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Abstract: This paper investigates the significance of the dispersive concatenation model, incorporating the Kerr law of
self-phase modulation in the presence of white noise. Our methodology relies on the enhanced direct algebraic method
for integration. We reveal that intermediate solutions are expressed in terms of Jacobi’s elliptic functions, leading to
soliton solutions as the modulus of ellipticity approaches unity. This discovery culminates in the emergence of a diverse
range of optical solitons. Our findings contribute novelty to the existing literature by offering insights into the behavior
of optical solitons within the dispersive concatenation model, presenting a significant advancement in understanding this
complex phenomenon.
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1. Introduction

One of the most interesting forms of nonlinear evolution equations that was proposed in nonlinear optics is the
concatenation model. This was conceived in 2014 when three of the pre-existing well-known models were conjoined
to formulate a concatenated version of the nonlinear evolution equation. This model is the conjunction of the familiar
nonlinear Schrodinger’s equation (NLSE), the Lakshmanan-Porsezian-Daniel (LPD) model and the Sasa-Satsuma
equation. Later during the same year and in the following year another form of the concatenation model was proposed,
this time with the dispersive effect being predominant. This is therefore coined as the dispersive concatenation model
[1-5]. This version is obtained from the Schrodinger-Hirota equation (SHE), the LPD and the fifth-order NLSE, thus
making the model truly dispersive.
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A considerable amount of results has been subsequently reported for this model during the past couple of years
[6-10]. These include the retrieval of optical soliton solutions and the conservation laws that were recovered by means
of multipliers approach. The model was later studied in absence of self-phase modulation (SPM) as well as with the
inclusion of spatio-temporal dispersion (STD) in addition to the usual chromatic dispersion (CD). The mitigation of
the Internet bottleneck effect was thus proposed. The quiescent optical solitons for the model were also recovered with
nonlinear CD and Kerr law of SPM as well as power-law of SPM and finally without SPM. The numerical analysis of
the solitons was also carried out for the concatenation model by the aid of Laplace-Adomian decomposition approach.

The current paper addresses the model with the inclusion of the white noise in It6 sense leading to the analysis of
the governing stochastic differential equation. The enhanced direct algebraic method is the integration technology that
is adopted in the work. A wide spectrum of optical soliton solutions is thus revealed. These are recovered through the
intermediate Jacobi’s elliptic functions which gave way to soliton solutions when the modulus of ellipticity approached
unity. The details are exhibited in the rest of the paper.

This paper’s originality lies in its exploration of the dispersive concatenation model with the inclusion of white
noise in It sense. By utilizing the enhanced direct algebraic method, we unveil a diverse range of optical soliton
solutions derived from intermediate Jacobi’s elliptic functions. This novel approach sheds light on the behavior of
solitons in the presence of stochastic influences, contributing significantly to the existing literature on the dispersive
concatenation model.

1.1 Governing model

The dispersive concatenation model with the Kerr law of SPM in the presence of multiplicative white noise in the
It6 sense is given for the first time in the current paper:

iq, +aq., +blg|" ¢ —i5, [qum +0,q’ qu +oqW, (1)

2 4 2 2 % * 2
+6, [Usqm +0yld| g +osla a+o4la.| a+0,9iq" + 0ydlg }

. 2 4 * * * *
_153 I:a‘)qxxxxx + 610 |q| qxxx + Gll |q| qx + Glzqqqux + o-l3q qqux + O-l4qqqux + GISqqu:| = 0 (1)

The function g(x, f) is a complex-valued expression of the wave profile, where x and ¢ denote the spatial and
temporal coordinates, respectively. The coefficients a and b are the parameters associated with the CD and SPM of
the NLS equation, respectively. The imaginary unit is commonly represented by the symbol i = J-1. The coefficients
0,, 0,, and 0, correspond to the parameters of the SHE, the LPD equation, and the fifth-order NLSE, respectively. The
symbol o represents a non-zero constant that denotes the intensity of white noise. Additionally, the conventional Wiener
process, denoted as W(t), is defined as the integral of the function A(7) with respect to the Wiener process W(y), where
n is a variable that takes values less than ¢. In the given context, the symbol # is used to represent a stochastic variable,
whereas A(#) is used to symbolize conventional Gaussian white noise, which is commonly referred to as multiplicative
white noise. The purpose of this noise is to indicate a disruption in the excitation phase of a given process.

The paper follows a structured approach with Section 2 laying the theoretical groundwork by dissecting the
dispersive concatenation model. Section 3 revisits the principles of the integration method, ensuring clarity on the
methodology. In Section 4, the core findings are unveiled-exploration and analysis of optical soliton solutions within
the model. Lastly, Section 5 summarizes key outcomes, underscores their significance, and suggests potential future
research directions. Together, these sections provide a cohesive narrative, contributing to the understanding of dispersive
concatenation model with Kerr law of SPM and multiplicative white noise.

Contemporary Mathematics 1166 | Yakup Yildirim, et al.



2. Mathematical analysis

Let us consider the assumed structure of the solution to equation (1) as follows:

q(x, )=U(5)e"". 2

The wave variable ¢ is defined as
&= k(x —vi), 3)

where k and v are non-zero constants. Here, U(¢) is real valued function, which represents the amplitude component of
the soliton solution and v is the speed of the soliton, while the phase component ¢(x, ¢) is defined as

¢(x, 1) = —kx + wt + cW(t) — o't + 0, “)

In the given context, x denotes the frequency of the soliton, w corresponds to the wave number, o represents
the noise coefficient, and 6, signifies the phase constant. By substituting equation (2) into equation (1) and afterward
decomposing them into their real and imaginary components, we obtain the following expressions:

I (100,°3, — 60378, —30,x5, +a)U" + k* (5,8, - 50,x8, ) U

+<K4 (036, — 040 )+ 0\k°6, —aK’ + (0'2 - a)))U + (056, — 01,56, ) U’

+(x? (01 + 012 + 013 =014 = 015 )0, = (04 = 0 + 07 + 0,) 8, ) — 0,8, +b)U’

+k* (04 + 04)3, = (301 + 01, + 015 — 014 ) k6, )UU”

+k* (201, = 2(013 +014) = 015 )3, + (0 + 7,) 8, JUU =0, (5)
k(=508 + 403678, + 301K°5, — 2aK —v)U'

-0,0,k°U® = k* (2x(20,6, — 5046, ) + 0,6, ) U — 0,,kS,U U’

~01 5k UU Y —016,,k°U" — (0, + 015 + 0,4 ) Sk°UU'U"

—k(x((-301 + 01, =301 + 0y + 015 )6, +2(0, + 0, = 64)5, ) + 0,6, )UU' =0, (6)

The soliton speed is attained from the imaginary component, as shown below
v =140,0, + 30’0, — 2ax. (7
Moreover, the frequency reaches

(-20,0, + 0,(0, + 0, —0y)) 6,

o 20,0,0, ’ ®)
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with

and

the addition of parametric restrictions
0y =0y =0y =0y5=0,

optontou=0,

0,010,6, + 20, (—2(720'3 +o(o,+0, - 0'8))522 =0.

Then equation (1) reduces to

iq, +aq,, +blg|" ¢ —i5, [dlqm i qx} +oqW,(1)

2 4 2 2 % * 2
+6, [qumx +04q| g +osla| a+ 06l a+0s9iq" +oaia J

~i8,[ 01244.9% + 010", + 0119919, | =0,

and equation (5) shrinks to

with

IS (—60'31<252 —30,k0, + a)U" +k* (201,66 + 0,0, + 036, )UU"
+(0'31<'4é'2 +0,K°0, —ak’ + 07 — a))U +o,k*s,UW
+(—20'14K3§3 —O0,K°0, + OK>0, — 0,K° 5, — Ouk°5, — 0,K0, + b)U3

+k* (<4(013 + 014) K0, + 08, + 0,6, )UU" + 056,U° =0.

Equation (13) can be further simplified to

kU D)+ AU(6)*U"(E) + AU"(E) + AUU'(E)* + A:U(E) + 2,U (&) + 4U(E) =0,

o,k'6,+0,k°5, —ax’ +<o-2 —a))
b o,k 25, ’
; b—K(K(20'14K53 +(o,—og+0, +08)52)+0'251)
2 o:k5, ’
o
a,=-95_
’ ok’
1= (0'6 +0'7)52 —4((713 +O'14)K53
4 = o 5 s
3%2
-3k(20:K6, +0,6,)+a
A’S = o 5 B
3%2
20,,K0, +(G4 +08)52
Ag = ,
030,
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where o, £ 0.

3. The enhanced direct algebraic method: a quick recapitulation

This section is a quick overview of the basic procedures with the enhanced direct algebraic technique [6-10]. We
could include a governing model that represents a nonlinear evolution equation which has the structure:

Fu, uy uy g, t, .) = 0. (16)
The u = u(x, t) is a function that represents the wave profile, where ¢ and x denote the temporal and spatial

coordinate variables, respectively.
Using the wave transformation

u(x, 1) = U($), &= k(x — o), (17)
causes a reduction of equation (16) to
P(U, —koU, kU, ’U", ..) = 0. (18)

In that expression, k represents the wave width, ¢ represents the wave variable, and v represents the wave velocity.
Step 1 We assume that the solution of equation (13) can be expressed in the form

U@ =ay+ 2 {a.0) + B0} (19)
where 6 satisfies
6'(&)’ =Y 1,08, (20)

where 7, /=0, 1, 2, 3, 4) are constants provided that 7, # 0. Equation (20) provides several kinds of solutions of different
types as follows:
Set 1 If we set 7, = 7, = 7; = 0, we get bright soliton with 7, > 0, 7, < 0 and singular soliton with 7, >0, 7, > 0:

6(£)=|-sech[r.£ |, 7> 0, 7, <0, 1)

()= \/%csch[\/g g], 7,>0, 7, >0, 22)

respectively.
2
Set 2 If we set 7, = %, 7, =1, = 0, we have dark and singular solitons for 7, <0, 7, > 0:
4
_ (3 (3
9(5) = —Z tanh —75 , Ty < 0, T4 > 0, (23)
_ (3 7
g(g)_ —?coth —75 , T, <0, 7, >0, (24)
4
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respectively.

Set 3 If we set 7, = 7, = 0, we get Jacobi elliptic doubly periodic type solution for different choices of 7, as follows:

9(5)_i (2m2 _1)‘[4\«1'1( 2m2 —1§m 0T (2}1’!2—1)2 Ty ’

_ mZTZ 7, _ (1_m2)122
o)

m’r T m’r;
(& =+ 2_sn 2 _Em|, 1p=——2—.
(m2+1)r4 m*+1° ’ (m2+l)zr4

Set 4 If we set 7, = 7; = 0, we get Weierstrass elliptic doubly periodic type solutions:

30' (% 820 83)

0(s) = , 7y >0,

\/2[650(6‘2 &> g3)+72] )

6 .

0(&) = \/Z[ SO'(‘; g2 g3)+72:|’ 7050,
30'(&: g25 &)

2
where g, = % + 7,7, and g; = %(367074 - 722) are called invariants of the Weierstrass elliptic function.

Set 5 If we set, 7, = 7, = 0, we get straddled soliton solutions with 7, > 0 as follows:

—r,sech’ [%\/Zf}

0(%) = , Ty >0,
27,74 tanh[%\/gcf} +75
7,csch’ [%\/Z.f}
o) = , T4 >0,

27,7, coth[%\/g(f} +7,

27,sech [\/Zf]
i\/z'f —4r,7, — T3seCh[\/Z§:|

Zz'zcsch[\/ZgJ
tJdr,r, — 11 — r3csch[\/gf] ’

7,7,sech’ [\/Zf:l

2
, 73 —4r,7, >0,

0(s) =

r3 —4r,1, <0,

0(s) =

2

Ty —T,T, [1 - tanh|:\/;_2 é‘D

0(s) =

7, %0,

(25)

(26)

@7

(28)

(29)

(30)

(€2

(32)

(33)

(34
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2

i —1,1, [1 -~ cothl}@i2 ‘fD

Step 2 Determine the positive integer number N in equation (19) by balancing the highest order derivatives and the
nonlinear terms in equation (18).

Step 4 Substitute (19) into (18) along with (20). As a result of this substitution, we get a polynomial of ¢. In this
polynomial, we gather all terms of the same powers and equate them to zero. We get an overdetermined system of
algebraic equations. Mathematica can solve to get the unknown parameters in (17) and (19). Consequently, we obtain
the exact solutions of (16).

r2r3csch2[\/gf:|
0(S) =

7, 0. (35)

4. Optical soliton solutions

In equation (14), balancing U“/(&) with U(&)’ yields N = 1. The solution is expressed in the following structure:

_ B
U@ =a,+a,0(s)+ 0@ (36)

Inserting equation (36) together with equation (20) into equation (14), we get a system of algebraic equations.
Solving these equations together yields the following results:
Case 1 Choosing 7, = 7, = 7, = 0, yields

o =0, 2¢,(94s7, +104,) ’ 1=o,k=M
7, (A + A6) 72 + 45 7

L ((Aa+20)72 + 24 ) (34575 (A =246 )75 +42, ) + 24, (A =444 )7, +64,)) -
’ 2(9457, +104,)° ' 7

As a result, the solutions of equation (1) reach

2(9152'2 + 1011) ATy + A, i[*{(_20262+20-;_le4;;:r7_6x))(Sz}x+a)t+o'W(t)—crzt+90]
aen=2 (As+Ag)T, + A sech : T (x=vi) |xe ’ (38)
4 6)72 2 2

and

il — (—20'26;+0,(0'4+‘(r7 ~08))% x+at+oW (1)-c21+6,
q(x, t) =+ é@iﬁ?—)+l(jycsch[ _/151;—%()‘ — Vt):| X e [ { 2010303 } J. (39)
4 6)%2 2 V 2

Equation (38) is a bright soliton with (157, + 1))z, <0, and (9457, + 104,)((A, + 4¢)7, + 4,) < 0, while equation (39) is
a singular soliton with (457, + 4,)7, <0, and (9457, + 104,)((44 + A¢)z, T 4,) > 0.
2

Case 2 Choosing 7, = 4T72, 7, =1, =0, yields
4
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o 0. o = 214(3/1572+511) B =0
LT (44, - (A —44)n) T

(42 = (A4 = 446)72) (6424575 + 4y (A —444)7, +64,))

A= :
4(3457, +54))

E)

. J_u] (R +A0) 72+ 4) = A5y (A +246)7, + 212). 40)

273 (42, = (As —44¢)75)

As a result, the solutions of equation (1) are dark and singular solitons with (3457, + 54,)((44 — 44¢)7, — 44,) > 0, and
T,(44; = (A4 = )T (24 (A4 + Ae)Ta + Ao) + Asto((As + 246)T, + 24,)) > O

o, )=t 2(3457, +54,) anhl L 24 (A + A6) 72 + Ay ) + A5y ((As +244) 7, +2zz)(x_vt)
T\ (A - 4247, - 44, 2 7,(42, = (44— 444)7,)

{_ (-20203+01 (04 +07-0%))5,
20101363

}x+wt+o’W(t)—o‘zt+0(,]

N , 41)
and
w0 i\/ 27+ 34 coth| 1 22 (A4 + A6) 70 + Ay ) + A5y ((Ag +244) 7, + 2/12)(x —vt)
(h—44)Ts =44, |2 7, (42, — (4, —42,)7,)
{,{(*20103 +;7(17(;»'4 :;cn -0%))d2 }x+wt+O'W(t),o.2t+go]
X e 101303 ’ (42)
respectively.

Case 3 In this case, we chhose 7, = 7; = 0 and provide three possible choices for 7, as follows:
m’ (1 -m? )122

1): 7, = —(Zmz B 1)2 ..

El

7, (1 84T, + 20/11)
7, (A + A6) 72+ 4,)

a0:09 ﬂlzoa 0_/1:\/

(7, (Agmy + Agm,) + ﬂzml)(lemf (A4 =446)75 +62,) + 3457, (A4 — 246 )my7, +4/12mj))
3 s

2(345(5-2m,)z, +104m3)’

A \/ ilmf((/h +/16)r2 + /12)+ /lsrz(rz(/l(,mf +/14m3)+/12m5)’ (43)

.2 (,1412 72 +4(32, = 24)(m? —1)m? ) + lzml)
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where m, = —8m* + 8m*> + 1, m, = 12m* — 12m*> + 1, my = 6m* — 6m* + 1, m, = 1 — 2m’, As a consequence, the solutions
of equation (1) reach

(. )=+ 2m2(92512+10/1])
7% o== (2m* =1)((24 + A¢)7s + 2)

Am? (A + Ag) 75 + A )+ AsT, (12 (Agmi + Agmy ) + /Isz)
X cn

Mata (’1472 +75 (A +4(34, = 24,)(m* —1)m” ) + ﬂzml) (x —vt)|m

i[_{(*ZGzO‘; +oy(04+07—0% ))52

(+oW (1) -0t
20101355 }x+w +oW (t)-o +90]

(44)

xXe

When the modulus of ellipticity approaches unity (m — 1), we obtain a bright soliton solution

" t):iJ 2(94,7, +102,) ChN At 2o da)+ dses (Bt ) v )

a4 )02 42 72 (AaTa + 2aTs + 73

-2 + +07— 5.
il — (20203401 (04 il 3))% x+at+oW (1)-c2t+6,
20101303

x e , (45)
provided that (94sz, + 104))((4, + 4¢)7, + 4,) <0, and
(AT, + AT, T L)AL ((A4 + Ae)T, T 4,) + AsTo((Ay + Ag)T, + 4,)) <O.
m’ (1 -m’ )2'22

(i): 7, :W’

I 14(6/15 (5m* = 2m, )z, +204,m?)
% =0. =0, a = 7, (rz (/14m7 +/16m5)+12m5)

(72 (Agmy + Agms ) + Ayms )(3,1512 (A4 =246)m*z, +44,m)+ 22,m (A, — 44¢) 7, + 64, ))
3= ’

234 (5m* ~2m; )z, +104,m? )’

. \/,11 (—mé)((/h +A6)T5 + Ay ) = AsT, (rz (14 (m4 -2m’ +2)+/16m§)+ /Izméz), 46)

7] (Tz (/I4m7 + Agms ) + ﬂzmS)

where ms=m* — 16m’ + 16, ms = m* — 2, m, = m* + 4m’ — 4. As a consequence, the solutions of equation (1) reach
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P 2m2(3/15(5m4 —~2m, )7, +104m] )
7w n== (m2—2)(A4m7r2+m5(/16r2+12))

AAs(m* =2m* +2)7 + ml(Asty (Agty + A, )+ A, (A, + A7, + A
« dn \/ 4 s(m m )72 m(,( 572( 672 2) 1(( 4 6)T2 2))(x—vt)m

meT, (A4m7rz +mg (AT, + /12))

-2 + +07— 0.
[[7{( 0203+01(04+07 08)) Z}x+wt+o'W(t)fo'2t+€0]

% e 20101303 (47)
When the modulus of ellipticity approaches unity (m — 1), we obtain a bright soliton solution
2(94 104
g(x, )== (9457, +104) sech ATy + Ay (x—vt)
(A +A)T2 + 4, \ 7,
(" (-20203+0) (04 +07-0%))0, rorio Y
“ e’[ { 20101385 } e J’ (48)
provided that (9457, + 102))((4, + A¢)7, + 4,) <0, and 7,(As7, + 4,) <O.
m’t;
(ii): 7y = 5 —
(m + 1) T,
7,(6A5m, 7, +204,m;
aozonﬁlzoa alz 4( - 1 9) s
7, (r2 (Agmyg + Agmg) + /?.2ms)
(Agmygrs +my(Ags + ,12))(315 (A =245)(m* =1) 22+ 2m3 (62,457, + 4, (44 — 44, )7, + 6/12)))
A = :
’ 2(34gmyz, +104m3 )’
. 3 (B + )72 + A ) = AT (12 (2 (m* +1)+ Agm3 ) + Azmg)
= ; (49)
72 (z’z (/14m10 + /Iﬁmg) + /Izmg)

where my = m* + 14m”> + 1, my = m* + 1, myy = m* — 6m” + 1, m;, = 3m* + 2m* + 3. As a consequence, the solutions of
equation (1) reach

2m2(3/15 (3m* +2m* +3)r, +1o/11m§)
q(x, t)y==
m, (ﬂ4mloz’2 +my (AT, + /12))

\/14/15 (m* +1)e2 4 mi (A5, (Aets + A0) 4 A0 (A + 26 )72+ 45 )
X sn (x—vt)|m

myT, (/14m1012 + my (1672 +4, ))

{7{(720'20'3 +o1(04+07—0% ))52

x+at+ol (1)-c*t+6,
20101305 }‘( wt+oW (t)-c OJ

x e (50)
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When the modulus of ellipticity approaches unity (m — 1), we obtain a dark soliton solution as:

2407, + 402
, t =i_ 542 1
q0x, 1) \/ 16(Ae7> + 42 ) — 44,7,

(x—vt)

22,2573 + 4(As75 (AeTy + 22) + 24 (A + Ag) 72+ 22))
x tanh
27, (16(AeTs + A, ) — 44,7,

-2 + +07— 13
i—[( 9295%01(%4 77 73))% x+ot+oW (1)-c21+6,
20101363

x e , 62))

provided that (24457, + 404,)(16(4¢z, + 4,) — 44,7,) <0, and
7, (16(Ag7, + A,) — 42,7, )(21415122 + (257, (Agmy + 20) 4 2 (e + A6 )72 + A ))) > 0.

Case 4 Choosing 7, = 7; = 0, yields

27,(94 104
=0, @ =0, § = 70 (9457, +104)) k= | AsTatA
7, ((/14 +26)T, + /12) 5

(A4 +2)72 + 22 ) (34575 (A = 246) 75 +42, ) + 24, (A — 444 )72 +64,))

Ay = 52
’ 2(9457, +104,)’ ¢
As a consequence, the solutions of equation (1) reach
. [ [(-20205+01(04+07-0%))5, )
q(x t) _ 2T02'4 (9/15‘[2 + 1011) [650(](()(: - Vt): 82> g3) + TZ] % el[_{ 20101303 }X+wt+aW(f)_a t+00] (53)
’ 0 (A + ) T2+ 4,) 39" (K(x—ve): g5, 85) ’
and
2(9457, +104,) 3¢ (k(x—vi); g3, 25) "HHJZJ} T }"*‘”’*°W“>*“2‘*‘9°]
q(x, 1) = xe (54)
73 ((14 + A )T, + lz) [650(k(x —vt); &, gs) + Tz]

Setting 7, = 0 in solution (54), we achive a singular soliton with (9457, + 104,)((A, + A¢)7, + 4,) > 0, and 7,(As7, + 1))

<0:
[ [(-20,05+0)(04+07-0%))5, )
2(9A.7, +104 il — 0101303 xX+at+oW (t)-ct+6,
q(x’ t): Mcsch _M(x_vt) Xe[ { 2 30 } . (55)
(A +A6)T, + Ay 7,

Case 5 Choosing 7, = 7, = 0, yields

/ 31T 4 / A
= =2 A e B = = —— = 5
aO 05 al (214 +3/16)T2 s ﬁl 09 /11 5 /15‘[29 k 52_2 5

34¢(373 4,7, ) + 24, (373 - 87,7, L (247 + 1122, +1247 )z,

24z, » 60, ' (56)

A, =
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As a consequence, we get straddled soliton solutions for (1) as follows:

37,7 /
2 22{ 4 2 |: (x Vt):| ( —-20,03+01(04+07-0%))5, }r+wt+o’W(t) - t+0(,]

20101303

q(x, 1) =— e , (57)
+2./7,7, tanh{21 I—?(x - vt)} +7,
and
37,7 1] A
2# h27_75 - —20,03+0(04+07 -0
244 + 316 e8¢ |:2 5 (x Vt)i| l'[*{( 29205 2,1)-?0-;(537 g))52}X“UHO'WU)*O'ZHHOJ
q(x, t)= xXe . (58)
+2\/7,7, coth{1 —ﬁ(x - vt)} +7,
2 5
Setting 7, = +2,/7,7, into solutions (57) and (58) yields
/ 32 As
21 + 32 SeCh |:2 _?(X B Vt):| [[*{(720-203 +;{;f:;:;j7 ~99))% }x+wz+o—W(l)*(rzl+¢90
q(x, 1) = xe ) (59)
1| As
tanh{2 5 (x vt)} +1
and
}21 CSCh |: 1, (X Vt):| l ( 20,03+0(04+07— 0-8))021x+(ut+o'W(t)—o'zt+49(.J
q(x’ t) _ x e 20101303 J s (60)
COth|:21 —?(x - Vt):| +1
provided that A; <0, and 24, + 34, <0.
Setting 7; = 0 into solutions (57) and (58) yields singular soliton solution
| (72020'3 +01(04+07-0%))5, )
. ﬂ, 15 {—{ 20,0030 }x+wt+ch(t)—o tH%]
q(x, t)= +2\/2/1 YN csch{\/ —=(x vt)} xe . (61)
Another possible straddled soliton solutions are obtained as presented below
3AT4Ty A :
4 24, + 34 sech 5 (x=vr) i[—{(_20263+20-;_fz?3;j7_68))‘)z}xH:)HGW(t)—O'ZHQU
q(x, t)= xe , (62)

1l -4r,1, - r3sech[1 /—%(x - vt)}

and
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3As7,T A
4 2 h = —vt —20,03+0)(04+07—03))0:
214 +3ﬂ,6 CSC |: 5 (X 1% ):| {7{( 20,03+0(04+07-0%))5, }xHuHoW(t)—chHGO]

4(x, 1) = xe (63)
t\rs —4r,1, — T3CSCh|: —%(x - vt)}
Setting 7; = 0 into solutions (62) and (63) yields bright and singular soliton solutions
(202031010407 -00))% lx+{ut+o'W(t)—o'zt+9‘,
q(x, t)= 1%/—%%&{\/—%@ — vt)} xe [ { 2oy J ], (64)
and
[ [(-20,03+01(04+07-0%))5, 2
3/1 /1 z[—{ 2010130 }x+wt+oW(t)—o t+€0]
q(x, t) = iZ\/mcsch{\/—?(x - vt)} xe , (65)
respectively.
Finally, straddled soliton solutions are obtained as described below
f A
rzz";sech2 {é —?S(x - vt)} {_{(_20253+a, (04+07-0%))5, }Hmmw(t)_azt%]
q(x’ t) _ . X e 20101303 , (66)
A
Ty —T,T, {1 - tanh{; —?S(X - vt)D
and
| 2
T2T3C5Ch2 |:é _?S(X - Vt):| {_{(—20203*'0I (94+07-04))0 }x+(ut+o'W(f)—o'zt+¢90]
q(x, t) = xe 2eneos ) 67)

2
A
T3 —T,T, [1 - coth{é1 /—?S(x - vt)D

5. Conclusions

The current paper retrieved optical solitons for the dispersive concatenation model with Kerr law of nonlinear
refractive index change, that was considered with white noise in It6 sense. The enhanced direct algebraic approach
recovered the soliton solutions to the model. A wide variety of soliton solutions is presented. The intermediate solutions
are in terms of Jacobi’s elliptic functions. When the modulus of ellipticity approached unity, these solutions yielded
soliton solutions and they have been presented. The results are thus interesting and are meaningful. It was observed that
the white noise effect stays confined to the phase component of all forms of soliton solutions that are recovered from the
model.

The results are thus indeed promising for further future research with this model and its extensions and
generalizations. Later, the stochasticity for this model will be studied with power-law of SPM. Subsequently the model
will be studied with differential group delay and later with dispersion-flattened fibers. Such results are currently awaited
and they will be disseminated later, once they are recovered and aligned with the pre-existing ones [11-26]. Moreover
the model will be taken up in additional optoelectronic devices. A few of them are PCF, optical metamaterials, and
optical couplers. These are just a tip of the iceberg.
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