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Abstract: This paper explores the dynamics of highly dispersive gap solitons within the framework of the Kundu-Eckhaus
equation, augmented by the inclusion of multiplicative white noise in the Itô sense, a novel addition to the model. Two
integration schemes, the extended simplest equation approach and the generalized Riccati equation mapping scheme, are
employed to analyze and integrate the model. Despite yielding bright, singular, and dark-singular straddled solitons, both
methods independently fail to capture dark optical solitons. Additionally, our investigation highlights that the influence
of white noise predominantly affects the phase aspect of the solitons, with negligible impact on their amplitude. Further
details regarding the specific physical system or optical medium under study would provide readers with context, aiding
in the comprehension of the significance of our findings.
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1. Introduction
The concept of highly dispersive optical solitons made its debut a couple of years go. This concept was conceived

with the absolute need to maintain the delicate balance between chromatic dispersion (CD) and self-phase modulation
(SPM) for the soliton propagation to sustain for inter-continental distances. Later, this concept was applied to optical

Copyright ©2024 Yakup Yildirim, et al.
DOI: https://doi.org/10.37256/cm.5220244141
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 5 Issue 2|2024| 1949 Contemporary Mathematics

http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0002-8131-6044
https://doi.org/10.37256/cm.5220244141
https://creativecommons.org/licenses/by/4.0/


fibers with differential group delay. This concept was applied to nonlinear Schrödinger’s equation as well as the complex
Ginzburg-Landau equation and several of the features have been recovered [1–5]. The retrieval of optical solitons for the
models as well as as locating the conservation laws by the method of multipliers have been studied. The numerical analysis
of such highly dispersive optical solitons, by the aid of Laplace-Adomian decomposition scheme as well as variational
iteration scheme, have also been reported [4, 5].

The current paper addresses such highly dispersive optical solitons in Bragg gratings that would yield gap solitons.
The study is made with Kundu-Eckhaus equation as the platform. These gap solitons are being considered with a flavor
of stochasticity. The inclusion of multiplicative white noise in Itô sense would yield the necessary gap solitons with the
stochastic effect embedded in them. Two integration schemes would make the retrieval of such optical solitons possible.
They are the extended simplest equation approach and the generalized Riccati equation mapping scheme. These two
algorithms would collectively yield bright and singular optical solitons as well as straddled bright-singular and straddled
dark-singular optical gap solitons. An inherent shortcoming with these two integration algorithms is that they fail to
recover dark optical gap solitons. The details of the retrieval procedure of such gap solitons are exhibited in the rest of
the paper.

1.1 Governing model
The dimensionless form of highly dispersive Kundu-Eckhaus equation in fiber Bragg gratings with multiplicative

white noise is modeled for the first time as:

iqt + ia11rx +a12rxx + ia13rxxx +a14rxxxx + ia15rxxxxx +a16rxxxxxx +
(

ξ1 |q|4 +η1 |q|2 |r|2 +ζ1 |r|4
)

q

+b1rxt +
[
λ1

(
|q|2
)

x
+θ1

(
|r|2
)

x

]
q+ iα1qx +β1r+δ1q∗r2 +σ (q− ib1rx)

dW (t)
dt

= 0, (1)

and

irt + ia21qx +a22qxx + ia23qxxx +a24qxxxx + ia25qxxxxx +a26qxxxxxx +
(

ξ2 |r|4 +η2 |r|2 |q|2 +ζ2 |q|4
)

r

+b2qxt +
[
λ2

(
|r|2
)

x
+θ2

(
|q|2
)

x

]
r+ iα2rx +β2q+δ2r∗q2 +σ (r− ib2qx)

dW (t)
dt

= 0, (2)

where q(x, t) and r(x, t) are complex-valued functions that represent the wave profiles and q∗ (x, t) and r∗(x, t) are their
complex-conjugate, i =

√
−1. The first term is the linear temporal evolution. The constants ak j(k = 1, 2, j = 1− 6)

are the coefficients inter-modal dispersion (IMD), chromatic dispersion (CD), third order dispersion (3OD), fourth order
dispersion (4OD), fifth order dispersion (5OD) and sixth order dispersion (6OD), respectively. The constants b j( j = 1, 2)
are the coefficients of STD. The constants ξ j, λ j ( j = 1, 2) are the coefficients of self-phase modulation (SPM), while the
constants η j, ζ j, θ j ( j = 1, 2) are the coefficients of cross-phase modulation (XPM). The constants α j, β j, δ j ( j = 1, 2)
are the coefficients of IMD, detuning parameters and four wave mixing (4WM) terms, respectively. The constant σ is the
coefficient of noise strength and W (t) is the standard Wiener process, such that dW (t)/dt is the white noise.

This article’s primary goal is to use the extended simplest equation approach, and the generalized Riccati equation
mapping strategy to locate the bright, singular, straddled dark-singular soliton solutions of Equations (1) and (2).

This article’s structure may be expressed as follows: Section 3 introduces the mathematical preliminaries. We derive
the solutions to systems (1) and (2) in Sections 4 and 5. Section 6 concludes the work with a few words on the future plan.
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2. Mathematical preliminaries
To analyze the model, we postulate assumption:

q(x, t) = H1 (ξ )exp i
[
−κx+Ωt +θ +σW (t)−σ2t

]
,

r(x, t) = H2 (ξ )exp i
[
−κx+Ωt +θ +σW (t)−σ2t

]
, (3)

and

ξ = x−Vt, (4)

where κ, Ω, θ and V are nonzero real-valued constants which represent frequency of the soliton, wave number, phase
constant and soliton velocity, respectively. The functions H1 (ξ ) and H2 (ξ ) are real functions which represent the
amplitude portion of the soliton and the phase component of the soliton, respectively. Inserting (3) and (4) into Eqs.
(1) and (2) gives the real parts:

a16H(6)
2 (ξ )+

(
a14 +5κa15 −15κ2a16

)
H(4)

2 (ξ )

+
(
a12 +3a13κ −6a14κ2 −10a15κ3 +15a16κ4 −b1V

)
H ′′

2 (ξ )+
(
κα1 −Ω+σ2)H1 (ξ )

+
[
β1 +a11κ −a12κ2 −a13κ3 +a14κ4 +a15κ5 −a16κ6 +b1κ

(
Ω−σ2)]H2 (ξ )+ξ1H5

1 (ξ )+η1H3
1 (ξ )H2

2 (ξ )

+ζ1H1 (ξ )H4
2 (ξ )+2λ1H2

1 (ξ )H ′
1 (ξ )+2θ1H1 (ξ )H2 (ξ )H ′

2 (ξ )+δ1H1 (ξ )H2
2 (ξ ) = 0, (5)

a26H(6)
1 (ξ )+

(
a24 +5κa25 −15κ2a26

)
H(4)

1 (ξ )

+
(
a22 +3a23κ −6a24κ2 −10a25κ3 +15a26κ4 −b2V

)
H ′′

1 (ξ )+
(
κα2 −Ω+σ2)H2 (ξ )

+
[
β2 +a21κ −a22κ2 −a23κ3 +a24κ4 +a25κ5 −a26κ6 +b2κ

(
Ω−σ2)]H1 (ξ )+ξ2H5

2 (ξ )+η2H3
2 (ξ )H2

1 (ξ )

+ζ2H2 (ξ )H4
1 (ξ )+2λ2H2

2 (ξ )H ′
2 (ξ )+2θ2H2 (ξ )H1 (ξ )H ′

1 (ξ )+δ2H2 (ξ )H2
1 (ξ ) = 0, (6)

and the imaginary parts are
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(α1 −V )H ′
1 (ξ )+

[
a11 −2a12κ −3a13κ2 +4a14κ3 +5a15κ4 −6a16κ5 +b1

(
Ω−σ2)+b1κV

]
H ′

2 (ξ )

+
(
a13 −4a14κ −10a15κ2 +20a16κ3)H ′′′

2 (ξ )+(a15 −6a16κ)H(5)
2 (ξ ) = 0, (7)

(α2 −V )H ′
2 (ξ )+

[
a21 −2a22κ −3a23κ2 +4a24κ3 +5a25κ4 −6a26κ5 +b2

(
Ω−σ2)+b2κV

]
H ′

1 (ξ )

+
(
a23 −4a24κ −10a25κ2 +20a26κ3)H ′′′

1 (ξ )+(a25 −6a26κ)H(5)
1 (ξ ) = 0, (8)

where ′ = d
dξ ,

′′ = d2

dξ 2 , ′′′ = d3

dξ 3 , (4) = d4

dξ 4 , (5) = d5

dξ 5 and (6) = d6

dξ 6 .
To recover the integer balancing number used in the given integration methods in the current paper, we set

H2 (ξ ) = µ H1 (ξ ) , (9)

where µ is a non zero constant, such that µ ̸= 1. Now, Eqs. (5)-(8) become

a16µH(6)
1 (ξ )+µ

(
a14 +5κa15 −15κ2a16

)
H(4)

1 (ξ )

+µ
(
a12 +3a13κ −6a14κ2 −10a15κ3 +15a16κ4 −b1V

)
H ′′

1 (ξ )

+µ
[
β1 +(a11 +α1)κ −a12κ2 −a13κ3 +a14κ4 +a15κ5 −a16κ6 − (1−b1κ)

(
Ω−σ2)]H1 (ξ )

+
(
ξ1 +η1µ2 +ζ1µ4)H5

1 (ξ )+2
(
λ1 +θ1µ2)H2

1 (ξ )H ′
1 (ξ )+δ1µ2H3

1 (ξ ) = 0, (10)

a26H(6)
1 (ξ )+

(
a24 +5κa25 −15κ2a26

)
H(4)

1 (ξ )

+
(
a22 +3a23κ −6a24κ2 −10a25κ3 +15a26κ4 −b2V

)
H ′′

1 (ξ )

+
[
β2 +(a21 +µα2)κ −a22κ2 −a23κ3 +a24κ4 +a25κ5 −a26κ6 − (µ −b2κ)

(
Ω−σ2)]H1 (ξ )

+µ
(
µ4ξ2 +µ2η2 +ζ2

)
H5

1 (ξ )+2µ
(
λ2µ2 +θ2

)
H2

1 (ξ )H ′
1 (ξ )+δ2µ H3

1 (ξ ) = 0, (11)

and
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[
α1 −V +µ

(
a11 −2a12κ −3a13κ2 +4a14κ3 +5a15κ4 −6a16κ5 +b1

(
Ω−σ2)+b1κV

)]
H ′

1 (ξ )

+µ
(
a13 −4a14κ −10a15κ2 +20a16κ3)H ′′′

1 (ξ )+µ (a15 −6a16κ)H(5)
1 (ξ ) = 0, (12)

[
(α2 −V )µ +a21 −2a22κ −3a23κ2 +4a24κ3 +5a25κ4 −6a26κ5 +b2

(
Ω−σ2)+b2κV

]
H ′

1 (ξ )

+
(
a23 −4a24κ −10a25κ2 +20a26κ3)H ′′′

1 (ξ )+(a25 −6a26κ)H(5)
1 (ξ ) = 0. (13)

Integrating Eqs. (12) and (13) with zero-integration constants, we have

[
α1 −V (1−b1κ)+µ

(
a11 −2a12κ −3a13κ2 +4a14κ3 +5a15κ4 −6a16κ5 +b1

(
Ω−σ2))]H1 (ξ )

+µ
(
a13 −4a14κ −10a15κ2 +20a16κ3)H ′′

1 (ξ )+µ (a15 −6a16κ)H(4)
1 (ξ ) = 0, (14)

[
α2µ − (µ −b2κ)V +a21 −2a22κ −3a23κ2 +4a24κ3 +5a25κ4 −6a26κ5 +b2

(
Ω−σ2)]H1 (ξ )

+
(
a23 −4a24κ −10a25κ2 +20a26κ3)H ′′

1 (ξ )+(a25 −6a26κ)H(4)
1 (ξ ) = 0. (15)

Setting the coefficients of the linearly independent functions of Eqs. (14) and (15) to zero, yields

κ =
a j5

6a j6
, j = 1, 2, (16)

and

V =
α1 +µ

[
a11 −2a12κ −3a13κ2 +4a14κ3 +5a15κ4 −6a16κ5 +b1

(
Ω−σ2

)]
1−b1κ

, (17)

V =
α2µ +a21 −2a22κ −3a23κ2 +4a24κ3 +5a25κ4 −6a26κ5 +b2

(
Ω−σ2

)
µ −b2κ

, (18)

and the constraints conditions

a j3 −4a j4κ −10a j5κ2 +20a j6κ3 = 0, j = 1, 2, (19)

provided a j5 ̸= 0, a j6 ̸= 0, ( j = 1, 2) , b1κ ̸= 1, b2κ ̸= µ.Eqs. (10) and (11) are equivalent under the constraint conditions:
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a16µ = a26, (20)

δ1µ = δ2, (21)

λ1 +θ1µ2 = µ
(
λ2µ2 +θ2

)
, (22)

ξ1 +η1µ2 +ζ1µ4 = µ
(
µ4ξ2 +µ2η2 +ζ2

)
, (23)

µ
(
a14 +5κa15 −15κ2a16

)
=
(
a24 +5κa25 −15κ2a26

)
, (24)

µ
(
a12 +3a13κ −6a14κ2 −10a15κ3 +15a16κ4 −b1V

)
=
(
a22 +3a23κ −6a24κ2 −10a25κ3 +15a26κ4 −b2V

)
, (25)

µ
[
β1 +(a11 +α1)κ −a12κ2 −a13κ3 +a14κ4 +a15κ5 −a16κ6 − (1−b1κ)

(
Ω−σ2)]

= β2 +(a21 +µα2)κ −a22κ2 −a23κ3 +a24κ4 +a25κ5 −a26κ6 − (µ −b2κ)
(
Ω−σ2) . (26)

From (26), we have the wave number of the soliton:

Ω =

[a21 −µ (a11 +α1 −α2)]κ +(µa16 −a26)κ6 +(a25 −µa15)κ5 +(a24 −µa14)κ4

+(a13µ −a23)κ3 +(µa12 −a22)κ2 +β2 −µβ1 +σ2κ (µb1 −b2)

κ (µb1 −b2)
, (27)

provided µb1 ̸= b2. From (17) and (18), we deduce that

σ2 =
A(µ −b2κ)−B(1−b1κ)+Ω [µb1 (µ −b2κ)−b2 (1−b1κ)]

µb1 (µ −b2κ)−b2 (1−b1κ)
, (28)

where

A = α1 +µ
[
a11 −2a12κ −3a13κ2 +4a14κ3 +5a15κ4 −6a16κ5

]
,

B = α2µ +a21 −2a22κ −3a23κ2 +4a24κ3 +5a25κ4 −6a26κ5. (29)

Now, Eq. (10) can be rewritten in the form
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H(6)
1 (ξ )+L1H(4)

1 (ξ )+L2H ′′
1 (ξ )+2L3H2

1 (ξ )H ′
1 (ξ )+L4H1 (ξ )+L5H3

1 (ξ )+L6H5
1 (ξ ) = 0, (30)

where

L1 =
a14 +5κa15 −15κ2a16

a16
,

L2 =
a12 +3a13κ −6a14κ2 −10a15κ3 +15a16κ4 −b1V

a16
,

L3 =
λ1 +θ1µ2

a16µ
,

L4 =
β1 +(a11 +α1)κ −a12κ2 −a13κ3 +a14κ4 +a15κ5 −a16κ6 − (1−b1κ)

(
Ω−σ2

)
a16

,

L5 =
δ1µ
a16

,

L6 =
ξ1 +η1µ2 +ζ1µ4

a16µ
, (31)

Now, balancing the terms H(6)
1 (ξ ) and H5

1 (ξ ) in Eq. (30) yields the balance number N = 3
2 . Thus, we take the

transformation:

H1(ξ ) = Z
3
2 (ξ ), (32)

where Z(ξ ) is a new positive function of ξ . Next, Eq. (30) changes to:

Z5(ξ )Z(6)(ξ )+3Z4(ξ )Z′(ξ )Z(5)(ξ )− 15
4
[
Z′2(ξ )−2Z(ξ )Z′′(ξ )

][
Z3(ξ )Z(4)(ξ )−2Z2(ξ )Z′(ξ )Z′′′(ξ )

]

+5Z4(ξ )Z′′′2(ξ )− 15
4

Z3(ξ )Z′′3(ξ )+
135
8

Z2(ξ )Z′2(ξ )Z′′2(ξ )+
105
32

Z′6(ξ )− 225
16

Z(ξ )Z′4(ξ )Z′′(ξ )

+
L1

8

[
8Z3(ξ )Z(4)(ξ )+16Z2(ξ )Z′(ξ )Z′′′(ξ )+3Z′4(ξ )+12

(
Z(ξ )Z′′(ξ )−Z′2(ξ )

)
Z(ξ )Z′′(ξ )

]
Z2(ξ )

+
L2

2
[
Z′2(ξ )+2Z(ξ )Z′′(ξ )

]
Z4(ξ )+2L3Z8(ξ )Z′(ξ )+

2
3

L4Z6(ξ )+
2
3

L5Z9(ξ )+
2
3

L6Z12(ξ ) = 0. (33)
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In Eq. (33), we balance Z5(ξ )Z(6)(ξ ) and Z12(ξ ) produces the equilibrium number N = 1. Eq. (33) will be solved
using the following two integration techniques in the next sections.

3. Extended simplest equation approach
The formal solution to Equation (33) is [6–8]:

Z (ξ ) = χ0 +χ1

[
Φ′ (ξ )
Φ(ξ )

]
+ρ0

[
1

Φ(ξ )

]
, (34)

and Φ(ξ ) is the solution of the equation

Φ′′ (ξ )+ τΦ(ξ ) = υ , (35)

where τ, υ , χ0, χ1 and ρ0 are variables, such χ2
1 +ρ2

0 ̸= 0.
For τ < 0, we switch (34) with (33) and apply Eq. (35) with the following relation

(
Φ′ (ξ )
Φ(ξ )

)2

= T1

(
1

Φ(ξ )

)2

− τ +
2υ

Φ(ξ )
, (36)

where T1 = τ
(
W 2

1 −W 2
2
)
− υ2

τ , while W1 and W2 are parameters, allows for results

χ0 = 0, χ1 = 0, ρ0 =
1
2

[
−

117855τ3
(
W 2

1 −W 2
2
)3

L6

] 1
6

, υ = 0, (37)

and

L1 =
3247

84
τ, L2 =

135679
336

τ2, L3 = 0, L4 =
45873

64
τ3, L5 = 0, (38)

provided
(
W 2

1 −W 2
2
)

L6 > 0. Consequently, we obtain bright-singular straddled optical solitons as:

q(x, t) =

1
2

[
−

117855τ3
(
W 2

1 −W 2
2
)3

L6

] 1
6
[

1
W1 cosh

(√
−τξ

)
+W2 sinh

(√
−τξ

)]


3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (39)
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r(x, t) =µ

1
2

[
−

117855τ3
(
W 2

1 −W 2
2
)3

L6

] 1
6
[

1
W1 cosh

(√
−τξ

)
+W2 sinh

(√
−τξ

)]


3
2

ei[−κx+Ωt+θ+σW (t)−σ2t]. (40)

The bright soliton solution is obtained when W1 ̸= 0,W2 = 0, we have:

q(x, t) =

1
2

[
−117855τ3

L6

] 1
6

sech
(√

−τξ
)

3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (41)

r(x, t) = µ

1
2

[
−117855τ3

L6

] 1
6

sech
(√

−τξ
)

3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (42)

provided L6 > 0. The singular soliton solution is obtained when W1 = 0, W2 ̸= 0, we have:

q(x, t) =

1
2

[
117855τ3

L6

] 1
6

csch
(√

−τξ
)

3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (43)

r(x, t) = µ

1
2

[
117855τ3

L6

] 1
6

csch
(√

−τξ
)

3
2

ei[−κx+Ωt+θ+σW (t)−σ2t]. (44)

for L6 < 0.
In Figures 1 and 2, we can see 3D plots, contour plots, 2D plots of a bright soliton solution defined by Eq. (41). The

parameters have specific values: V = 1.1, τ = −1, µ = 1.2, ξ1 = 1.9, η1 = 1.3, ζ1 = 1.4, a16 = 1.7, κ = 1.6, Ω = 2.1,
θ = 2.4, and W (t) = t.
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Figure 1. Profile of a bright soliton solution
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Figure 2. Profile of a bright soliton solution
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4. Generalized Riccati equation mapping scheme
Eq. (33) obtains the formal solution [6–8]:

Z(ξ ) = ∆0 +∆1Q(ξ )+
∆−1

Q(ξ )
, (45)

and Q(ξ ) satisfies the generalized Riccati equation:

Q′ (ξ ) = h0 +h1 Q(ξ )+h2 Q2 (ξ ) , (46)

where ∆0, ∆1, ∆−1, h0, h1 and h2 are arbitrary constants to be determined provided ∆1 ̸= 0 or ∆−1 ̸= 0 and h2 ̸= 0.
Plugging (45) together with (46) into Eq. (33), obtains the following results:

∆1 =
h2

2

(
−117855

L6

) 1
6
, ∆0 = 0,

∆−1 =
21 L1

6494 h2

(
−117855

L6

) 1
6
,h0 =

21 L1

3247 h2
, h1 = 0, (47)

and

L2 =
2849259 L2

1
10543009

, L3 = 0, L4 =
424829853 L3

1
34233150223

, L5 = 0, (48)

provided L6 < 0. From (45) and (47), then we have the solutions:

H1(ξ ) =

{
1
2

(
−117855

L6

) 1
6
[

h2Q(ξ )+
21 L1

3247 h2

(
1

Q(ξ )

)]} 3
2

. (49)

The following solutions are thus yielded.
If ϒ = h2

1 −4h0h2 > 0 and h1h2 ̸= 0 or h0h2 ̸= 0, then, we have the straddled dark-singular soliton solutions:

q(x, t) =

{(
−117855

L6

) 1
6
√
− 21 L1

12988

[
tanh

(√
−21 L1

3247
ξ

)
+ coth

(√
−21 L1

3247
ξ

)]} 3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (50)
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r(x, t) =µ

{(
−117855

L6

) 1
6
√
− 21 L1

12988

[
tanh

(√
−21 L1

3247
ξ

)
+ coth

(√
−21 L1

3247
ξ

)]} 3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (51)

q(x, t) =ei[−κx+Ωt+θ+σW (t)−σ2t]×

{(
−117855

L6

) 1
6
√
− 21 L1

51952

[
tanh

(√
− 21 L1

12988
ξ

)
+ coth

(√
− 21 L1

12988
ξ

)

+
4

tanh
(√

− 21 L1
12988 ξ

)
+ coth

(√
− 21 L1

12988 ξ
)



3
2

, (52)

r(x, t) =µ × ei[−κx+Ωt+θ+σW (t)−σ2t]×

{(
−117855

L6

) 1
6
√
− 21 L1

51952

[
tanh

(√
− 21 L1

12988
ξ

)
+ coth

(√
− 21 L1

12988
ξ

)

+
4

tanh
(√

− 21 L1
12988 ξ

)
+ coth

(√
− 21 L1

12988 ξ
)



3
2

. (53)

Also we obtain the straddled singular solitons
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q(x, t) =ei[−κx+Ωt+θ+σW (t)−σ2t]×

{
−
√
− 21L1

12988

(
−117855

L6

) 1
6
[

coth

(√
−84 L1

3247
ξ

)
± csch

(√
−84 L1

3247
ξ

)

+
1

coth
(√

− 84 L1
3247 ξ

)
± csch

(√
− 84 L1

3247 ξ
)



3
2

, (54)

r(x, t) =ei[−κx+Ωt+θ+σW (t)−σ2t]×

µ

{
−
√
− 21L1

12988

(
−117855

L6

) 1
6
[

coth

(√
−84 L1

3247
ξ

)
± csch

(√
−84 L1

3247
ξ

)

+
1

coth
(√

− 84 L1
3247 ξ

)
± csch

(√
− 84 L1

3247 ξ
)



3
2

, (55)

A few additional soliton solutions are structured as:

q(x, t) =


(
−117855

L6

) 1
6
√

− 21 L1

12988


√

A2 +B2 −Acosh
(√

− 84 L1
3247 ξ

)
Asinh

(√
− 84 L1

3247 ξ
)
+B

+

Asinh
(√

− 84 L1
3247 ξ

)
+B

√
A2 +B2 −Acosh

(√
− 84 L1

3247 ξ
)



3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (56)
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r(x, t) =µ


(
−117855

L6

) 1
6
√
− 21 L1

12988


√

A2 +B2 −Acosh
(√

− 84 L1
3247 ξ

)
Asinh

(√
− 84 L1

3247 ξ
)
+B

+

Asinh
(√

− 84 L1
3247 ξ

)
+B

√
A2 +B2 −Acosh

(√
− 84 L1

3247 ξ
)



3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (57)

q(x, t) =

−
(
−117855

L6

) 1
6
√
− 21 L1

12988


√

B2 −A2 +Asinh
(√

− 84 L1
3247 ξ

)
Acosh

(√
− 84 L1

3247 ξ
)
+B

+

Acosh
(√

− 84 L1
3247 ξ

)
+B

√
B2 −A2 +Asinh

(√
− 84 L1

3247 ξ
)



3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (58)

r(x, t) =µ

−
(
−117855

L6

) 1
6
√
− 21 L1

12988


√

B2 −A2 +Asinh
(√

− 84 L1
3247 ξ

)
Acosh

(√
− 84 L1

3247 ξ
)
+B

+

Acosh
(√

− 84 L1
3247 ξ

)
+B

√
B2 −A2 +Asinh

(√
− 84 L1

3247 ξ
)



3
2

ei[−κx+Ωt+θ+σW (t)−σ2t], (59)

provided L1 < 0, A and B are two non-zero real constants satisfying B2 −A2 > 0.

5. Conclusions
The current paper conducts a detailed analysis and constitutes the retrieval of highly dispersive gap optical solitons

that emerge from the Kundu-Eckhaus equation. To give the model a flavor of stochasticity, the effect of multiplicative
white noise is included in the Itô sense for the first time. Two integration algorithms shed light on the model. They are
the extended simplest equation approach and the generalized Riccati equation mapping scheme. These methods together
yield bright and singular 1-soliton solutions as well as dark-singular and bright-singular straddled optical solitons. Both
of the schemes have a severe shortcoming. They fail to recover dark 1-soliton solution to the model. Another feature that
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is observed in this paper is that the effect of white noise stays confined to the phase component of the solitons and thus
does not affect the amplitude component of any of the solitons.

The results are thus indeed promising to traverse along additional avenues to proceed with this model. It is imperative
to consider more integration schemes that would reveal dark 1-soliton solutions to themodel. The present paper thus stands
incomplete in the sense that the two adopted algorithms fail to present a full spectrum of optical gap solitons to the model.
This is one of the very many avenues to venture into in the upcoming days and the recovered results would be reported
after aligning them with the various pre-existing ones [9–24].
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