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Abstract: The heat kernel on Kendall shape subspaces is approximated by an expansion. The Kendall space is useful 
for representing the shapes associated with collections of landmarks’positions. The Minakshisundaram-Pleijel recursion 
formulas are used in order to calculate the closed-form approximations of the first and second coefficients of the heat 
kernel expansion. Prior to the exploitation of the recursion scheme, the expression of the Laplace-Beltrami operator is 
adapted to the targeted space using geodesic spherical and angular coordinates.
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1. Introduction
The heat kernel on the shape subspaces ∏( k

mχ ), of the spaces k
m∑  introduced by D.G. Kendall for m ≥ 3 and k ≥ 

m + 2, is approximated by means of expansion [1-9]. The latter is a time power-like series, for small enough values of time, 
that converges asymptotically to the minimal positive fundamental heat kernel solution H(∏(X ), ∏(Y ), t) of the parabolic 
partial differential equation on ∏( k

mχ ) [10-16],
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Here, ∏(X ) and ∏(Y ) are two shapes in ∏( k
mχ ), t is time, and ∆ is the Laplace-Beltrami operator on ∏( k

mχ ). In this 
paper, only both first coefficients of the expansion are calculated based on the Minakshisundaram-Pleijel recursion             
formulas [17, Chap. VI].

2. Preliminaries and methods
2.1 Kendall shape space

In Kendall shape theory, an object is initially represented by a configuration matrix in  ×ℜm k  whose columns are the 
position vectors in ℜm  of k landmarks, respectively. The landmarks are methodically selected from the object’s boundary 
to capture its geometrical form. Usually, objects’ shapes are structures in the plan or in the space where m equals two or 
three, respectively, though the Kendall theory is valid for any value of m which is larger or equal to two.

The shape is extracted through filtering out the effects of size, translation, and rotation from the initial configuration 
matrix. The elimination of translation and size effects leads to the pre-shape unit sphere Sk

m  of matrices X in  ( 1)m k× −ℜ . Then, 
the shape map ∏ eliminates the left action of rotations in the special orthogonal group SO(m) to give rise to the shape 
space k

m∑ . The latter coincides with the quotient space S k
m /S O(m), where all the pre-shape matrices TX for T in SO(m) 

correspond to the same shape ∏(X ).
The singular values decomposition plays a central role in Kendall theory. It helps to express any pre-shape X in k

mχ  as 
the three-factor product U(Λ 0)V. Here, U and V are elements of SO(m) and SO(k -1), respectively, and Λ is the diagonal 
matrix diag {λ1, λ2,..., λm} in m m×ℜ  such that λi > λi+1 > 0 for 1 ≤ i ≤ m-1 and the trace of Λ2 is one. The pre-shapes of a 
given shape share the same singular values as well as the first m rows of V modulo rows’sign [1, Sect. 1.3].
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The Riemannian metric as well as the differential structure have been determined on an open Riemannian 

manifold ∏( k
mχ ), whose dimension dk

m  is 1( 1) ( 1) 1
2

m k m m− − − − , where k
mχ  is the open subset of S k

m  defined hereafter, 
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2.2 Laplace-Beltrami operator
The Laplace-Beltrami operator on ∏( k

mχ ) involved in the heat equation in (1) is expressed as [1, Corollary 7.2],  
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where f (λi, λj) is a function of the indicated singular values, ∇ is the Levi-Civita connection, and  
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is the basis of the tangent space T ( )( )
k
mX

x∏ ∏(∏( k
mχ )) to ∏( k

mχ ) at the shape ∏(X ); each vector rsξ  is orthogonal to any other vector  

rsξij for 1 ≤ i ≤ m, i < j ≤ k-1, and to any vector 
i

∂
∂λ

 for 2 ≤ i ≤ m.

The latter basis is inherited from the basis, 
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,

of the tangent space T X ( k
mχ ) to k

mχ  at any pre-shape X of ∏(X ); the vectors ijη , ijξ , and 
i

∂
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 are linearly mapped onto the 

null, ijξ , and 
i

∂
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 vectors, respectively, by the differential Π
 of ∏ at X. The standard coordinates matrices,  
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 are of particular use in this paper, where each Ejj, for 1 ≤ j ≤ m, is the matrix in  ( 1)m k× −ℜ  whose ( j, 

j)th entry is one and all of whose other entries are zero.
2.3 Exponential map and geodesic spherical coordinates

The exponential map is a differential geometry tool used to define the geodesic spherical coordinates that are 
important to carry out calculus and to describe diffusion processes on ∏( k

mχ ). The exponential map on ∏( k
mχ ) is defined 

based on the curve ΓT  introduced hereafter.
Thus first, let X be any pre-shape of a given shape ∏(X ), and T  a tangent vector to k

mχ  at X written in the basis (4) as,  
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for some real number coordinates ,ij


iT T, ,ij


iT T  and ijT ; ∏ ( )Π 

 T  coincides always with the very same vector T  in (7) written in
the basis (3) as,  

1

2 1 1
,m m k
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no matter the values of the coordinates T ij.
Then, the following geodesic of pre-shapes in k

mχ  is used in Kendall shape theory to describe the differential structure 
of ∏( k

mχ ),  
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Here, (0)Γ




T  is X, T  is the tangent vector to (0)Γ




T  at X as in (6), A and B  are two skew-symmetric matrices in m m×ℜ  and  
( 1) ( 1)k k− × −ℜ  respectively, and D is a diagonal matrix in m m×ℜ  such that the traces of ΛD and D2 are zero and one respectively.

Now, a shape curve ΓT  in ∏( k
mχ ) starting out at the shape ∏(X ) in the direction of the tangent vector T  as in (7) is

defined by,  
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 T  are identical to ∏(X ) and T  respectively. It
is worth noting that, the coordinates T ij of the tangent vector T  in (6) are involved only in the left acting orthogonal
matrix ( )1

exp ij iji j m
U  S∈
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T  is always a pre-shape of the same shape ( )∈ΓT  
for any values of T ij. The shape curve ( )∈ΓT  is a diffeomorphism that maps the product of specific open sets containing
the diagonal matrix Λ and the first m rows of the orthogonal matrix V, onto an open neighbourhood of the shape                                
∏(X ) [1, Sect. 7.2 and proof of Lemma 7.2].

In particular, when T  is unitary, ( )∈ΓT
 is equated with the exponential map ( )( )exp X ∈Π T  on ∏( k

mχ ). In this case, the
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∂λ∑ ∑ ∑T T  is unitary. Thus, the coordinates T ij in (7) are
necessarily zero for all 1 ≤ i ≤ m, i < j ≤ k -1.

Finally, The geodesic spherical coordinates ( )∈,T , where T  is the unitary tangent vector 1
2 1 2and  m k m

i j i ij ij i i
i
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∂
ξ
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define the geodesical sphere S(∏(X ),∈ ) in ∏( k
mχ ), centered at the shape ∏(X ) and with radius ∈ , as the set of shapes 

( )( )exp X ∈Π T .
2.4 Heat kernel calculation

The Minakshisundaram-Pleijel recursion formulas are used to approximate the heat kernel H( ∏(X ), ∏(Y ), t) on ∏( k
mχ ), 

by the expression hereafter,
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for small time t and close enough shapes ∏(X ) and ∏(Y ), where the latter is the shape exp∏(X ) 2
m
i i

i

  ∈ =

 ∂
 ∂λ 

∑ T [17, p. 154]. 

Here, the λi(YX t) are the singular values of the matrix YX t for any pre-shapes X  and Y of the shapes ∏(X ) and ∏(Y ), 
respectively [1, Sect. 6.4].

Now, let ( )G ∈,T  be the determinant of the path of linear transformations on ∏( k
mχ ), which is equivalent                 

to [17, p.317], 
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So, it should be borne in mind that the intended heat kernel approximation is grounded on neglecting the higher 
order terms ui ( )∈,T t i for i ≥ 2 within the general Minakshisundaram-Pleijel expansion, along with neglecting the term 

( )2k
mdO ∈ +  in the expression of the determinant of the path of linear transformation in (12).

3. Results
In the following subsections, the expression in (2) of the Laplace-Beltrami operator on ∏( k

mχ ) is simplified and then 
reformulated using the geodesic spherical coordinates. After that, the second coefficient expressed in (14) of the heat kernel 
expansion in (11) is calculated using the Laplacian of the first coefficient in (13).
3.1 Simpler expression of the Laplace-Beltrami operator on ∏( k

mχ ) 
Lemma 1 hereafter helps to simplify the expression of the Laplace-Beltrami operator on ∏( k

mχ ) that becomes, 
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3.2 Laplace-Beltrami operator on ∏( k
mχ ) in geodesic spherical coordinates

In Theorem 2, the partial derivatives 
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as stated in [19, Lemma 2]. Therefore, the coordinates  iT i can be written as,
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where, each angle φ
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3.3 Calculation of the coefficient u1(∈ ,T ) 
In Theorem 3, the Laplacian of the coefficient 0 ( , )u ∈ T  is established since it is needed for calculating 1( , )u ∈ T . 
Theorem 3. Let ∏(X ) be a shape in ∏( k

mχ ) and let 0 ( , )u ∈ T  be a unitary tangent vector to ∏( k
mχ ) at ∏(X ). Then, the 

expression of ∆ 0 ( , )u ∈ T  is 
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Proof. The Laplacian of 0 ( , )u ∈ T  in (13) is computed as the sum of the two terms 0 ( , )1 uG
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The term ∆u0(0,  sT ) is defined through the continuous extension at (0,  sT ) of the functions  ( , ), ( , )B ∈ ∈T T ( , ), ( , )B ∈ ∈T T , and  
( , )∈ T  since they converge to zero, 

1
12 , and zero, respectively, when ∈  converges to zero.

Finally, the expression of the coefficient u1( , )∈ T  is obtained in Corollary 4 hereafter.
Corollary 4. Under the same assumptions of Theorem 3, the expression of u1( , )∈ T  is
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1 2,  and i i j i jK K KT T T  are defined in (47), (50), and (51), respectively, and
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Proof. It is clear that the term 0 ( , ) ( , )u r r∆T Tu00 ( , ) ( , )u r r∆T T , in the expression (14) of u1( , )∈ T , is a continuous function
of r as ascertained by Theorem 3 (notice that u1(0,  sT ) equals 2

0 0(0,T) (0,T)u u∆ ). So, (13) and (45) are used to write           
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respectively, where the parameter ∈  should be within closed intervals corresponding to compact subspaces of ∏( k
mχ ).

4. Discussion
The heat kernel approximation proposed in (11) can be extended straightforwardly to the subspace ( )1\k

mm
 −∑ Π  

of shapes in ( )1\k
mm −∑ Π whose pre-shapes’singular values iλ , for 1 ≤ i ≤ m, remain strictly positive, yet they are not necessarily

different anymore; here, ( )1\k
mm −∑ Π  is the set, defined in Kendall theory, of pre-shapes where mλ  is fixed to zero. The extension 

is based on the fact that the already used differential operators and functions, involving unitary tangent vectors, are still 
valid for ( )1\k

mm
 −∑ Π  since none of them includes terms that are inversely proportional to singular values differences. 

Essentially, the established expressions of the Laplace-Beltrami operator, the exponential map, the determinant of the path 
of linear transformations, the Ricci tensor for ∏( k

mχ ), as well as the coefficients u0( , )∈ T  and u1( , )∈ T , are all well defined
on ( )1\k

mm
 −∑ Π .

The Kendall space has been exploited in several objects’recognition approaches [20-23], a fact that emphasizes the 
need for tools, like the heat kernel closed-form established in this paper, to better measure the similarity between shapes. 
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Indeed, heat kernel can be interpreted as density probability function or also as inner product in various approaches of 
machine learning for shapes recognition. It should be recalled that the motivation for the establishment of the heat kernel 
expression in (11) has been the need to solve the problem of shape classification within the framework of Kendall shape 
space. In general, given a set of N training shapes (∏(Si),Ci) for 1 ≤ i ≤ N, where Ci are labels designating classes, then 
the consequent question of interest is naturally what would be the class of an unseen shape ∏(S)? For the special case of 
two classes C1 and C2, the shapes’ classifier C is a function that maps any shape ∏(S) in ∏( k

mχ ) to one of the two classes. 
The Reproducing Kernel Hilbert Space (RKHS) of the linear combinations of the functions H(∏(Si),., t), is commonly 
used to seek the classifier C(.) amongst the functions 

1
( ( ),., )N

i ii
c H S t

=∑ Π  in RKHS for some scalars ci in ; according to the 
Representer theorem, C minimizes the error functional 2 2

1 1

1 ( ( ( )) ) ψ ( ( ), ( ), )N N
i i i i ii i

C S C c H S S t
N = =

− +∑ ∑Π Π Π  where Ci are integer 

m

m

labels and ψ is some regularization scalar parameter [40, 41]. It is interesting to notice that theoretically, the manifold metric 
can help to perform shapes’ classification more easily, but in practice this kind of classification is too sensitive to noise, 
hence the importance of the heat kernel based classifiers that are robust [42]. Besides, the heat kernel is a Mercer one that 
makes it useful for statistical learning; the geodesic distance does not have this property of course [11]. Consequently, the 
heat kernel is appropriate for constructing nonlinear support vector machines for shapes’ classification [43].

It is worth noting that to better grasp the significance of the heat kernel closed-form approximation in (11) it 
should be reminded that the straightforward resolution of heat equations is only feasible for a restricted set of classical 
manifolds [24-27]; other approaches provide merely bounds of the heat kernel [28-38]. Furthermore, number of closed-form 
expressions have been proposed in the literature to calculate the heat kernel on hyperspheres like S k . For instance, 
the heat kernel h(X,Y, t) on S k , endowed with a distance d and for any pre-shapes X and Y, can be approximated by the 
following expression obtained from [39, p.16],  

2 ( 1) 1
( , )/2

( 1)

( , )
sin( ( , ))2

m k
d X Y t

m k

d X Ye
d X Yt

− −
−

−

 
  
 π

since the principal curvatures of m(k -1)-1 equal one. The heat kernel h(X,Y,t ) can also be written as the sum

1
( ) ( ) ,iv t

i ii
e X e Y e−

≥∑

where ei and vi are the eigenfunctions and eigenvalues of the Laplacian on the hypersphere [17]; other heat kernel calculation 
techniques are based upon recurrence relations of derivatives [14]. Despite the elegance of all of these closed-form 
expressions, they do not help to easily infer closed-form expressions for the heat kernel on the quotient space k

m∑ , as 
done in this paper. Indeed, given a manifold M, the closed-form of the heat kernel HM/GI

(p, q, t) on the quotient space M /GI 
coincides with the sum of the heat kernels hM( p,gI • q,t) of M for all isometries gI in the discontinuous group GI 

[17, p.155], p 
and q are in M , and gI • q are the actions of the isometries gI on q; in the present research the orthogonal group SO(m) is a 
continuous Lie group.

The present discussion is ended with an analysis of the values of the parameter ∈ . Indeed, the latter should fulfill 
number of conditions in order to keep consistent the results presented so far. First, the values of ∈  in (8) should be in 
the interval [0,∈Λ ] defined in [19, Lemma 4] to keep the pre-shape curves ( )∈Γ





T  within k
mχ . Besides, the parameter ∈  

should be necessarily strictly smaller than the local injectivity radius ( )2 2
11 m marccos −− λ − λ  of ∏(

k
mχ ) at a shape ∏(X ) to 

accurately define exponential map (Sect. Preliminaries and methods) and to exploit the Minakshisundaram-Pleijel recursion 
formulas [19, Lemma 1]; the spaces ( )1\k

mm
 −∑ Π  and ∏( k

mχ ) share the previous expression of the local injectivity radius. This 
injectivity radius based upper bound is necessary yet not sufficient because the heat kernel expansion is defined on compact 
subspaces of ∏( k

mχ ). Furthermore, in (13) that defines the first coefficient of the heat kernel expansion, the parameter ∈  
should be strictly smaller than 
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6 ,

Ric ,m
i ji j

i j

∈ ∈
=

 ∂ ∂
  ∂λ ∂λ 

∑
    (85)

where the real numbers,  

1 2
11

1 1 22 2 2
1 1 1

,   2 1
1

i
mrr s m

i i s ii s s
mr r tr r t

i m∈
−

−=
= + −

= = =

 λ λ λ = + λ + ≤ ≤ − − λ λ λ λ 

∑ ∑
∑ ∑ ∑

                                                                                                                    (86)

and  

21 .m m∈ = − λ
      (87)

are the upper bounds of the absolute values of the coordinates  iT i in (15) that have been already written above as (78) and
(79).

5. Conclusion
The Minakshisundaram-Pleijel recursion formulas proved to be useful in the case of the Kendall shape spaces 

k

m∑ , for 
m ≥ 3 and k ≥ m + 2, that are homeomorphic neither to each other nor to any known spaces. They helped to establish the 
closed-form approximations of the first and second coefficients of the heat kernel expansion. The obtained expression of 
the heat kernel in (11) represents a potential interest in machine learning for objects recognition since it helps to get more 
robust and accurate shape similarity measurements. The latter is evaluated through interpreting the heat kernel as 
density probability functions and inner products in Bayesian and kernel-based machine learning approaches, respectively.
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