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Abstract: This paper introduces a state of the art investigation into the interaction between soliton propagation and 
differential group delay, offering a fresh perspective often neglected in previous studies. Motivated by the imperative to 
comprehend soliton behavior within inter-modal dispersion environments, it presents three innovative methodologies 
aimed at uncovering novel optical soliton solutions. Through the utilization of cutting-edge algorithms, these approaches 
unveil the emergence of solitons in hitherto unexplored contexts. The research makes significant strides through 
extensive numerical simulations, which not only validate theoretical conjectures but also offer practical insights. 
Furthermore, it delineates crucial parameter limitations essential for the existence of solitons, thus furnishing valuable 
guidance for future research endeavors and practical applications. 
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1. Introduction
One of the inherent hindrances of soliton transmission across trans-continental and trans-oceanic distances is 

the effect of differential group delay, which, in its cumulative form, leads to the effect of birefringence. Thus, the 
effect of pulse-splitting ensues, and the solitons are split into two components. The scalar version of the governing 
nonlinear Schrödinger’s equation (NLSE) is now formulated into two components, yielding cross-phase modulation 
(XPM) in addition to the pre-existing self-phase modulation (SPM). The current paper will address such a model with 
an additional optoelectronic effect that will be considered. It is the inter-modal dispersion that exists along the first 
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component of birefringence only, hence the title of the paper. 
This study addresses the coupled NLSE to obtain its optical soliton solutions using three integration algorithms: 

the csch-function approach, the extended simplest equation method, and the tanh-coth scheme. While innovative, the 
csch-function method, the extended simplest equation method, and the tanh-coth approach have limitations. They may 
struggle to capture certain nuances of soliton behavior, particularly in highly complex scenarios. Additionally, their 
applicability could be restricted in situations where nonlinear effects dominate or when dealing with certain types of 
dispersion. While they have limitations, the csch-function, the extended simplest equation, and tanh-coth methods offer 
efficient and systematic approaches for exploring soliton behavior. They provide valuable insights into soliton dynamics 
across diverse scenarios and parameter regimes, thereby enhancing our understanding of their behavior. A wide range 
of approaches was implemented in the past to study various nonlinear dynamical structures more proficiently [1-2]. 
Analytical techniques strive to locate exact mathematical solutions to nonlinear evolution equations (NLEEs), even 
if they are rendered non-integrable through the Painleve test. Due to the complexity of NLEEs, simpler analytical 
solutions are frequently required. The traveling wave approach involves employing specific strategies to identify exact 
solutions for particular NLEEs by focusing on solutions that display distinct traveling wave characteristics. Examples 
include Kudryashov’s approach [3-4], the improved Q-expansion strategy [5], the sine-Gordon expansion method [6], 
the modified simple equation method [7], the generalized exponential rational function method [8], the Riccati equation 
method [9], the auxiliary equation method [10], the unified method [11], the improved F-expansion technique [12], the 
exp(-ζ(ξ)) expansion technique [13], the Khater method [14], and the homotopy analysis transform method (Hatm) [15].

It needs to be noted that such forms of integration architectures are the ones that have been reported during the 
past couple of decades or so. One must not forget the classic methodologies of integration that were applied to reveal 
soliton solutions for decades before this variety of integration techniques came into existence. These include the 
inverse scattering transform (IST) and Hirota’s bilinear approach, among others. The advantage of IST is that it can 
yield N-soliton solutions to any model as long as these NLEEs pass the Painleve test of integrability. This is only for 
reflectionless potential. However, in alternative circumstances, it is the soliton radiation that is the essential component 
of soliton solutions. The retrieval of the complete soliton solutions package is absolutely not possible by any of the 
integration strategies listed above in the previous paragraph. Therefore, those methodologies listed in the previous 
paragraph are not robust in every sense of the word. It must nevertheless be noted that IST does have its own limitations. 
This scheme fails to retrieve soliton solutions when SPM is of a non-Kerr type, such as power-law, parabolic-law, 
polynomial-law, dual or triple-power law, or anti-cubic law, or even logarithmic law, among several others. Moreover, 
IST does not integrate NLSE in dispersion-flattened fibers or for additional optoelectronic devices such as magneto-
optic waveguides or for optical metamaterials. Additionally, it is not applicable to retrieve gap solitons in fiber Bragg 
gratings. Thus, the extreme need and necessities gave way to the modern methods of integrability that have expanded 
the horizon in quantum optics.

2. Governing equations
Consider the second order coupled NLSE (C-NLSE) equation [1]:

iψt + iαψx - βψxx + (|ψ|2 + σ|Φ|2)ψ = 0,

and 

iΦt + βΦxx + (|Φ|2 + σ|ψ|2)Φ = 0.

In this case, the functions ψ(x, t) and Φ(x, t) represent the unfamiliar complex functions. Here, α represents 
the inter-modal dispersion along the first component, while β characterizes the chromatic dispersion along the two 
components of the optical fiber, and σ denotes the XPM parameter.

This paper introduces new insights into soliton propagation with (1) and (2) by examining its interaction with 

(1)

(2)
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differential group delay, a previously overlooked factor. Motivated by the desire to understand soliton behavior in the 
presence of inter-modal dispersion, the study presents three novel approaches to reveal previously undiscovered soliton 
solutions. These methods employ advanced algorithms to explore soliton emergence in uncharted territory. The findings 
are validated through numerical simulations, providing both theoretical and practical insights. Additionally, the paper 
identifies key parameter constraints that are essential for ensuring the existence of these solitons, offering valuable 
guidance for future research and applications.

3. Travelling wave solution
The solutions of Eq. (2) are supposed as 

ψ(x, t) = u(ξ)eiθ(x, t)

and

Φ(x, t) = v(ξ)eiθ(x, t)

where ξ = x - γt and the phase component is θ(x, t) = -kx + ωt +θ0. Also, u(ξ) and v(ξ) are the amplitude components of 
the wave. Moreover, γ is its speed, k is the soliton frequency, ω is its wavenumber and θ0 is the phase constant.

Using Eqs. (3) and (4) and their derivatives, Eqs. (1) and (2) can be decomposing into real and imaginary parts that 
yield a pair of relations. 

The real parts of Eqs. (1) and (2) stick out as

-βu'' + (αk - ω + βk2)u + u3 + σuv2 = 0,

and

βv'' - (ω + βk2)v + v3 + σvu2 = 0.

Also, the imaginary parts appear as

-γ + α + 2βk = 0,

and

γ + 2βk = 0.

From Eq. (7), we get

γ = -2βk, α = -4βk.

Then Eqs. (5) and (6) become:

-βu'' - (ω + 3βk2)u + u3 + σuv2 = 0,

(3)

(4)

(5)

(7a)

(6)

(7b)

(8)

(9a)
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and

βv'' - (ω + βk2)v + v3 + σvu2 = 0.

4. Methodology
In this section, we will apply three different methods to solve Eqs. (5) and (6). These methods are the csch-function 

method, the tanh-coth method, and the extended simple equation method.

4.1 Csch function method 

The solutions of many nonlinear equations can be expressed in the form [16]:

u(ξ) = A1cschp1(μξ),

and

v(ξ) = A2cschp2(μξ),

and their derivatives stand as

u'(ξ) = -A1 p1 μcschp1(μξ)coth(μξ),

u''(ξ) = A1p1μ
2((p1 + 1)csch 

p1+2(μξ) + p1csch 
p1(μξ)),

v'(ξ) = -A2 p2 μcsch 
p2(μξ)coth(μξ),

v''(ξ) = A2 p2 μ
2((p2 + 1)csch 

p2+2(μξ) + p2csch 
p2(μξ)),

(12)

(13)

(14)

(15)

where A1, A2, p1, p2, and μ are parameters to be determined, and μ is the wave number. We substitute Eqs. (10)-(15) into 
the reduced equations (5-6), then we get

(16)

  βp1μ
2((p1 + 1)csch 

p1+2(μξ) + p1csch 
p1(μξ)) + (ω + 3βk2)csch 

p1(μξ) -

  A1
2csch 

3p1(μξ) - σA2
2csch 

p1+2p2(μξ) = 0,

and

(17)

  βp2 μ
2((p2 + 1)csch 

p2+2(μξ) + p2csch 
p2(μξ)) - (ω + βk2)csch 

p2(μξ) +

  A2
2csch 

3p2(μξ) + σA1
2csch2

 
p1+p2(μξ) = 0.

Equating the exponents and the coefficients of each pair of the Csch functions, we find

(9b)

(10)

(11)
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3p1 = p1 + 2p2,

3p2 = p2 + 2,

then

p1 = p2 = 1.

We then collect all terms in Eqs. (16) and (17) with the same power in cschk(μξ) and set their coefficients to zero to 
obtain a system of algebraic equations among the unknowns A1, A2 and μ, leading to the following system:

2βμ2 - A1
2

  - σA2
2 = 0,

2βμ2 + A2
2

  + σA1
2 = 0,

βμ2 + (ω + 3βk2) = 0,

βμ2 - (ω + βk2) = 0. (20)

Solving the system of equations in (20), we get:

(21)2
1 2

2 2, , , 2 .
( 1) (1 )

A k A k ik kβ β µ ω β
σ σ

= = = = -
- -

  

Thus, singular soliton solutions come out as

(22)( )
2

0( 2 )
1

2( , ) Csc ( 2 ) , 1,
( 1)

i kx k tx t k k x kt e β θβψ β σ
σ

- - += ± + <
-

and

(23)( )
2

0( 2 )
1

2( , ) Csc ( 2 ) , 1.
(1 )

i kx k tx t k k x kt e β θβ β σ
σ

- - +Φ = ± + >
-

4.2 Extended Simple Equation Method (ESEM)

In this section, the extended form of the simple equation method (ESEM) is introduced to obtain the traveling wave 
solutions [5-6]. 

Step 1: Consider the wave forms ψ(x, t) and Φ(x, t) as in complex form in Eqs. (3) and (4). 
Step 2: The forms of the solution for Eqs. (5, 6) appear as

1( ) ( ),j N j
jju B fξ ξ=

=-= ∑ (24)

(18)

(19)
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and

1( ) ( ).j M j
jjv D fξ ξ=

=-= ∑ (25)

Here, Bj and Dj are real constants.
Step 3: Find the positive integers N and M appearing in Eqs. (24) and (25) by employing the balance rule between 

the non-linear terms of Eqs. (5) and (6) and the highest-order derivative. 
Step 4: Suppose that Eqs. (24) and (25) satisfy the following differential equation: 

(26)[ ]2
0 1 2( ) ( ) ( ) ,'f b b f b fξ ξ ξ= + +

where b0, b1 and b2 are arbitrary constants.
Step 5: For different values of bi, the solutions of Eqs. (5) and (6) are given below:
When b0 = 0: 

(27)
1 0

1 0

( )
1

1( )
2

( ) , 0,
1

b

b
b ef b

b e

ξ ξ

ξ ξξ
+

+
= >

-

and

(28)
1 0

1 0

( )
1

1( )
2

( ) , 0.
1

b

b
b e

f b
b e

ξ ξ

ξ ξξ
+

+
= - <

+

When b1 = 0:

(29)( )( )0 2 0 2 0
0 2

2

tan
( ) , 0,

b b b b
f b b

b

ξ ξ
ξ

+
= >

and

(30)( )( )0 2 0 2 0
0 2

2

tanh
( ) , 0.

b b b b
f b b

b

ξ ξ
ξ

- - +
= <

The general solutions are

( )2 2
0 2 1 0 2 1 0 1

2
0 2 1 2

2

14 tan 4
2( ) , 4  and 0,

2

b b b b b b b
f b b b b

b

ξ ξ
ξ

 - - + - 
 = > >

(31)

and
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(32)( )2 2
0 2 1 0 2 1 0 1

2
0 2 1 2

2

14 tan 4
2( ) , 4  and 0.

2

b b b b b b b
f b b b b

b

ξ ξ
ξ

 - - + + 
 = > <

Step 6: By inserting Eqs. (24) and (25) along with Eq. (26) into Eqs. (5) and (6) and equating the coefficients 
of powers of  f 

j to zero, a system of equations is obtained. This set of equations is then solved to obtain the values of 
constant parameters. With these constant values and the  f (ξ) values, the solutions of Eqs. (5) and (6) can be achieved.

4.2.1 Solution by Extended Simple Equation Method (ESEM)

To find the values of N, apply the homogeneous balance principle to Eq. (9). By balancing u'' and u3, we get N + 
2 = 3N, then N = 1. Similarly, balancing v'' and v3 yields M + 2 = 3M, then M = 1. Thus, u(ξ) and v(ξ) have the forms 
given below: 

(33)1
0 1 1( ) ( ), 0,

( )
B

u B B f B
f

ξ ξ
ξ
-= + + ≠

and

(34)1
0 1 1( ) ( ), 0,

( )
D

v D D f D
f

ξ ξ
ξ
-= + + ≠

where Bj and Dj ( j = -1, 0, 1) are constants.
Substitute Eqs. (33) and (34) and their derivatives into Eqs. (5) and (6) to get:

( ) ( ) ( )

) ( )

( )

2
2 20 1 0 1 1 1

1 0 2 1 2 1 0 1 1 1 0 2 13 2

3 2
2 2 3 2 1 1 1

1 2 1 2 1 0 1 03 2

2
2 3 2 2 2 3 31 1

1 0 0 1 1 0 1 1 0 1 0 1 1

2 3
2 2

3 2 3 ( ) 3
( )

3 3 6 3 3

b B b b B Bb b b b b B b b B B b b b f
ff f

B B Bb b B f b B f k B B f B
f f f

B B
B B B B B B B B B B f B B f B f

f f

β

ω β ξ
ξ

- - -
-

- - -

- -
- -


+ + + + + + + +



 
+ + + + + - + +    


+ + + + + + + 



( ) (

))

2 0 01 1 1 1
1 1 0 1 1 1 03 2 2 2

2 2 21
1 0 0 1 0 1 1 0 1 1 1

2 3
0 1

2 2
( ) ( )( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( )
( )

( ) ( ) 0,

B BB B B BB B B B B B B
f ff f f f

B
B f B B B f B B B B f B f B B f

f

B f B f

σ
ξ ξξ ξ ξ ξ

ξ ξ ξ ξ ξ
ξ

ξ ξ

- - -
- - -

-
- -

-

     
 + + + + + + + +             

 
+ + + + + + + + 

 

+ = (35)
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and

( ) ( ) ( )

) ( )

( )

2
2 20 1 0 1 1 1

1 0 2 1 2 1 0 1 1 1 0 1 13 2

3 2
2 2 3 2 1 1 1

1 2 1 2 1 0 1 03 2

2
2 3 2 2 2 3 31 1

1 0 0 1 1 0 1 1 0 1 0 1 1

2 3
2 2

3 2 ( ) 3
( )

3 3 6 3 3

b B b b B Db b b b b D b b D D b b b f
ff f

D D Db b D f b D f k D D f D
f f f

D DD D D D D D D D D D f D D f D f
f f

β

ω β ξ
ξ

- - -
-

- - -

- -
- -


+ + + + + + + +



 
+ - + + + + + +    


+ + + + + + + 



( ) (

))

2 0 01 1 1 1
1 1 0 1 1 1 03 2 2

2 2 21
1 0 0 1 0 1 1 0 1 1 1

2 3
0 1

2 2
( ) ( ) ( )( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( )
( )

( ) ( ) 0.

D DD D D DB B B D B B D
f f ff f f

DD f B D D f B B D D f D f B D f
f

D f D f

σ
ξ ξ ξξ ξ ξ

ξ ξ ξ ξ ξ
ξ

ξ ξ

- - -
- - -

-
- -

+

     
 + + + + + + + +           

 
+ + + + + + + + 

 

+ = (36)

A set of algebraic system equations is obtained from Eqs. (35) and (36) for different orders of  f 
j( j = -3, -2, -1, 0, 1, 

2, 3), as presented below:

( )

( ) ( ) ( ) (

)

( ) ( )( ) ( ) ( )(

( ) ( )

2 2 2
0 1 1

2 2
0 1 1 0 1 1 0 1 0 1

2 2 2 2 2
1 0 2 1 1 1 1 0 1 1 1

2
1 0 0 1 1 1 0 1

2 3
1 2 1 0 1 1 0 0 1 1 0 1 0 1

2
1 1 0 0 0 0

2 0,

3 3 2 0,

2 3 3 3

2 2 0,

5 6 2

2 2

b B D

b b B B B D B D D B

b b b B k B B B B B D B

D D B D D B D B

b b B b b B k B B B B B D D B

D D B D B D D

β σ

β σ

β ω β σ

β ω β σ

- -

- - - - -

- - - - -

- - - -

- - -

-

- - =

- - + =

+ + + - + - +

+ + =

+ + + - + - +

+ + ( ))

( )( ) ( )( ) ( )( ) ( )(

( ) ( ) )

1 1

2 2 2
1 0 2 1 1 1 1 0 1 1 1 1

2 2
0 1 0 1 0 1 1

0,

2 5 3 2

2 0,

B

B b b b k B B B B B D D B

D B D D B D B

β ω β σ

-

- -

-

=

+ + + - + - +

+ + =
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( ) ( ) ( )( )2 2
1 2 1 0 1 0 1 1 1 0

2 2 2
2 1 1

3 3 2 0,

2 0,

b b B B B D D B D B

b B D

β σ

β σ

- - + =

- - =

( ) ( ) (

)

( ) ( ) ( ) (

2 2 2
0 1 1

2 2
0 1 1 0 1 1 0 1 0 1

2 2 2 2 2
1 0 2 1 1 1 1 0 1 1 1

2
1 0 0 1 1 1 0 1

2 3
1 2 1 0 1 1 0 0 1 1 0 1 0 1

2
1 1 0 0 0 0 1

2 0,

3 3 2 0,

2 3 3

2 2 0,

6 2

2 2

b D B

b b D D D B D B B D

b b b D k D D D D D B D

B B D B B D B D

b b D b b D k D D D D D B B D

B B D B D B B D

β σ

β σ

β ω β σ

β ω β σ

- -

- - - - -

- - - - -

- - - -

- - -

-

+ + =

+ + + =

+ - + + + + +

+ + =

+ - - + + + +

+ + )

( ) ( ) ( ) ( )(

)

( )

1

2 2 2
1 0 2 1 1 1 1 0 1 1 1 0 1

2 2
0 1 0 1 0 1 1

2 2
1 2 1 0 1 0 1 1 1 0

2 2 2
2 1 1

0,

2 3 2

2 0,

3 3 2 0,

2 0.

D b b b k D D D D D B B D D

B D B B D B D

b b D D D B B D B D

b D B

β ω β σ

β σ

β σ

-

- -

-

=

+ - - + + + + +

+ + =

+ + + =

- - = (37)

Case I
When b0 = 0 we get

2
1 0 1 2 1 0 1 20, 0, , 0, 3 , ,

2 2
B B B b D D k D bβ ββ- -= = = = = - =

(38)2
1, 3, 2 .k b kω β σ= - = - = -

Family I

(39)( )
( )

( )
( )2

0
2 2 2

2 2 2 2
2

exp, 2 exp ,
1 exp

k x kt i kx k t

k x kt
x t b k

b

β β θ

β
ψ β

- + - - +

- +
=

- +
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and

(40)( )
( )

( )
( )2

0
2 2 22

2 2 2 2
2

exp, 3 2 exp .
1 exp

k x kt i kx k t

k x kt
x t k b k

b

β β θ

β
β β

- + - - +

- +

 
 Φ = - +
 - + 

Family II

( )
( )

( )
( )2

0
2 2 2

3 2 2 2
2

exp, 2 exp ,
1 exp

k x kt i kx k t

k x kt
x t b k

b

β β θ

β
ψ β

- + - - +

- +
=

+
(41)

and

( )
( )

( )
( )2

0
2 2 22

3 2 2 2
2

exp, 3 2 exp .
1 exp

k x kt i kx k t

k x kt
x t k b k

b

β β θ

β
β β

- + - - +

- +

 
 Φ = - +
 + 

(42)

4.3 Tanh-Coth method 

Assume u = u(ξ), by using the ansatz, [17]

( )tanh ,Y ξ= (43)

that leads to the change of variables:

( )21 ,du duY
d dYξ

= - (44)

and

( ) ( )
2 222 2

2 22 1 1 .d u du d uY Y Y
dYd dYξ

= - - + - (45)

For the next step, assume that the solutions for Eqs. (5) and (6) are expressed in the form

( ) 1 1
0 1 ,P Pi i

i ii iu Y a Y b Y -
= == +∑ ∑ (46)

and

( ) 2 2
0 1 ,P Pi i

i ii iv Y c Y d Y -
= == +∑ ∑ (47)

where the parameters P1 and P2 can be found by balancing the highest-order linear term with the nonlinear terms in the 
reducing equation, as described below:
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1 1 1 2 1 1 22 3 , 2 2 , then 1.P P P P P P P+ = + = + = =

Tanh-Coth method admits the use of the finite expansion for:

(48)( ) ( )1
0 1 1 ,u Y a a Y b Y -= + +

and

(49)( ) ( )1
0 1 1 ,v Y c c Y d Y -= + +

where a0, a1, b1, c0, c1 and d1 are constants to be determined. Substituting Eqs. (48) and (49) with their derivatives into 
Eq. (9), we get

(50)

( )( )

( ) ( )

( )

3 3 1 2 1 3
1 1 1 1 0 1 1 0

2 2 2 3 3 2 1
0 1 1 1 1 1 0 0 1 1 1 1 1 0

2 2 3 3 2 2
0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1

2 2
0 1 0 1 1 1 1 0 1 1

2 3

6 3 3 3

3 2( ) 2 ( )

2 2

a Y a Y b Y b Y k a a Y b Y a

a a b a b a a Y a a Y a Y b a b a Y

a b Y b Y a c a c d c a d c b c d a c

a c c d a c d c a c b

β ω β

σ

- - -

-

- -

  - + + - + + + + - +  

+ + + + + + +

 + - + + + + + + 

+ + + + (

) ( )

2
1 0 1 0 0 1 1 1 1

2 1 2 2 2 2 2 3
1 1 1 1 0 1 1 0 1 0 0 1 1 1 1

2 3
1 1

2 2

2 ( ) 2

0,

Y a d c c b b c d

d a Y a c c d c a Y d a c b d Y c a Y

d b Y

- -

-

 + + + +

 + + + + + + + 

 =

and

(51)

( )( )

( ) ( )

(

)

3 3 1 2 1 3
1 1 1 1 0 1 1 0 0 1 1

2 2 2 3 3 2 1 2 2
1 1 1 0 0 1 1 1 1 1 0 0 1

3 3 2 2
1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0

2 2
1 1 1 1 0 1 1 1

2 6

3 3 3 3

2( ) 2 ( ) 2

2

c Y c Y d Y d Y k c c Y d Y c c c d

c d c c Y c c Y c Y d c d c Y c d Y

d Y c a c a b a c b a d a b c a c a a

b c a b a c a d

β ω β

σ

- - -

- -

-

  - + + - - + + + + + +  

+ + + + + + +

 + + + + + + + + 

+ + + ( )

( )

2 2 1
0 1 0 0 1 1 1 1 1 1

2 2 2 2 2 3 2 3
1 1 0 1 1 0 1 0 0 1 1 1 1 1 1

2 2

2 ( ) 2 0.

Y c b a a d b a d b c Y

c a a b a c Y b c a b d Y a c Y b d Y

-

- -

 + + + + +

  + + + + + + =  
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Equating expressions at Y i, (i = -3, -2, -1, 0, 1, 2, 3), to zero, we have the following algebraic system equations:

(52)

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 2
1 1 1 1

2 2
0 1 1 0 0 1 1

2 2 2 2
1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1

2 3 2
0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1

2 2 2
1 1 1 1 1 0 0 1 0 1

2 0,

3 2 0,

2 3 3 2 2 0,

3 6 2 2 0,

2 3 3 2

b b d b

a b d a c b d

b k b b a b a a d c c b b c d d a

k a a a a b a c a c d c a d c b c d

a k a a b a a a c a c c

β σ

σ

β ω β σ

ω β σ

β ω β σ

- - =

+ + =

- + + - + - + + + =

 + - + - + + + + = 

- + + - + - + ( ) 2 2
0 1 1 1 1 0 1 1 1

2 2
0 1 1 1 0 1 1 0

3 2
1 1 1

2 0,

3 2 ( ) 0,

0,

d a c d c a c b

a a a c c d c a

a c a

σ

σ

 + + + + = 

 + + + = 

+ =

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 2
1 1 1 1

2 2
0 1 1 0 0 1 1

2 2 2 2
1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1

2 3 2
0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1

2 2 2
1 1 1 1 1 0 0 1 0 1 0

2 0,

3 2 0,

2 3 2 2 0,

6 2 2 0,

2 3 2

d d b d

c d b c a b d

d k d d c d c c b a a d b a d b c

k c c c c d c a c a b a c b a d a b

c k c c d c c c a c a a

β σ

σ

β ω β σ

ω β σ

β ω β σ

+ + =

+ + =

- - - - + + + + + =

 - - - + + + + + + = 

- - - - + + + +( ) 2 2
1 1 1 1 0 1 1 1

2 2
0 1 1 1 0 1 1 0

3 2
1 1 1

2 0,

3 2 ( ) 0,

0.

b c a b a c a d

c c c a a b a c

c a c

σ

σ

 + + + = 

 + + + = 

+ =

Solving the algebraic system equations (52), one gets the following cases:
Case I

(53)2
0 0 1 1 1 1

2 20, 2 , , .
(1 ) ( 1)

a c a c k b dβ βω β
σ σ

= = = = = - = =
- -

Thus, singular soliton solutions shape up as

+
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(54)( )2
02

4
2( , ) coth( 2 )exp , 1,

(1 )
i kx k t

x t x kt
β θβ β σ

σ
- - +

Ψ = + <
-

and

(55)( )2
02

4
2( , ) coth( 2 )exp , 1.

( 1)
i kx k t

x t x kt
β θβ β σ

σ
- - +

Φ = + >
-

Case II

(56)2
0 0 1 1 1 10, 1, , 2 .a c b d c a kσ ω β= = = = = - = = -

Thus, dark soliton solutions turn out to be

(57)( )2
02

5 1( , ) tanh( 2 )exp , 
i kx k t

x t a x kt
β θ

β
- - +

Ψ = +

and

(58)( )2
02

5 1( , ) tanh( 2 )exp . 
i kx k t

x t a x kt
β θ

β
- - +

Φ = +

5. Results and discussion
By employing the three techniques: csch, ESEM, and tanh-coth, we have successfully derived exact analytical 

soliton solutions for the second-order C-NLSE as described in Eqs. (1) and (2). The soliton solutions obtained have 
broad physical applications. They can enhance optical communication systems for high-speed data transmission, aid 
in nonlinear optics for compact signal processing devices, and improve fiber optic sensing for precise environmental 
measurements like temperature and strain. The exact solutions for the system are represented as ψ(x, t) and Φ(x, t). 
After considering specific parameter values, we transform the C-NLSE into a system of real and imaginary equations 
described in Eqs. (5)-(7). Subsequently, we explore the analytical solutions of this system using the three methods. 
We examine dark soliton solutions in Figures 1 and 2. In the realm of optical communication systems, dark solitons, 
characterized by localized intensity minima, offer valuable insights. These robust solitons maintain their shape during 
propagation, resisting dispersion effects. Understanding these dark soliton solutions is crucial for optimizing optical 
communication systems, where preserving waveform integrity is essential for reliable data transmission. Moreover, 
in nonlinear optics, dark solitons play a pivotal role in phenomena such as soliton collisions and interactions, opening 
avenues for exploring innovative optical functionalities and device applications.

In Figures 1 and 2, surface and 2D plots depict dark soliton solutions defined by Eqs. (57) and (58), with specific 
parameter values: β = 1, k = 1, and a1 = 1. Meanwhile, Figure 2 illustrates the behavior of these dark soliton solutions as 
we vary the parameter a1, while keeping β = 1, and k = 1 constant. Consequently, it becomes apparent that modifying the 
parameter a1 produces distinct outcomes for ψ5(x, t) and Φ5(x, t). This approach yields dependable and robust results.

Unlike previous studies that primarily focused on mathematical techniques for solving the coupled nonlinear 
Schrödinger equation [1], our research explores the practical implications of soliton propagation interacting with 
differential group delay. While prior work relied on the improved, modified, and extended tanh-function method to 
derive accurate solutions for quantum systems, our study adopts three innovative approaches to uncover new soliton 
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solutions amidst inter-modal dispersion. Through the utilization of advanced algorithms, we unveil soliton emergence 
in previously unexplored scenarios, providing valuable insights for optical communication and nonlinear optics 
applications. Furthermore, whereas previous research predominantly emphasized analytical and numerical solutions 
employing implicit finite difference methods, our study offers a fresh perspective on soliton behavior dynamics and 
presents practical guidance for future research and applications in the field.

|ψ5(x, t)|

0
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0 2

0.0
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t x

4

4

|ϕ5(x, t)|

0
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0 2
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1.0

2

-2

t x

4
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Figure 1. Surface plots of dark soliton solutions (57) and (58)
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Figure 2. 2D plots of dark soliton solutions (57) and (58)

6. Conclusion
In this study, we have obtained exact soliton solutions for propagating waves in the corresponding C-NLSE 

(1) using three approaches. Additionally, we have incorporated 2D plots to demonstrate the behavior of dark soliton 
solutions as the parameter varies while other variables remain constant. The techniques employed in this research may 
have potential applications in other nonlinear partial differential equations within the field of natural sciences [17-36].

Naturally, as pointed out, the three integration architectures never revealed multiple-soliton solutions. Only the 
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1-soliton solutions were recovered. Moreover, the soliton radiation solutions are completely out of the question, as only 
IST can provide such solutions. Nevertheless, these integration schemes are indeed helpful in quickly revealing 1-soliton 
solutions to the model, which can be applied to carry out additional studies such as the recovery of conservation laws or 
the retrieval of 1-soliton solutions when the model is considered with perturbation terms, among others.

In conclusion, this paper pioneers the study of soliton propagation interacting with differential group delay, 
unveiling new solutions. Through innovative approaches and advanced algorithms, it uncovers soliton emergence in 
unexplored scenarios, validated by numerical simulations. Future research can build upon these findings to further 
explore soliton dynamics and develop novel methodologies.
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