0-2_ pazr(a2+1) )

_ 1 o3(9(b) —¥(a))™
AuZ(t) - ; (0-4_ pazr(a2+ 1) )

b el (9(1)-0(a)
o) = l—A/ e’ dE(7),
—_A b p—1
)= ———— (1) — B(a)2 e P PO p(r),
= ST ), (00 0(@) (7) 13
p—1 p—1
m = (8 (m)—9(a)) B (0(b)—0(a))
p—l . ae P are P
_ 5 5 (0(&)-0() _ 4 9 - y @2 S5(b) — Y’
ol —d(a

o1 = 3 5P LE) D@ etiorg)-o) _ e ? W) (9 () - B(a) "

5 pel(e+1) pre C(p+y+1)

aye’s (PB)=2(@)
Ty
and
k26263—6104750. (14)

Proof. Applying I%-P-% and 1%P-? to (11), using Theorem 3 and the relation 1 in Proposition 1, we get
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(B(t) — V(a))™
par (ay+1)

L1 (9()—0(a)

-
x(t) _ Ia1+a2,pg(t) _Iaz,py(t) _'_COePT(ﬂ(t)—ﬂ(a)) +e e , (15)

for some cg,c; € R . Using the boundary condition (2) in (15), we derive
o[1a [l et an )| oA o) - o)
J— — T —
“pur (o +1) Ju ’
(16)

7 O g (1) = A / (1o o024 () — 1P y(c) ) dE(c).

o PL(9(E) -0 (a ai 2= (3 (n,)—B(a
o3 a5 0 ) e O (o ) o)

i —19(61))‘)‘26*’,,;‘@(&1)—19(a)) _ a
p%I (o +1) prter (op 4 1)I(y)

i=1

[ D (3 ) — 00 (9(5) — B (@) (e
(17

a2 P el (9(6)=9(a)) g 7y _ - (%
R T T ¢ (906) - 9(2)" (9(5) - 9()) 0" ()

Tl —
= p;lil(y) / : epTl(ﬂ(m)*ﬂ(f)) (O (m)— 19(,5))7*1 ([oq—s-txzﬁpﬁﬁg(f) _Iaz,P,ﬁy(t)) ¥ (1)dt

b o1
a2 £ (9(b)—-0()) y—1 (o +on,p,8 o,0,9 /
+ /eP B(b) - V(7 T e T)—1 T) ) ¥ (t)dT
st ) (8(5) = B(0)"" (192 g(2) ~ 1%90(7)) 0'(2)

_ Z 5i1a1+0£2«,P~,19g (&) + Z 5i1a2,P,19y (&),

i=1 i=1
Utilizing the notations (13) within (16) and (17) correspondingly, results in the following system of equations

01¢0 + Oz¢1 = Os, (18)
03¢0 + 04¢| = Og,
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where

b
o5 =4 [ (100200 g ) - 1200y (2)) dE(3),

aj

O =
°7 p1T(y)

T’ —
/ 1 ePTl(ﬂ(Th)ﬂ?(T)) (O(m) — 15(7))7/71 (Iocl+a2,p,19g(7)_1a2,p,19y(1)) ¥ (1)dt

a b o1 (3 (h)—v(r) v-1( jou+onp.d @.p,0 !
+ /en B(b) — 0(x)V ! (1472 Pg(1) — 1PV y(1) ) O/ (T)dT
PYL(Y) Jm e ( ) ()) i

— Y 1Py (&) 1 Y 81T (E).
i=1 i=1

l 14

By solving the system (18) with respect to ¢y and ¢, we obtain

070 — 0405 0305 — 01 0¢g
= Ccl1 =
k s C1 k )
where k is given by (14). Substituting the values of ¢y and ¢ in (15) together with the notations (13), we get the solution
(12). O

€0

3. Existence and uniqueness results for single valued case

In this section, we deal with the existence and uniqueness of solutions to the problem (1)—(2) using certain fixed-
point theorems. Based on Lemma 1, we convert the boundary value problem (1)—(2) into Gx = x where the operator
G : % ([a,b],R) — € (|a,b],R) is defined as follows

Gx(1) = 199220 (1, (1)) — %P2 h(e,x(1)) +e 7 02 g (1)

a m p=t D=9%(t — o +0,p, 0,P,
[pyrl(y)/u 7 OMI N () — () (19000 £z, x(x)) — 1P Ph(7.x(2)))

O (1)dT+ — /be”T"Wb)*l"‘“))(zs(b)—ﬁ(r))H(zalwpﬂ’f(r,x(r))—I%Pﬂ’h(r,x(c)))
n

PTL(Y) Jny (19)

ﬂ’mdf—féﬂ""*“ﬂ”ﬂf(éhx(éi))+f6ﬂ°‘2’p’ﬂh<é,~,x<éi>>] — e P0-d%a)
i=1 i=1

14
b
i) [ (19002 p(z,x() — 199 h(z,x(1))) dE(3)].
a
We note that ¢ ([a,b],R) represents the Banach space of all continuous functions x : [a,b] — R. The norm of this

space is defined as ||x|| = sup {|x(¢)| | 7 € [a,]]}.
For convenience, let us set
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_ (®(B)=B(a)" "2 (3(b)—V(a))*®
patal (o) +o+1) p2T (op+1)

jar| (9 (1) — B(a)) ™ "7
patetT (o + o +7v+1)

+ [ |

T e (P () D) ()
20)
(&)~ D(@)™+* | (8(&) -~ D(a)® (o))
+Z|6| <p061+0621"(a1 +op+1) * perI'(ap+1) ) ke |:|A|/ ptxl—szr(al +op+1)
(9(2) — B(a))
T @)
and
BB @)t (9() - ()
A =A—- p(xl-‘r(le—‘(al +a2+1) - po‘ZF(OQJrl) ) (21)
where
1 b
wip = pa1+a2r*(al+a2+1>/ (19(b)_19(f))7/*](19(f)—ﬁ(a))aHraZﬁ/(T)dT,
@2)
1 b
5= 1) e (P ) (3(1) - 9(@) ¥ (2

Now, we are in a position to state the first main result which relies on the Leray-Schauder Nonlinear Alternative.
Theorem 6. Let p € (0, 1], and assume that h, f : [a,b] x R — R be continuous functions. In addition, we suppose that:

(Hy) there exist two functions Py, P, € € ([a,b],R"), and non-decreasing functions @1, : R™ — R, such that
[h(2,)| < Proi(||x]]) and |f(2,x)| < Po@2([|x]]), for all (t,x) € [a,b] xR,

(H,) Considering @ = max{ @y, ¢} and P = max{P,, P}, there exists a positive constant M such that:

M

> 1.
[Pllo(M)A

Then the boundary value problem (1)~(2) has at least one solution on [a, b).

Proof. Firstly, we aim to demonstrate that the operator G : € ([a,b],R) — € ([a,b],R), as defined by equation (19),
maps bounded sets into bounded sets within € ([a,b],R). For a positive number r, we consider a closed ball B, = {x €
% ([a,b],R) : ||x|| < r} be bounded set in € ([a,b],R), with r > ||P||@(||7||)A. Then, in view of assumption (H ), we have
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1

I

t
S5 @0)-3(7)) _ o +op—1
e (3() — (1))

p—1

Flr,x(t)® (t)dT + / ' e 7 PO 9) — 9(0)2 h(t,x(1))® (1)dT

paT (o)

p—1

T’ —
+6T(19(t)—19(a))“1 (1) l:pyil_‘l(y) /a 16%1(15(,11)_,9(1)) (9 (M) — 19(1_)))/71

1 T
(pa1+a21“(oc1 + o) /a

p—1

e 7 PO (1) 9 ()2 f(5.2(5)) O ()ds

! F 2 OO0 (5 (1) — ()2 (s x(s) S ()ds) &
et L ¢ (B(2) ~ D(6)) h(5,5(5))9'(5)ds ) o' (2)dx
@ (P w09 g - 1
P"F(Y)/nz (5(b) = 5(e))” (p“1+°‘21"(a1+a2)

/repT—lm(T),ﬂ(s))(ﬂ(T) . 19(s))a1+“2_1f(s,x(s))19’(5)ds

p@I(o)

L 1 S -lige)—o(s a+op— /
_Z5i(pa1+azr(a1+a2)/ e 7 PO (5 (&) — 9(s) 2 f(5,x(5)) O (5)

i=1 a

2= (5()— b 1 T el ey
(9(1)—0(a)) (8(7)—B(s))
+e P Ha(t) [A/u (po‘l*‘)‘ZF((lerag)/a er

(N £ (s (NS (s)ds ! CIGEIO)
(B(2) () 1 (5,2(6)8' (Vs + g |

(8(7) — 19(s)))arlh(s,x(s))ﬁ’(s)ds) dE(T)} ‘
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1
puTaT (a4 op

< Iplexiah) { [ 00 - o) o (as

1
p051+0€2]"(al + o

[ ™ (om) o)

1
(a1 + o)

’ / |a2| b _
'(5)ds) ' (e + o /m(zs(b) — o))" (palHW

[om- ﬂ(s))“l-“z-lws)ds) S (t)de+ il 3 ( T

(o1 + )

[ @) - vt #(5ds) | + ol A (preertarran

/ar(ﬂ(r) - 0(s))°"+°‘20’(s)ds> dE(T)] } +|Pr] e (|Ix]])

(ot [0 =000 e s

|a ‘ m 3 1 T ol o
[pYr](y)/a (ﬁ(nl)_ﬁ(f))y 1(m/ﬂ (B (1) —B(s)) ls (s)ds)

a b T ,
o't 2 [ 000) =30 s [ (01 06)% 5

1

&i
Sarey . (@)= 80) ™ 9/ (5)as)]

/ S .
ds)® (r)dr—i—i; \&I(pwZF

sl |1 [ (S [ 00— 06)% o0 ) a0 .
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Then,

(3(b) —B(a)**®  ((b) —¥(a))*®
wtel (o +0p+1)  p%l(op+1)

1Gx] < IIPHfP(IIFII){p + [l |

lar| (9 (1) = & (@) T2 gy |[(D (M) — B (@) |ag| (wi +w2) n i 15|
patetIT (o + 0 + y+1) prHer(y+om+1) pTL(7) =h

( (D(6) D)™™ | (DE)—da)™y)
paterl (o +a+1) p®l(on+1)

b (B(r) =)t (B(1) DV (a)®
+””2H[|A|/a <P°‘1+"‘2F(061+ocz+l)+ p%I (0 +1) >dE(T)]}'

Thus

1Gx]| < [[Ple(llrDA < r.

This indicates that the set G(B,) is uniformly bounded. Subsequently, it will be demonstrated that G maps the bounded
set B, into equicontinuous sets in € ([a,b],R). Consider v{,vs € [a,b]. Set

Gx(vy) = 1971%2PD £y x(vy)) —1%2PP by, x(vy))

1 (50l Mt n ~
Grloz) =7 0 o) [m?(y)/a e P2 (9 () — (c))" !

(re+e2P? p(z,x(2) - 1202 h(z,x(7)) ) ' (r)dT + pyi?(f) /n i’e%‘<l’<’?>l’<f>>(19(b) — 9()!

<1a1+a2’p’ﬁf(77x(f) —Iaz’p’ﬂh(fax(fn ¥ (v)dt— i&la'wz’p’éf(&nx(éi))+i5i1a2’p'ﬂh(5iax(§i))
=1 =1

= o | " (1 f(zx(2)) - 109 (e, (1)) iz

Take v; < v, and x € B,, then we obtain
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|Gx(v2) = Gx(v1)] < (¥ (v2) — ()42 — (9 (v)) — (7)) 72!

1 v
p(X1+(X2r‘(al + az) /a

|f(z.x(7))[®' (1)d T+

[ 00 0@ (e (e

par‘razl—‘(al + (073

B (v2) = ()27 = (8 (vi) = 9(0)) 7| |h(7,x(7))|

1 "
+ e ), |

B (v2) = 9(2)) =7 | | h(z.x(2) | &' (2)dT

, 1o
F(OT+ s / (

1
p(X1+(X2r‘(al + 062)

)= o) [ ™ o) = o)

! o ton— / 1 o _ on—
| 0@ =) s a0 s+ s [0 - o)

1
(a1 + o)

/ / \az| b _
s () (3)ds) ¥ (e + /112(19(19)—19(1))7 r—

/ur("f‘(r) = 0(9)) MR £ (5,x(5)) [0 (s)ds +

p%I (ay) /;(19(7) —0(s5)) 2 h(s,x(s))]

1
pOCl-‘rOCQr‘(al + o

V' (s)ds)®' (t)dt + i 18] ( ) ./ji (8 (&) — 0 (s)) 0+

L &i
5619 (6)ds) + Y 18] (o [ (9/8) = 06 (o)

i=1

0(5)ds)] 11 v2) - ) 1 7 [0 - o

peatel (o + o

! ! ! %= (s, x(s))| ¥ (s)ds
D05+t [ (0(0) = 0(6))% h(x(s)] 0 5)ds ) a2

Volume 5 Issue 2|2024| 1779 Contemporary Mathematics



2(8 (v2) = O ()M T2+ (B (v2) = B(@) M % — (8 (vi) — H(a)) M T
patel (o +o+1)

< ||P<P(|IX){

2(0(v2) = (1) + [ (B (v2) =B (0))® — (¥ (v1) — ¥ (a))* |
peT (o +1)

_|_

o1 (9 (v2) — ¥(a))® — (¥ (v1) — ¥(a))®)
kpT (04 1)

" [l sy e

patatil (o + o +y+1)

|az|
p*I(y)

|ai

+ prHar (y+on+1) (O (m) = ()" +

(w1 +w2)

18 ( (9(&) @)™ w(éi)—ﬁ(a))“w

+,:1 patal (a+a+1) p%l'(ap+1)

03 (9 (v2) — ¥(a))* — (¥ (v1) — ¥(a))* P (1) — B (a)) "
+‘ 3 2 1 |:A/a (paﬁLaZF(OC]—FOCQ—f—l)

kp“ZF(oc2+ ])
(B8(7) — V(a))™®
el (et 1) )dE(T)} }

The right-hand side of the previous inequality approaches zero independently of x in B, as v — v — 0. Consequently,
G maps bounded set into a set of equicontinuous functions.

Therefore, it follows by the Arzela’-Ascoli theorem that G is completely continuous.

Finally, we will establish the boundness of the set of all solutions to equations x = kGx, for xk € (0,1). Let x(¢) be a
solution of fractional boundary value problem (1)—(2). Thus, for z € [a,b],we have

[l < [[Pll@(llxl)A.

By the condition (H,), we can find a positive number M such that ||x|| # M. Let us define a set Y = {x € € ([a,b],R) :
||lx|| < M} and note that the operator G : Y — % ([a,b],R) is continuous and completely continuous. Form the choice of Y,
there is no x € dY such that x = kG(x) for some k € (0,1). In consequence, we deduce by Theorem 4 that the operator G
has a fixed point x € Y which is the solution of the boundary value problem (1)—(2). O

The following existence result is based on Theorem 5.
Theorem 7. Let p € (0, 1] and assume that h, f : [a,b] x R — R be a continuous functions satisfying the conditions:

f(tax)if(tay)‘ ng\xfy » L:maX{L17L2}7

(H3) There exists a constant L > 0 such that |h(t,x) — h(t,y)| < Li|x—y
foreacht € [a,b],x,y € R.

s

(Ha) |h(t,x)] < A1 (2),|f(t,x)| < Aa(2) for all (t,x) € [a,b] xR ;41,42 € € ([a,b],R") and A = max{Ai,A2}. If the
inequality

AL<1, (23)
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is satisfied, where A1 is determined by (21), then there exists at least one solution to the boundary value problem
(1)—(2) on the interval [a,b).

Proof. By the assumption (Hy4) and (20), we choose 7 > A||4||, and considering the closed ball B = {x € € : ||x|| < F}.
Introducing the operators G| and G, on By as follows:

(Grx) (1) = 19702 f(1,3(1)) — %02 h(1,x(1))

p—1 _d(a m p-1 _ _
(Gx)(t)=e P (B (1)—( ))Iil(t) Lﬂ?(y)/u e p (B(m) ﬂ(f))(@(m)_ﬁ“))y 1

a+op,p, ,p, / a b P;‘ _8(t B _
(102 f(z x(c)) -1 pﬁh(r,x(r)))ﬁ(r)dr—km/nze (B(0)-2(0) (3 (b) — (7))""!

(19009 £z, x() ~ 1P h(t.x(2) ) O/ (2)dz — Y. U000 £ (& x(5)) + . 51 (éi,x@i»]
i=1 i=1

a

_ S P0=0@) [A / ’ (zaﬁal 0 £z x(1)) —I“z’p’ﬂh(nx(r)) dE(r)] 1 € [a,b].

—1
Observe that Gx = G1x+ Gx. Then for x,y € By, taking into consideration that ’e%(ﬂ(t)fﬂ(“)) < 1,Vt > a, we find
that

|

Gix+Gay| <
| 11X+ 2y| pa|+a21—~(al_~_a2

[ ()~ (e

1 -
ﬁ'(r)dwpaz'ffl('az) / ¢ (P00 (3(4) — 9(r)) @19 (1)

dHe”,)]w(r)—ﬂ(a))w[ |ai| /”le’%‘wml)—ﬂ(r))(ﬁ(nl)_ﬁ(r))y—l

P'T(7)
|l2| T =L (1) -0 (s)) _ oqtap—1.q/
(Pa1+azr(a1+(x2)/a e’ (8(1) — () V' (s)ds
Ml [T e wE)-90) o1 g1 :
st ¢ (9(1) = B(s) 19 (s)ds) ' (7)de
|612| /‘b M(ﬁ\(b)_ﬁ(r)) _ y—1 |},2| /r E(ﬁ‘(f)—ﬁ‘(S))
pYL(y) nze ’ (9(6) = 3(2) pataT (o) + o) Ja, ¢’
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_ aton—1 g/ |A1] Tl (y(n)-0(s))
(B() - B(s)) 1+ 6®w+ﬁﬁagéep

(19(7)—19(3))a27119/(s)ds)19/(1)d1+i&. ( |A2]

= \putel(u+a)

i p—1

/5’ e 5 (0(6)-0(5) (O (&) — ﬂ(s))awaﬂ ﬂ’(s)ds)

+i ( | )/5"6"[,‘(19(&,-)19(s))(,9(§l.)_19(s))°‘2lﬁ’dsﬂ

p2T (o
o5 (00— (a) / 12| /’ =L (1) -9 (s))
' el [A (p“1+“2F (v 00) Ja €
N o1 g7 A1 /T 2 (3(2)=5(s))
(O (1) — B(s)) ) (s)ds+pazr(a2) e

(8(7) — O(s)) %! @’(s)ds)dE(r)} .

Then,

— a a1 +0 _ a [0%) a _ a o +op+y
|Wﬂ+®ﬂ<”M{(Mm S@)“r®  (8(b)—0(a)) ”H{muﬂmo 8(a))

pataerl (ai+om+1) p%l(ap+1) petatIT (o +o0p+y+1)

|ai ]

+ pYrar (y+on+1) ((m) — ﬂ(“))yﬂxz

|az | S (D (&) =)™ (9(&)—V(a)™
* oy M L1 </>”“+°‘2F(ocu+ozz+1)+ pol (o + 1) >]

st o [ (e oo )

= lAllA<T,

which proves that G1x+ G,y € B;. Next, we establish that G, is a contraction mapping. For x,y € R and for each 7 € [a, b],
we have

p-1 m p-1 _ _
oo =Gl 7000l s [0 o ) - 00
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L2 X—=y Topd —U(s —
(Pa1+az|1|—‘<alﬂ'a2)/ v M0 (z) —B(m) 0 (s)ds

Li|lx—y|l /’ P (B(1)—B(s)) 3 a1 g/ / |az|
et )b ¢ (8(1) — B(s)) 19(s)ds)z9(r)dr+pyr(y)

bl (o(p)- - Lyx—yl T el (9(e)-0(s -
(B(b)-5(x)) _ -1 20X~y / (B(1)-(s)) _ a+or—1 g/
/e ; (O(b) — (7)) <pm+azr(a1+a2) e (8(7) — 0(s)) o'(s)ds

B(t) — 9(s))%! ﬁ’(s)ds) ¥ (t)dt

oy
=
|
=
=
2
=l
‘o‘\
=
2
|
>
=
—~

m _ & o
#2181 (g [ €7 O @& — 00 o )
i=1 a

pataT (o + op

Lillx=yll /= e=t(peE)-o(s _ 21 (9(1)—9(a
+;| , <pLL|F OQIU T OG0 (3 (5) — 3(5)) ! 9 (s)ds) ] &7 (000D

T o
™ |:|A|/ ( L2||x YH /e%(ﬁ(f)*ﬁ‘(x))(ﬂ(f)_19(S))(x1+txz—1 ﬂ/(s)ds

pO!1+O!21—‘ o + (xz)

Liflx=yll /7 eliom)-v(s) B 1 ot
m/ﬂe (B(7) = B(s)) lﬂ(s)ds)dE(f)}

a1 m — 1 ! o +op—
Ll [ [ om0 - 00 (Samraray [ (0@ - o)

/ 1 ! ap—1q/ /
D)+ s / (9(1) — B(s)) 19(s)ds>19(r)dr

|az| 1

el [ ) - oo [ 0@ - vin@reto s
pC(y) Jn, patarl (ar+0y) Ja

1 ! op—1q/ / L :
e . (B0 =2 (s ) ' (x)de+ o
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1
pO!pLO!zI_‘((XI + az)

& N s o +op—1 "($)ds - #
[ @@ =0 s+ L8] s

[F o o]+l [l [ (e [ 00 o)

’ 1 ! a—1.9/
9 (s)ds+m/a (9(1) = B(s)) %D (s)ds} dE(T)}

i (8 (m) = B(a)) ™7 ja1] o
) L{““” (pyl”l*“zf(al Foo D) P”“ZF(YIJr ain P B
a2 s [ (PG =B (@)M ™ (9(8)—B(a)*®
o) (W1+W2)+i§i|5z| <pa1+azr(a1+a2+1) e (@ D) )

bl () =B(a)Mt 2 (8(1)—B(a)®
ikl {A/a (pa1+a2[‘(a1+a2+1)+ p@T (0n+1) )dE(T)}|xy|

SLA1x =yl

By using the inequality (23), the mapping G5 is a contraction. The continuity of f,/ implies that the operator G is
continuous. Also, G is uniformly bounded on B; as

1
|G1x|| = sup

t p—1
oL (9(1)-5(x) o
P 9(t)— 0 1+on
ze[a,h]{P“‘+°‘2F(a1 T ) /a € (B(1) = (1))

/ 1 !
f(z.(1))|® (T)df+m/a e

(9(b) — (@) "1* % (9(b) —B(a)*
<Al (pa1+0‘21“(a1 +ap+1) + pel(o+1) > '

he compactness of the operator G| will be established. Considering (H3), we proceed to set

sup  |A(t,x)|=h <o, sup |f(t,x)]=F < oo
(t.x)€la,b]xBr (t,x)€[a,b]xBF

Consequently, for a < t; <t < b, we have
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1

Gix() -G <
Gte) =Gl S e + o)

/ (9(r2) = ()" = (9(1r) — (1))

(7, x(2))[¥'(v)d T +

/[2 (8 (1) = (1) | f(7,2(7)) | (7)d

pateal (o + o) Jyy

1

+ i, () =)™ = (3 0) =B () ™ he.a(0) |9 (D)

e ) (2= @) (@) (e

f o +oyp ap+aop o1 +0p
< SaTaT(e T o) [P0 D) T+ (9(e2) = B(@) T — (3(n) - B(@) )

h
T peT(a 1)
The right-hand side of the last inequality’s, independent of x, will goes to zero as #, —#; approaches to zero. Thus, G|
is relatively Compact on B;. Hence, by the Arzela-Ascoli theorem, G is compact on By. Therefore, all the assumptions of
Theorem 5 are satisfied and we deduce the boundary value problem (1)—(2) has at least one solution on [a, b]. O

[2(8(2) = B(0)™ + (B(12) = 9(@) = (B(11) — B(a))™)] .

Theorem 8. Let p € (0,1] and assume that f,h: [a,b] Xx R — R are continuous functions satisfying the assumption (Hz).
Then the boundary value problem (1)~(2) has a unique solution on [a,b] if

LA <1, (24)
where a constant A is given by equation (20).

Proof. Define M = max{M;,M,}, where M; and M, are positive numbers such that sup,c(, [A(#,a)| = M1 and

SUPciap) |f(t )| = M>. We fix r > MA- In view of the assumption (Hz), we have

|h(t,x)| = |h(t,x) —h(t,a) +h(t,a)] < |h(t,x) —h(t,a)|+ |h(t,a)|
< L1||XH+M1
< Lir+M.

Likewise, it can be derived that |f(¢,x)| < Lar 4+ M>. Initially, we demonstrate that GB, C B, where B, = {x € ¢ :
||lx|| < r}. Then, for any x € B,, we get
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(B(b) — V(a))®** (ﬁ(b)—ﬁ(a))“zﬂm H
patarl (o +a+1)  p=l(ap+1) !

G| < (Lrb) {

{ jar] (8 (m1) — S(a)) "7 a1

O (M) — ¥(a))’™®
pa1+0¢2+7r‘(a1 —|—a2+y+1) p}urazl"(y_'_ a2+1)( (Tll) (a))

@ mo (&) =B@) e (3(8) = B(a)®
oy v+ L (p“l+“zr<al+az+1>+ pel(ar+ 1) )]

el [l [ (GBS (00 - D)

Tl (a4 o) p%T (0 +1) dE(T)}} = (Lr+M)A<r,

implying that GB, C B,. Subsequently, for x and y in R and for every ¢ in [a, b], we get

Lo|lx—y
p051+0£21—‘<a1 +

|Gx—Gy|| < )/at(ﬁ(t)—ﬂ(f))al+a2—l.

Liflx—yl|

¥ (r)dt+ Pl (0 )

/'(6(;) 9 (e))2 9 (1)dt

il | S [ o) - 000 (gt

Liflx—yll [*
pT () Ja

/j(ﬁ(r) —9(s)) T2 1Y (5)ds + (B (1) — B(s))% ! 19’(s)ds) ¥ (1)dt

ol * (L=l w1
"oty /nzw(b)_ﬁ(r))y l(pa1+azr(a1+az)/a (9(7) = ¥(5) 1 F %710 (s)ds

Ly|lx—y||
peI (o)

/a "(9(1) - ﬁ(s))“z‘lﬁ’(s)ds> o' (v)dt

o Lylx—y S ato—1 o
0; ) — O ()T s)ds
318 ( [ @ - ve)met o)

pOC1+062F(a1 + o

o xX— &
+ 5 1ot (Sl ¥ o ) o 0610
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+||u2|[|A| /"( Loflx—y] | [ @ -sin@rat o'

patarl (o +a

Liflx—y

e [ 3(0) = 006))% 19" (s)as ) dE(2)|

a

SLAJx =y

From the above inequality together with the given condition LA < 1, it follows that the operator G is a contraction.
By means of the Banach contraction mapping principle, there exists a unique solution for the boundary value problem

(D~(2). O

4. Existence result for inclusion case

In this section, we develop the existence results to comprise the inclusion problem. We establish the existence of
solutions for the boundary value problem (3)—(4) by applying the fixed point theorem [28]. We begin to recollect some
basic notations for the inclusion case [29]. For a normed space (X, || .]|), let

P,(X)={yeP(X):yisclosed},

Pepov(R) = {y € P(R) : y is compact and convex}.

Lemma 2. [f F : X — P(Y) exhibits upper semicontinuity, then F constitutes a closed subset of X X Y in other words,
for any sequence {x,},cy C X and {y,},cx CY, if n — 00, Xy — Xe, Y0 — Y5, and y, € F (x,), then y, € F (x,).
Conversely, if F is completely continuous and has a closed graph, then it is upper semicontinuous.

A multivalued map F : [a,b] x R — P(R) is considered Caratheodory when
(i) t — F(z,x) is measurable for each x € R.
(i) x — F (¢,x) is upper semicontinuous for almost all ¢ € [a, b].

Furthermore, a Caratheodory function F is called L'-Caratheodory if for each o > 0, there exists ¢ € L' ([a,b], RT)
such that

1F(#,x)]| = sup{|v| : v € F(2,0)} < @a (1),
for all ||x|| < ot and for a.e. t € [a,b]. For each y € €([a,b],R), define the set of selections of F' by

Fry=1{veL ([a,b,R):v(t) € F(t,y(t)), for a.e. t € [a,b]}.

Let (X,d) be a metric space induced from the normed space (X;||||). We have H; : P(X) x P(X) — RU {eo} given
by

H,(A,B) = max {supd(a,B), supd(A, b)} ,
acA beB

where d(A,b) = infyeq d(a;b) and d(a, B) = infpepd(a;b). So, (P (X),Hy) is a metric space [26].
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Lemma 3. /30] Let X be a Banach space. Let F : [a,b] x R — Py, .,(X) be an L'-Caratheodory multivalued map, and
let © be a linear continuous mapping from L' ([a,b],X) to € ([a,b],X). Then, the operator

@05 C([a,b],X) — Peper(€([a,b],X)), x— (@0.7F) (x) = O (Fpy)

is a closed graph operator in € (|a,b],X) x € ([a,b],X).

Definition 4. A function x € €[a,b],R) is called a solution of problem (3)-(4) if we can find a function f € L'([a,b],R)
with f(t) € F(t,x) on [a,b] such that

x(a) = A8(x),
" S (E) — M2t (0m)-9(m) _
¥ 8580 = s | [ €7 M (0 )=o) )
¥ (@dr+a [ " 5 0000 3) zs(r))“x(f)ﬁ’(r)dr] ,
Lp)

and

aj

p"T(y)

x(t) = I9+%2P0 £(1 (1)) — 1P h(z, x(1)) P COR Q) G) [

/m 7 (30)=3(x) (¥ (m)—v()"! (I“1+"‘2=pf(r7x(r)) —I“Z7P*’9h(r,x(r)) ¥ (1)dt

bt OO0 (1) (e (15 e, a(0) - 190 Oh(z.x())

19’<f>df—Z6f1“1+“2"’vﬂf<é,x<&i>>+Z&I"‘z"””h@i,x@oﬂ ~ e (000
i=1 i=1

(1) [A /b (I“I’L“Z’p”’f(f,x(r)) —I“Z’P’ﬁh(r,x(r)) dE(r)] .

a

For convenience, we denote

_ (00) -~ d(a))® al .
M= par(g {p”azr(w @ P =@
2] s (8(6) —9(a)™
o () B ey | kel @)

b (9(1) — 9(a))®
/a p%l(ay+1) dE(T)}’
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(B(b) — B(a))*1+*
patal (o +a+1)

lai] (8 (m) — D (a) M2

A:
? PIT(y) pe+a 7T (g + o + 7+ 1)

+mmﬂ

|a2| +Z| | ﬁ(a))al‘HZZ
pYF ' p“l+“21“ o +on+1)

(26)

> (9(1) — D(a) e
Tkl [|A|/a peteaT (o + ap + l)dE(T)] )

The following fixed point theorem is used in what follows.

Theorem 9. [26] Let X and X be, respectively, the open and closed subsets of Banach space U, such that a € X; let
21(x) : X — P o (U) be multivalued and x(x) : X — U be single-valued such that X1 (X )+ x2(X) is bounded. suppose
that

. . . . 1
(a) X2 is a contraction with a contraction n < (5)
(b) x1 is upper semicontinuous and compact. Then, either

(i) the operator inclusion Au € xyu+ xu has a solution for A =1 or,

(ii) there is an element x € 0X such that Ax € y1x+ Yox for some A > 1, where dX is boundary of X.

Now, the main theorem of this section is stated as follows.
Theorem 10. Assume that
(N) F : [a,b] x R — P, (R) is L'-Caratheoolory.
(N2) There exists a continuous function ® € € ([a,b],R") and Q € € (a,b],R") such that

1F(#,x)[| = sup{|x| : x € F(1,x)} < Q1) o(]lx]])

Sor all (t,x) € [a,b] xR,
(N3) Let h : [a,b] x R — R be a continuous functions satisfying

|A(s,x) —h(s,%)| < E|x—%|,Vx,f €R

and & > 0.

(N4) A number T > 0 exists such that

T

— <1
Qw@mA =

where A is defined by equation (20). Then, problem (3)-(4) has at least one solution on [a,b] if EA| < (%)

Proof. Let D ={x € X :||x|| < €} be an open set in X. Define the multivalued operator x; : D — P(X) by
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—1
x1(x) = {z € X :2(t) = 19720 f (1 x(1)) +e 7 POy (1)

[ Clly /am ep%l(ﬁ(m)—zs(r))(@(m)—19(1))7/71 <1a1+az,p,15‘f(r,x(,c)) ¥ (1)dt

/ " 00 (9(3) ()7 (1900 p(z.4(2)) 9/ (1)
n

2

pPYI(y)

Y BIPf (Ga()| e OO [A [ (e p(ax(@) ar (@),
i=1 a

and define the single-valued operator ), : D — X by

- () = _J02PD L (9()—-0(a) a

x2(x) {z €X:z(r) I h(t,x(t))+e P wy (1) [pVF(y)
[ EmI0 (3 (y) — ()7 (1P (1)) B ()T
Ja ’ PYI(y)

/ LR (0 (b) — B(z))"" (—ﬂwﬁh(r,x(r)) ¥ (t)dt+ f &1%P P h(&;,x(&:))
n

2 i=1

b

_er O=2@) [A / (—Iaz’ph(nx(r)))dE(r)} }

Observe that ¥ = x1 + x» and it is given by

2() = {2() € G ([a,bLR) : 2(t) = IUFPD £t x(1)) — 1P h(z, x(2)) +¢ 7 PO (1)

a m p-t =0t —1 ( you+05.p, .p,
oty e T @) = o @) ! (1 fx() ~ 10 (2, (7))

0ar+ B [ OO0 o) g (15 fea()) - 120 Oh(x()

dT—251a1+a2p19f &.x(&)) Zélazpﬂh Eix (‘51))] B PTl(ﬂ(,)_ﬂ(a))

™0 [A / ’ (1"‘1”‘24’”’ £(1,x(7)) —I“Z*P’ﬁh(r,x(r))) dE(r)} € T}

Indeed, if z € x(x), then there exists f € ./, such that
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Frx=1{f €L ([a,b],R") : f(t) € F(t,x(t)), fort € [a,b]} .
We will show that the maps ¥ and yx, satisfy the hypotheses of Theorem 9. We divide the proof in several steps.

Step 1.

We claim that ), is a contraction map. Indeed, let x, % € R, by (N3), we have

/ 2L (9(1)—0(a)) |ai|
V(2)dr+e s e

m p-1 _ T p] (s
/a 57 =0 (9. (Y _(g))7 (IiII{(azl)/ 2 (B(0)-9(s)

o))+ lalle 700~ [ (S

/repT—lw(r)fﬂ(s))(ﬁ(T) _ 0(s))062113’(s)ds> dE(T):|

(8 (m) = 0(a))"* + s '2' W)+ Y13 |—(>
pYT(y — i p®l (o +1)

b _ a))%2
el |1 [ T dpo)] | < gl a1,

which proves that ), is a contraction map, where w, and A are defined in (22) and (25).

Step 2.
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C

21(x) is convex for all x € D. Let z1,22 € x1(x). We select fi, f» € ./, such that, for each ¢ € [a,b], we obtain

p—1 _ a m p—p _
wf) = TP (1 x(r) e PO-2@) [ ! / o272 (3(m)—0(2))
) fitt.x(t) w0 | St |

1 (jutap g / a [ eSLo)-o()
(0m) 02" (1P f(a.x(1)) 0/ (e + oo [

(8(6) ~ 0(2))~! (1952 (7 x()) 0/ (0)dT - Y. SI% - 00 <éi,x<¢i>>]
i=1
e (PO @)y () {A / ’ (1r061+0‘2=f’49 ﬁ(r,x(r)) dE(r)] , fori=1,2.
Lett € [a,b] and ¢ € [0, 1]. So, we have

21+ (1=9)2)(0) =

T p-1
2L D030 (5 (4) — (7)) 102~
o L (3()— (%))

(/1 (7.2(0) + (1= 0) fa(z.x(D))dz 7 PO 1) [ T / " Bt Bm)=3(®)

1
pOC]-‘rOCzF(al + o

(o(m) =9 ()" ( [ () (e

(91 (s,x(s)) + (1 = @) fa(s,x(s)) 19’(5)615) ¥'(z)de

m

_25. !
&7 \puter () + o)

& p—1 .
/a e'r PO (5 (&) — 0(s) 2 (9 fi(5,x(5)) + (1 0) fa(s.x(s)) ﬂ’(S)dS)]

=L (9(r)— b 1 T ool (y(r)—
_ o (3()-0() A / / (B(1)-9(s))
e’ “2(t)[ ; <pa|+oczl“(a1+a2) W ¢ !

(9(7) = 0 (s) M2 (@ fi(5:x(5)) + (1= 9 fo(5,x(s))) ¥ (s)dsdE(7)]
Since .7F is convex, it follows that ¢z; + (1 — @)z» € x1(x) and then ¥ (x) is convex-valued.

Step 3.
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X1 is compact and upper semi-continuous. This will be done in various statements. First, we show that | maps
bounded sets into bounded sets in X. For a positive number ¢, let B. = {u € X : ||x|| < ¢} be a bounded ball in D.
So, for all z € y1,x € B, a function f in € .#F,, exists such that

. =L (1)-d(a ai M =1 y(ny)—0(1))
20) = 1900 (1 () 4 (PR @) [ / S5 o0

1 (jer+anp, / @ [* 2 om)-v()
(0.(m) ()" (14520 (x,x(0)) o' (D + o [ o'

(8(6) D)7 (1720 f(z,x(7) ) ¥ (2)de - i5i1°”+°‘2””ﬁf(§i,x(éi))]

i=1

e PO ) [A / ’ (I“ﬁ"‘z””ﬂf(nx(f))dE(T)] :

a

By using (N,), for each 7 € [a,b], we have

1 ) /t(ﬁ(f) = 9()) e f(7,x(7) [0 (T)d T+ | (1)

Nl <
)] pater (o + o

|ai | m —1 1 ! o+ — ’
{PYF(Y)/a (Bm) = B{@)” (p“1+°‘21"(a1+a2)/a (B() = d()™* 1|f<s’x(s>)w(s)ds>

/ |a2| b — 1 K o +op—
v(@art s [ 00 0@ (Cammpgrray [, 00 -2

n Gi
o9 01ds) + 32131 (oo | (@) - 06 If(s,X(S))Iﬁ"(S)dS>]

i=1

a1 [ (arsanr gy (916~ 90 (s[5 ) dE (5

(9(b) — D)+ @ ()= @) e

TRAANS RS T
p?T(y ' p“1+0‘21“ a+on+1)

el [l [ ( piffﬁfr‘(ﬁf?ﬁifi)) av(@)] ).
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where (w) defined in (22), consequently

2]l < 12f|A2 ([[x[})-

Then, we prove that y; maps bounded sets into equicontinuous sets, where A, is defined in (26). Let u;,us € [a,b]
with u; < up and x € B¢, we have

/ (9 () = B(2) M = (8 (1) — B(2)) BTN

_ <
|z(u2) Z(“1)|\pa1+a2[‘(a1+062) a

[f(z.x(0) 9 (1)dT+

/u2 (8 (u2) = 0(0)) "7 f(7,x(2)) | ' (1)d T

pataT (o + o) Ju,

|ai | 1

lan o) = ) [ [ 0 ) =00 (S g |, (0200

1
(a1 + )

/ ’ |az| b _
s 5)as) o' e+ - 2L [ o)~ 00 (o

[0 = 06 a(5) 1901 ) (e

g
+Z| N Gormrra e /. (96— ) (x| (s)ds)

s )= s )| [A] [ (ot ar [ (000~ 960D (o610 ()as ) aB (o)

2( (u) — O (1)) 4+ (& () — ¥ (@))% — (O (ug) — H(a)) %)
poteT (on +op+1)

<

jar| (8 (m) = 9(@) 2T ) v (5
PUFTRHT (o + 0 +y+1) | p'T(7) =

+ [t (u2) — o (ur)| [

(9 (&) —B(a))™ "
patal (ap+o0p+1)

(1) — B(a)) "2
potoel (o +oap+1)

s )~ ) [ [ (28

(8(2) — D)™
P )]
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In the above inequality, the right-hand side tends to zero independently of x in B¢ as up — u;. Consequently, by the
Arzela-Ascoli theorem, it is concluded that y; : D — P(X) is rendered completely continuous, and thereby, y; is considered
completely continuous.

Finally, we show x; has a closed graph. Let (x,,2,) — (xx,2+). It is demonstrated that z belongs to x; (x). Since
Zn € X1 (%), there exists z, € F,, such that for each ¢ € [a,b], we find that

P ()0 (a ar (M eS(o(m)-o(z)
a(f) = 1900 £ (1 (1)) 4 o5 PO 2@ [ / 55 (00m
() (t,x(1)) m) | Sy

(19(171) _ 0(7))771 (1a1+a2,p719fn(r’x(,c))) ﬁ/(f)d’f—i— pycliz(y) /T:eppl(ﬂ(b)—ﬁ(f))(ﬁ(b) _ 19(7))7/*1

(IO”+a2’pfn(T,X(T))19/(T)dT— i 5i1a1+a27p-,19fn(§ijx(éi))] _epp;l(ﬂ(t)—ﬂ(a))uz(t>
i=1

[A / ’ (zalwpvﬂ f,,(r,x(r)) dE(r)} .

Now, we have to show that there exists z, € .#F, such that

_ qoi+op,p,v = 9 Ba 1 ! p—l(ﬁ(” )=0(1))
Zs =" 2:F» ‘f* t,.xt +e P (%) ( ))u t |: / e P !

b p-1
() — ()" (19+2P? £ (2 x(1)) O (1)dT + —2 /eTw)fﬂ(r))
(8 () = v(@)" ( f(Ex() o' (e + s [

(8(6) B0 (19202 . (1,x(2)) O ()T — Y. 540 <&,~,x<<;->>]
i=1

a

T 0@ ) {A / ’ (IW“W’ f*(f,x(r)) dE(‘L')} :

Consider the continuous linear operator ® : L' ([a,b],R) — X given by
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. p—1 (1) 0(a)) ajg m E(ﬂ(nl)_ﬂ(f))
f—O(f) (1) = 19+2PP £t x(t) +e 7 | ! / ¢’
(N)e) (1,x(1)) MO | 5

(¥ (m)—0d(1)"! (127 f(z,x(7)) ' (t)d T + chll“z(y) /T:eppl(ﬁ(b)—ﬂ(r))

i=1

(8(6) ~ 0(2))"! (19229 f(z.x(2)) ¥/ (2)dz - Y azmwﬁpﬂf(éi,x(éi))]

1 b
_ ePT(ﬁ([)—ﬁ(a))’LQ(t) |:A/ (Iot]Jraz,Pﬁf(r,x(T)) dE(T):| .
Note that

195 (£, (0x(0) — £ (1,x(1)) + ¢ 7 POP@) )

l[za(t) = z«(1)| = sup
t€la,b]

[ ai /m eprlw(m_ﬂ(r))w(m) —¥(1))r! (147%2P (f,(7,x(7) — fu(T,x(7)) O/ (7)dT

+ / 7 OO0 (35 — ()7 (199 (£, (1,1(7) — £ (1,x(0))) O (e
n

—i6,-1“'+“27P4’<fn<5i,x<5,-> —f*(iiJ(é))] el PO 4y

)

4 [ (123 ((ea(s) - (52 (o)

a

which goes to zero , as n — oo, It follows by Lemma 2 that ® o .%% is a closed graph operator. Furthermore, we obtain
zn(t) € O (SFy, ). Since x, — x,, we have
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24(t) = 19492 £, (1 x(1)) -7 POy 1) [ a /'m 5t (B(m)=0()

(9 () — (1)~ (19F 2P £, (1,x(7)) ' (T)dT+ —2 /"e%"<ﬁ<b>—ﬂ(r>
n

(3(6) — 0(2)7" (1% @0 £, (z.x(1)) ' (D)dx - Y. B1P 0, (éi,x@»]

i=1

00, [A /b (1@ £, (2, x(1)) dE(T)] 7

for some z, € .%F,,. Hence, x| has a closed graph (and therefore has closed values). Hence, we conclude that y; is
compact multivalued map, upper semicontinuous with convex closed values.

Step 4.

There exists an open set Q C € ([a,b],R) with x ¢ A y»(x) for any A > 1 and for each x € dQ. Take A > 1. Letxbe a
solution of (3)~(4) , then, a function f € L!([a,b],R) satisfying f € .7F. exists, and for ¢ € [a, b], the following relationship
holds:
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_ 1 e (0)-0(0) (1) _ o+ )
0= aar e )¢ (3(r) — B(0)“ % f(z,x(2)) ' (7)d

L[ B 0090 9011 — (e ,
s [ €7 00~ 0@ e (o) (e

1 n -1
o5 O3 (1) [p;ll"](y)/a L B2 (5 ) (1))7!

1 Topt T)—(s o +op— l
Gamararay 7 * " 0@ = 2% .x(5) (5)ds

T —
_pazrl & / e”p]<”<T>"’<S>>(19(r)—19(s))azlh(s,x(s))@’(s)ds) ¥ (t)dT
2) Ja
L@ /”e%'w(b)—ﬁ(r))w(b)_@(T))y—l( ! /Te%'w(r)—zmn
p2L(y) Jny patal(on+a) Ja

i p%«xz) /are%l’(f)*l’“”(ﬁ(r) —9(s))% " h(s,x(s))

m & poi )
9 6)is) (e~ L 8 Sz [, <7 (980" 0at)

i=1

1 & p-1 )
ﬁ/(s)ds) + ; O; (paZ;(az) /u e 7 (0(5)=0() (O (&) — ﬁ(s))az_l h(s,x(s))ﬁ%s)ds)]

p—l1 _ b 1 T pl Y
_ (B(1)—0(a)) =19 (0)—0(s)) _ o tar—1
e ) [A / (palwzr(mm) | e (B(2) = B(s) ™ ! f(s,x(s))

1

/ _ L [T OO0 (900) — 9(s)) @ (s x(s)) S (5)ds
0s)ds— s [ (95) = D(5)™ h(5.xs))0(0)ds ) ().

Therefore,
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(8(b) — V¥ (a))0+e (k) =d@)® |
atol (o +oap+1) paI (ap+1) H

()] < HQII(D(IIXID{p

jar] (8 (m) — B(a) ™" a1
patet(a+om+y+1)  prrel(y+om+1)

(¥ (m) - 0(a)""

2] 2o (&)= B(a)M
- p"T(y) s +W2)+,§1 &l (pa1+azr(a1 +op+1)

+(l9(€i)*l9(a))°‘2)}+”“2” [|A|,/ab( (B() = B(a)) M (19(‘5)19(0))“2>

p2I (op+1) putal (o +a+1)  pal(onp+1)

dE(r)} }

<[l (lix)A,

which implies

W,
(kDA

Using the assumption (N4), there exists T > 0 such that ||x|| # 7. Define a set Q = {x € € ([a,b],R) : ||x| < t}.
It should be noted that the operator y; : O — P(X) is a compact multivalued map, upper semi-continuous with
convex closed values. With the selected Q, the existence of x € dQ satisfying x € A y(x) for some A > 1 is not possible.

As aresult, a fixed point x € Q is attained by the operator  (x), which serves as a solution to the boundary value problem
(3)-4). [

5. Examples

The following examples illustrate the possibility of applying the research results in numerical simulations.

Example 1. Consider the following boundary value problem with (CFPDs):

D22 (D3 20%(1) +h(r,x(1))) = f(,x(2)),t € [0, 1],

x(0) =A61x],
1 1 p-1 . 27
Y. 54(8) = Spy o [ €7 M 0im) — 0(0) @)D e e 7
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1 1 1 1 5 1 1 1 1
Wherea:oabzlaal =72,0=7,p=7M :57772:5,51 :1762:3751 :§a€2:§7a1 :17a2:27Y:ZaA:ZaW1 =

5.186759689, w, = 3.837868325,E (1) = 12, 9(7) = 12+ 5. With the provided values, we conclude that A ~ 12.31618167
and A1 ~9.174273532(A and Ay given by (20) and (21).

Let
e |x| 5 cost e’
SR . E— 2)oh(tx) = — e [ S tsinx . 28
ft,x) 0 (3(1+|x)+ xcosx—i-3>7 (2,x) 1 36+t2<10 +smx> (28)
Then
€_3t 1 5 e—3t
) <S— (242 )< =P
el < S (52043 ) < g (1) =PI,
h(t.2)] < — ot (1 +||x||> = Pi(6) @i ([[x[])
= 436+ 2 \ 10 D,
with
e 1
= < —
R =5 <3
P(l‘)—¥<i
T Be 2 T 24
Clearly

1 1 1
1Pl = 57: 1Pl = 55, P = max {P1, P} = 5, ¢ = max {1, 92} = 1+ x]].

Based on (H,), we find that M > 1.602872575. Since all the condition of Theorem 6 are satisfied, the boundary value
problem (27) has at least one solution on [0,1] with f(t,x) and h(t,x) given by (28).

Example 2. Consider the boundary value problem (27) with

ft,x)= L sin(x) + e cos(t),

30
(29)
et |y 1
h(t,x) = —.
)= 20T 1o
Then
! 1
ht,x)| < 5——=+==M(t
he0)| < 55+ 5 = M),
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Therefore,

1
_ < —lx—
It = h(e,)] < 55—l

1
700 = £6.3) | < 551k =]l

Obviously

9

31 31 1
N%a]l = 354 = max{A. 20} = 35 L= max{Li, Lo} = 55, LA ~0.3058091177 < 1.

Obviously, the hypotheses of Theorem 7 all hold. Therefore, we can infer that the boundary value problem (27) has at
least one solution on [0, 1] with f(t,x(t)) and h(t,x(t)) given by (29).

Example 3. Using the data for Example 2 , we find that

LA ~0.4105393890 < 1.

Finally, one can notice that boundary value problem (27) with f(¢,x(¢)) and h(z,x(¢)) given by (29) has a unique
solution on [0, 1] as the hypothesis of Theorem 8 holds true.

6. Conclusions

In this article, we have obtained some results for a Caputo fractional proportional type nonlinear boundary value
problem coupled with Caputo fractional proportional type slit-strips and Riemann-Stieltjes integral boundary conditions.
Our first results deal with single-valued maps and are obtained by applying Leray-Schauder nonlinear alternative fixed
point theorem, Karasnoselekii’s fixed point theorem, and Banach contraction mapping principle. The second result is
concerned with multivalued maps and is established by means of another version Karasnoselekii’s fixed point theorem.
Our results correspond to several special classes of the problem at hand mentioned in Remark 1.
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