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Abstract: To address the critical threat black pod disease poses to global cocoa production and farmer income, this
study developed a novel mathematical model that utilizes a system of ordinary differential equations to capture the
interactions between various stages of cocoa pods (susceptible cherelles, young/mature pods, ripe pods) and their disease
state (exposed, infected). Additionally, the model incorporates the dynamics of the disease-causing pathogen population.
Employing Pontryagin’s Maximum Principle, the model optimizes control strategies that minimize disease impact. This
optimization identifies the efficient allocation of resources, timing of interventions, and deployment of control measures
like infected pod removal, fungicides, and sanitation practices. The finding of the study reveals that control measure u3

which is rouging (pod removal) and any one of the remaining control measures is best for the treatment of cocoa black pod
disease caused by PhytophoraMegarkaya. These findings translate into valuable, data-driven recommendations for cocoa
farmers and disease management professionals. By strategically combining infected pod removal, targeted fungicide use,
and environmental management practices, farmers can significantly reduce disease severity, enhance cocoa production,
and promote a more sustainable cocoa industry.

Keywords: cocoa, dynamics, basic reproductive number, optimal control, pontryagin’s maximum principle

MSC: 92xx, 91-10

1. Introduction
Infectious diseases have plagued humanity throughout history, leaving trails of devastation and shaping the course of

civilizations. To understand and effectively combat these invisible foes, we turn to the power of mathematics. Mathemati-
cal models, intricate tapestries woven from data and equations, offer a unique lens through which we can observe the
dance of infection within populations. By dissecting the dynamics of transmission, recovery, and immunity, these models
provide invaluable insights for public health interventions, vaccination strategies, and outbreak control [1–4].

Cocoa, the source of our cherished chocolate, stands threatened by a silent enemy: black pod disease, caused by
the fungal pathogen Phytophthora palmivora and Phytophthora megakarya [5], is a major threat to cocoa production
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worldwide. It can cause devastating losses, leading to significant economic hardship for farmers and impacting the global
chocolate supply chain [5, 6].

The fungus infects all parts of the cocoa tree, but the pods are most susceptible, particularly during periods of high
humidity and rainfall [4, 6]. Spores spread through rain splashes, landing on pods and initiating infection. Initially, small,
brown spots appear, rapidly growing to cover the entire pod surface. Infected pods turn black and mummified, with the
cocoa beans inside rotting and becoming unusable [7].

Black pod disease can cause yield losses of up to 30% annually, with some regions experiencing even higher losses
if fungicide use is limited [4, 7, 8]. This not only impacts farmers’ livelihoods but also disrupts the global cocoa market,
potentially leading to price fluctuations for chocolate consumers.

West Africa, the world’s leading cocoa producer, faces a significant threat from black pod rot caused primarily by
the fungus Phytophthora megakarya. This devastating disease rots cocoa pods, crippling yields and jeopardizing the
livelihoods of millions of farmers [4–6].

Phytophthora megakarya’s primary host is the Theobroma cacao tree, It is the most virulent species of Phytophthora
that infects cocoa, causing the greatest percentage of yield loss. The disease it causes is called black pod rot, its symptoms
are root rot on seedlings, cankers on stems and branches, black and rotting pods [5, 6]. P. megakarya reproduces through
motile spores called zoospores. These zoospores are released from infected pods and can travel in water to find new hosts,
once they reach a cocoa tree, the zoospores encyst and germinate, producing a germ tube that penetrates the host tissue
[5].

Inside the host, the oomycete grows and spreads, feeding on the plant’s cells. Which lead to the infected pods
becoming black and rotten. The disease thrives under warm and humid conditions, heavy rainfall and poor drainage can
favor the spread of the disease. There is no single cure for black pod rot. but an integrated approach using cultural,
chemical, and biological control methods is often necessary [4–6].

Plant diseases pose a significant threat to global food security, causing billions of dollars in losses annually [9]. To
effectively manage and mitigate these diseases, researchers are increasingly turning to mathematical modeling. These
models provide a quantitative framework for understanding disease dynamics, predicting outbreaks, and evaluating
the effectiveness of control strategies. A common approach utilizes compartmental models, which categorize plant
populations into distinct stages based on their disease status. For example, a black pod disease model might have
compartments for susceptible pods, infected pods, and recovered pods [7]. Systems of ordinary differential equations then
describe the transition rates between these compartments, often incorporating factors like weather conditions, pathogen
dispersal, and control measures.

Recent research in mathematical modeling of infectious plant diseases has seen several advancements:
·Spatially Explicit Models: These models incorporate spatial information to capture the geographical spread of

disease across fields or regions. This allows for a more realistic representation of disease dynamics, particularly for
wind-dispersed pathogens [10].

·Age-Structured Models: These models consider the age or developmental stage of plants, as susceptibility to
disease can vary depending on this factor [11].

·Stochastic Models: These models account for the inherent randomness in disease transmission, providing a more
probabilistic picture of disease progression [12].

Mathematical models offer several benefits in plant disease management:
·Predicting Outbreaks: Models can be used to predict the timing and severity of potential outbreaks, allowing for

proactive implementation of control measures [12].
·Optimizing Control Strategies: By simulating different control strategies within the model, researchers can identify

the most effective and resource-efficient approach for a specific disease scenario [13].
·Evaluating New Technologies: Models can be used to assess the potential impact of new disease control

technologies before their widespread adoption [12].
Mathematical modeling transcends mere observation by venturing into the realm of optimal control theory. This

framework leverages the insights gained from models to identify the most effective strategies for disease management.
[14, 15] employed dynamic programming to optimize fungicide application in black pod control, demonstrating significant
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yield improvements compared to static schedules, this work highlighted the potential of tailoring interventions to the
specific dynamics of each outbreak. Optimal control theory allows researchers to determine themost effective allocation of
resources and timing of interventions for disease control. Techniques like Pontryagin’sMaximum Principles are employed
to identify control strategies that minimize disease impact or maximize yield [16, 17].

The foundation of mathematical modeling in cocoa disease lies in compartmental models. These frameworks
divide the cocoa population into distinct compartments, often representing susceptible pods, infected pods, and recovered
(resistant) pods. The flow of pods between these compartments is governed by a set of equations, incorporating parameters
like transmission rates due to fungal spores or viral vectors, recovery times, and potential interventions [8, 18–20].

Early work by [19] established a basic framework for modeling black pod disease, a fungal like scourge responsible
for significant losses. Their model effectively captured the disease’s exponential growth and provided insights into the
impact of sanitation practices. [21] further refined this approach by modeling the spread of cacao swollen shoot virus
(CSSV), highlighting the crucial role of vector movement and host susceptibility.

Beyond fungicides, [22] provided a comprehensive review of optimal control approaches in plant diseasemanagement,
encompassing strategies like varietal selection, intercropping, and sanitation, this review emphasized the need for flexible
models that can incorporate diverse control options and adapt to changing environmental conditions.

Mathematicalmodels and optimal control theory hold immense potential for revolutionizing cocoa diseasemanagement.
By providing insights into disease dynamics and optimizing interventions, these tools can empower farmers to protect
their crops, secure their livelihoods, and ensure the continued flow of chocolate for generations to come. Addressing the
existing challenges and fostering continued research in this field are crucial steps towards a future where cocoa thrives,
disease is contained, and the sweet symphony of chocolate continues to delight the world [15, 23].

2. Model formulation
The total pod population at time t, represented by N(t) is subdivided into six compartments of Cherelles Sc(t)

(flowering and formation of young pod stage); young and Mature pod stage Sm(t); Ripe pod Sr(t); exposed E(t) (pod
that are infected but cannot transmit the infection); Infected pods I(t) (pod that are infected and infectious); Removed
pods R(t) (infected ripe pods but are of economic importance and healthy ripe pods that are harvested). Then

N(t) = Sc(t)+Sp(t)+Sr(t)+E(t)+ I(t)+R(t). (1)

The total pathogen population is denoted by Np(t) and it consist of only one compartment, i.e Np(t) = P(t).
Compartment Sc(t) and Sm(t) are exposed to pod infection whenever there is any form of interaction with the

Pathogen of infection P(t), the transmission mode of Phytophthora Margakayamay be through rain splash, direct contact,
infected plant material, insects, equipment and environmental factors such as warm, humid weather, poor drainage and
densely planted trees.

Figure 1 describe the transmission of the disease from the environment to the healthy pod compartment.
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Figure 1. Flow diagram showing of the model

From the description of model parameters in Table 1 and the compartmental diagram in Figure 1, we have the
following system of differential equation.

dSc

dt
= Λ−π1PSc − (θ +µ1)Sc,

dSm

dt
= θSc − (π2P+α +µ1)Sm,

dSr

dt
= αSm − (µ1 +η)Sr,

dE
dt

= (π1Sc +π2Sm)P− (ω1 + γ +µ1)E,

dI
dt

= γE − (δ +µ1 +ψ)I,

dR
dt

= δ I +ηSr −µ1R,

dP
dt

= ω1E +ω2I −µ2P.



(2)
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(Sc(0), Sm(0), Sc(0), E(0), I(0), R(0), P(0))≥ 0

Table 1. Description of model parameters and values

Parameter Descriptions value Source

Sc Cherelles compartment
Sm Young and Mature pod compartment
Sr Ripe pod compartment
E Exposed pod compartment
I Infected pod compartment
T Treated pod compartment
R Removed/ Harvested pod compartment
P Pathogen compartment
Λ Recruitment rate 12 [24, 25]
π1 Transmission rate from P(t) to Sc(t) 0.0007954551 [26]
α Transmission rate from Sm to Sr 0.027 [26]
π2 Transmission rate from P(t) to Sm(t) 0.0007954551 [26]
θ Transmission rate from Sc(t) to Sm(t) 0.05 [27]
µ1 Natural death rate 0.05 [27]
µ2 The decay rate of Pathogen in P(t) 0.00900982 [26]
α Ripening rate (Sm(t) to Sr(t)) 0.027 [24]
η Removed rate of either ripe or decay 0.09 [27]
ω1 Rate of increase from P(t) to E(t) 0.0587364 [26]
ω2 Rate of increase from P(t) to I(t) 0.0587364 [26]
γ Progression rate of E(t) to I(t) 0.01 [25, 27]
δ Transmission rate from I to R 0.09 [25, 27]
ψ Death rate as a result of the infection 0.0001 [26]

3. Model analysis
Analyzing epidemic models is crucial for understanding and predicting the spread of infectious diseases. These

models, though simplified representations of reality, offer valuable insights into factors influencing disease dynamics and
inform public health interventions.

3.1 Boundedness of the model
Lemma 1 Let the initial conditions of the system (2) be nonnegative in ℜ6

+×ℜ1
+,

ΩN =

{
(Sc, Sm, Sr, E, I, R) ∈ ℜ6

+; N(t)≤ Λ
µ1

}
,

ΩP =

{
P ∈ ℜ1

+; P(t)≤ Λ(ω1 +ω2)

µ1µ2

}
, (3)
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then the set Ω = ΩN ×ΩP is positively invariant.
Proof. The first six equation of system (2) will be added to obtain

dN
dt

= Λ−µ1N −ψI, (4)

in the absence of infection i.e I = 0, we have

dN
dt

≤ Λ−µ1N, (5)

solving (5), yields

N(t)≤ Λ
µ1

+

(
N(0)− Λ

µ1

)
e−µ1t , (6)

as t → ∞

N(t)≤ Λ
µ1

, (7)

hence, the feasible solution region is given by

OmegaN =

{
(Sc, Sm, Sr, E, I, R) ∈ ℜ6

+; N(t)≤ Λ
µ1

}
.

Likewise, by considering the seventh equation of system (2), i.e.

dP
dt

= ω1E +ω2I −µ2P, (8)

Rewriting (8) as

dP
dt

≤
Λ(ω1 +ω2)

µ1
−µ2P, (9)

on solving (9),

P(t)≤
Λ(ω1 +ω2)

µ1µ2
− 1

µ2

[Λ(ω1 +ω2)

µ1
−µ2P(0)

]
e−µ2t , (10)

as t → ∞
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P(t)≤ Λ(ω1 +ω2)

µ1µ2
.

Hence

ΩP =

{
P ∈ ℜ1

+; P(t)≤ Λ(ω1 +ω2)

µ1µ2

}
.

Thus, the feasible region defined by the set

Omega = ΩN ∪ΩP ⊂ ℜ6
+×ℜ1

+.

is positively invariant.

3.2 Positivity of solutions
Lemma 2 Let Sc(0), Sm(0), Sr(0), E(0), I(0), R(0), P(0) be the initial conditions of the system (2), then the solution

of Sc, Sm, Sr, E, I, R, P are nonnegative ∀ t > 0.
Proof. Considering the first equation of system (2)

dSc

dt
= Λ−π1PSc − (θ +µ1)Sc, (11)

rearranging equation (11), we have

dSc

dt
+π1PSc +(θ +µ1)Sc = Λ, (12)

on integrating (12) from 0 to T , we have

Sc(t) = exp
[
−
∫ T

0
(π1P+θ +µ1)ScdSc

]{
Sc(0)+

∫ T

0
Λexp

[∫ T

0
(π1 p+θ +µ1)(t)dt

]}
dt. (13)

Thus, Sc(t) ≥ 0 ∀ t > 0. In a similar approach, we prove the rest equations of equation (2). Sm(t) ≥ 0, Sr(t) ≥ 0,
E(t)≥ 0, I(t)≥ 0, R(t)≥ 0, P(t)≥ 0, thus all the solutions are nonnegative ∀ t > 0.

3.3 Disease free equilibrium
A disease-free equilibrium (DFE) is a state in a disease transmission model where the number of infected individuals

remain at zero over time. In other words, the disease dies out and disappears from the population. This concept is often
used in mathematical models to study the dynamics of infectious diseases [28].

The key characteristics of a disease-free equilibrium are :
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·No infected individuals: As mentioned earlier, the number of infected individuals in the population is zero at DFE.
This means that the disease is not being transmitted and all individuals are either susceptible or recovered [28].

·Balance of rates: At DFE, the rate at which new infections occur is equal to the rate at which individuals recover
from the disease. This balance ensures that the number of infected individuals remains constant at zero [28].
·Stability: Whether DFE is stable or unstable depends on the specific disease and the parameters of the model. A

stable DFE means that if the number of infected individuals deviates slightly from zero, it will eventually return to zero.
Conversely, an unstable DFE means that any small deviation from zero will lead to an outbreak of the disease [28].

The DFE of model in equation (2) is obtained by setting the RHS of system (2) equal to zero.

Λ−π1So
c p− (θ +µ1)So

c = 0,

θ So
c − (pπ2 +α +µ1)So

m = 0,

α So
m − (µ1 +η)So

r = 0,

(So
cπ1 +So

mπ2)Po − (ω1 + γ +µ1)Eo = 0,

γ Eo − (δ +µ1 +ϕ) Io = 0,

−µ1Ro +δ Io +η So
r = 0,

ω1Eo +ω2Io −µ2Po = 0.



(14)

In the absence of disease, let Io = Eo = Po = 0, solving (14) gives

So
c =

Λ
θ +µ1

,

So
m =

θΛ
(α +µ1)(θ +µ1)

,

So
r =

αθΛ
(α +µ1)(θ +µ1)(µ1 +η)

,

Ro =
ηαθΛ

(α +µ1)(θ +µ1)(µ1 +η)µ1
,

hence the DFE for model (2) is given as

Volume 5 Issue 2|2024| 1997 Contemporary Mathematics



Eo =(So
c , So

m, So
r , Eo, Io, Ro, Po)

=

(
Λ

θ +µ1
,

θΛ
(α +µ1)(θ +µ1)

,
αθΛ

(α +µ1)(θ +µ1)(µ1 +η)
, 0, 0,

ηαθΛ
(α +µ1)(θ +µ1)(µ1 +η)µ1

, 0
)
. (15)

4. Basic reproduction number
The basic reproduction number, also called the basic reproduction ratio or rate, is an epidemiological metric used to

describe the contagiousness or transmissibility of infectious agents.
The basic reproduction number, often abbreviated as Ro, is a key concept in epidemiology. It’s a measure of how

contagious a disease is, a higher Ro means that each infected pod, on average, infects more pods, leading to a faster spread
of the disease. Conversely, a lower Ro indicates that the disease is less contagious and will spread more slowly [29]. For
instance, if a disease has an Ro of 3, then one infected person can be expected to transmit the disease to 3 other people on
average.

Ro greater than 1 indicates that the infection will spread exponentially. Conversely, an Ro less than 1 means that the
infection will die out. The concept is instrumental in understanding the spread of infectious diseases and implementing
control measures. Public health interventions like vaccination aim to bring down the Ro below 1 to stop the spread of a
disease.

According to [29], factors affecting the basic reproduction number are :
·infectiousness of the disease: this refers to how easily a disease can be transmitted from one person to another.
·duration of the infectious period: the longer an infected person remains contagious, the higher the chance of

transmission.
·rate of contact between susceptible individuals and infected individuals: this depends on various factors like

population density, social mixing patterns, and hygiene practices.
Definition 1 Ro is the average number of secondary infections caused by a single infected individual in a population

that is entirely susceptible to the disease [29].
Computation of Ro is carried out using the next generation matrix as laid out in [29]. Ro is obtained using

Ro = ρ
(
FV−1) , (16)

where ρ is the spectral radius of the matrix FV−1. Differential equations which is associated with E, I, P compartment
are the infective classes and will be used in the computation of Ro.

dE
dt

= (π1Sc +π2Sm)P− (ω1 + γ +µ1)E,

dI
dt

= γE − (δ +µ1 +ψ)I,

dP
dt

= ω1E +ω2I −µ2P.


(17)

From system (17), we derive
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Fi =

 (π1Sc +π2Sm)P
0
0

 , Vi =

 (γ +µ1)E
(δ +µ1 +ϕ)− γE
µ2P−ω1E −ω2I

 ,

and it follows that

F =

 0 0 π1Λ
(θ+µ1)

+ π2θΛ
(θ+µ1)(α+µ1)

0 0 0
0 0 0

 ,

V =

 (γ +µ1) 0 0
−γ (δ +µ1 +ϕ) 0
−ω1 −−ω2 µ2

 .

Ro which is the dominant eigenvalue of equation (16) is obtained as

Ro =
(π1Λ(α +µ1)+π1θΛ)(γω2 + γω1 +ω1µ1)

µ2(θ +µ1)(α +µ1)(γ +µ1)(δ +µ1 +ϕ)
, (18)

equation (18) is the basic reproduction number for model (2)

Figure 2. plot of Ro against δ

Remark 1 (i) whenever Ro > 1, it indicates that each infected pod, on average, will infect more than one other
person, leading to an outbreak or epidemic.
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(ii) Whenever Ro < 1, it means that the disease will likely die out on its own, as each infected pod, on average, infects
fewer than one other pod.

(iii) Whenever Ro = 1, it indicates new cases remains constant, neither increasing nor decreasing, the outbreak is not
actively growing, but it’s not dying out either.

Figure 2 is a plot of basic reproduction number against δ , which is the transmission rate from I to R, the higher the
rate of α , the lower the Ro, thus effort must be geared toward the prevention of the infection.

4.1 Existence and uniqueness of endemic equilibrium

Endemic Equilibrium (EE) state is the state where the disease persist.
Let

E+ =
(
S+c, S+m, S+r, E+, I+, R+, P+

)
,

be the EE state. In order to obtained the EE state, equation (2) need to be rearrange and solve simultaneously, i.e

Λ−π1S+c P+− (θ +µ1)S+c = 0,

θ S+c −
(
P+π2 +α +µ1

)
S+m = 0,

α S+m − (µ1 +η)S+r = 0,

(
S+c π1 +S+mπ2

)
P+− (ω1 + γ +µ1)E+ = 0,

γ E+− (δ +µ1 +ϕ) I+ = 0,

−µ1R++δ I++η S+r = 0,

ω1E++ω2I+−µ2P+ = 0, (19)

if

Ro =
(π1Λ(α +µ1)+π1θΛ)(γω2 + γω1 +ω1µ1)

µ2(θ +µ1)(α +µ1)(γ +µ1)(δ +µ1 +ϕ)
,

then

S+ =
So

Ro
, (20)

therefore
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S+ =
Λ

(θ +µ1)Ro
. (21)

Substitute (21) into the first equation of system (19)

Λ− π1P+Λ
(θ +µ1)Ro

− (θ +µ1)Λ
(θ +µ1)Ro

= 0

thus, solving for P+ gives

P+ =
(θ +µ1)(Ro −1)

π1
. (22)

Substitute (21) and (22) into the second equation of (19) and simplify

S+m =
θΛπ1

(θ +µ1)Ro [π2(θ +µ1)(Ro −1)+π1(α +µ1)]
. (23)

Substitute (23) into the third equation of system (19), after simplification, we have

S+r =
αθΛπ1

(µ1 +η)(θ +µ1)Ro ((θ +µ1)(Ro −1)+π1(α +µ1))
(24)

From equation (5) of the system (19)

E+ =
(δ +µ1 +ψ)

γ
I+. (25)

Substitute (25) into the seventh equation of system (19),

ω1
(δ +µ1 +ψ)

γ
I++ω2I++µ2P+ = 0,

I+ =
µ2P+γ

π1(ω1(δ +µ1 +ψ)+ω2γ)
.

Inserting P+ into the above, gives

I+ =
µ2γ(θ +µ1)

π1(ω1(δ +µ1 +ψ)+ω2γ)
, (26)
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substitute (26) into (25) and simplify

E+ =
µ2(θ +µ1)(δ +µ1 +ψ)(Ro −1)

π1(ω1(δ +µ1 +ψ)+ω2γ)
. (27)

From equation (7) of the system (19)

R+ =
δ I+

µ1
+

ηS+r
µ1

, (28)

substitute the values of S+r & I+ into (28) gives

R+ =
C
W

, (29)

whereC = δ µ2γ(θ +µ1)(Ro−1)(θ +µ1)Ro (π2(θ +µ1)(Ro −1)+π(α +µ1))+αηθΛπ2
1 (ω1(δ +µ1 +ψ)+ω2γ) and

W = µ1π1 [(ω1(δ +µ1 +ψ)+ω2γ)(µ1 +η)(θ +µ1)Ro]π2(θ +µ1)(Ro −1)+π1(α +µ1)

The existence of an endemic equilibrium often depends on the basic reproduction number (Ro).
·If Ro is less than 1 (Ro < 1), the disease cannot establish itself in the population, and the disease-free equilibrium

is stable. The infection will eventually die out. If Ro is greater than 1 (Ro > 1), an endemic equilibrium typically exists.
The infection persists in the population, and the number of infected individuals stays relatively constant over time.

5. Stability analysis
5.1 Local stability of disease free equilibrium

Local stability analysis is amathematical technique used to investigate the behavior of a system around an equilibrium
point. It’s particularly useful in understanding how a system responds to small disturbances.

Theorem 1 The disease free equilibrium of model (2) is locally asymptotically stable If ℜo < 1, otherwise, it is
unstable.

Proof. The Jacobian matrix J of model (2) will be computed by differentiating each equation in system with respect
to state variables Sc, Sm, Sr, E, I, R, P. The model system (2) linearized around the DFE solution (15) yields the Jacobian
matrix below:

J(Eo) =



−(θ +µ1) 0 0 0 0 0 −π1

0 −(α +µ1) 0 0 0 0 −π2

0 α −(µ1 +η) 0 0 0 0
0 0 0 −(γ +µ1) 0 0 π1 +π2

0 0 0 γ −(δ +µ1 +ψ) 0 0
0 0 η δ −mu1 0
0 0 0 ω1 ω2 0 −µ2


, (30)

we use the trace and determinant of matrix to ascertain the stability of model (2).
The trace of matrix (Jo) is obtained as
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tr(Jo) =−θ −6µ1 −α −η − γ −δ −ψ −µ2

=− (θ +6µ1 +α +η + γ +δ +ψ +µ2)

Therefore, tr(Jo)< 0.
Likewise, the determinant of matrix (Jo) in equation (30) is given as

det(Jo) = [p3 (ω1 (δ +µ1 +ψ)+ γω2)−µ2 (γ +µ1)(δ +ω1 +ψ)] (θ +µ1)(α +µ1)(µ1 +η)µ1,

where p3 = π1 +π2,

det≥ 0, iff p3 (ω1 (δ +µ1 +ψ)+ γω2)> µ2 (γ +µ1)(δ +ω1 +ψ) .

5.2 Global stability of disease free equilibrium point

Theorem2 The disease-free equilibrium pointEo tends to remain globally asymptotically stable ifℜ0 ≤ 1, otherwise
unstable.

Proof. Details of how to proof Theorem 2 can be found in [24].

6. Sensitivity analysis
Sensitivity analysis is a powerful tool used to understand how changes in input variables affect the output of a model

or system. Its benefit includes [30]:
(i) improves decision-making: providing insights into risk and uncertainty;
(ii) builds confidence in models and forecasts; understanding how your predictions react to different scenarios makes

them more reliable;
(iii) identifies critical factors to focus on and
(iv) helps to optimize resource allocation and planning.
Definition 2 The below formula is used to describe the standardized forward sensitivity index of a variable C that

differently relies on a parameter s, see [31, 32] for more details.

ZC
s =

∂C
∂ s

× s
C
. (31)

The sensitivity indices of reproduction number ℜo corresponding to our model parameters is described below

MRo
π1

=
∂Ro

∂π1
× π1

Ro
=+0.95238095. (32)

In a similar way, remaining indices for the model parameters are obtained and displayed in Table 2.
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Table 2. sensitivity indices of ℜo

Parameters Sensitivity indices

π1 +0.952380951
π2 +0.047619048
Λ +1.000000000
α - 0.023414027
µ1 -1.333004883
µ2 -1.000000000
θ -0.428571421
ω1 +0.933377748
ω2 +0.066622252
γ -0.100044415
δ -0.042798044
ψ -0.000047555

The value with negative indices is an important parameter employed in the control of the disease because the value of
Ro grows when the index with a positive indication is increased and decreases when the index with a negative indication
is increased.

7. Analysis of optimal control
Optimal control theory takes epidemic modeling a step further. It allows us to actively guide the course of an outbreak

by finding the best possible control strategies to achieve a desired outcome citeAle, it helps to steer the course of outbreaks
towards favorable outcomes. Pontryagin’s Maximum Principle [33], which has been widely used in mathematical models
of biological processes including optimal control, serves as the foundation for the study. The optimal control in this paper
focuses on:
·u1: Good sanitation, weed control and pruning
·u2: Treatment effort on the infected pods, they include using an appropriate fungicides.
·u3: Pod removal (Rouging).
The following goal or cost-functional approach is used to reduce the populations of Pathogen (P(t)) in pod exposure

and infection, while also reducing the expenses associated with putting the control strategies ui(t) (i = 1, 2, 3) into action:

J =
∫ T

0

(
W1Sc(t)+W2Sm(t)+W3I(t)+

1
2

3

∑
i=1

Biu2
i (t)

)
dt, (33)

subject to model in equation (2), whereW1,W2,W3 and Bi, i = 1, 2, 3 are positive weight constants. T is a representation
of the anticipated completion time for the controls implementation.

The cost control function for fungicide application 1
2 B2u2

2, the cost of practicing excellent sanitation
1
2 B1u2

1, and the
cost of rouging(pod removal) 1

2 B3u2
3 are all included in the objective functional in equation (33). Similar to previous

research [13, 34–36], the cost control functions in this study adopt a quadratic form.
In order to achieve our set objectives, we seek an optimal control triple, u∗ = (u∗i ), i = 1, 2, 3, such that

J(u∗) =min{J (u1, u2, u3|ui ∈U)} , (34)
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whereU = {ui(t): 0 ≤ ui(t)≤ 1, Lebesque measurable, t ∈ [0, T ]} which is a non empty control set.

7.1 Characterization of the optimal control
In order to obtain the necessary conditions for optimal control of cocoa black pod disease, which is governed by the

non-autonomous system in equation (2), we make use of the Pontryagin’s Maximum Principle [33], which converts the
state system (2), together with the objective functional (33) and (34) into a problem of minimizing pointwise, with respect
to the controls u1, u2, and u3, a Hamiltonian H given by :

H =W1Sc +W2Sm +W3I +λ1 [Λ−π1PSc − (θ +µ1 +u1)Sc]+λ2 [θSc − (π2P+α +µ1 +u2)Sm]

+λ5 [γE − (δ +µ1 +ψ +u3)I]+λ3 [αSm − (µ1 +η)Sr]

+λ4 [(π1Sc +π2Sm)P− (ω1 + γ +µ1)E +u1Sc +u2Sm]

+λ5 [γE − (δ +µ1 +ψ +u3)I]+λ6 [δ I +u3I +ηSr −µ1R]+λ7 [ω1E +ω2I −µ2P] , (35)

where λ1, λ2, λ3, λ4, λ5, λ6 and λ7 are the adjoint variables. The requisite conditions for the ideal control are provided by
the following lemma.

Lemma 3 Considering an optimal control triple (u∗1, u∗2, u∗3) that minimizes objective functional (21) over the control
setU subject to the state system (2), then there exist adjoint variables λ1, λ2, λ3, λ4, λ5, λ6, λ7 satisfying

dSc

dt
= Λ−π1PSc − (θ +µ1 +u1)Sc,

dSm

dt
= θSc − (π2P+α +µ1 +u2)Sm,

dSr

dt
= αSm − (µ1 +η)Sr,

dE
dt

= (π1Sc +π2Sm)P− (ω1 + γ +µ1)E +u1Sc +u2Sm,

dI
dt

= γE − (δ +µ1 +ψ +u3)I,

dR
dt

= δ I +u3I +ηSr −µ1R,

dP
dt

= ω1E +ω2I −µ2P,



(36)

coupled with the transversality conditions
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λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, λ5(T ) = 0, λ6(T ) = 0, λ7(T ) = 0, (37)

and

u1(t) =min
{
max(0,

(λ1 −λ4)

B1
Sc), 1

}
,

u2(t) =min
{
max(0,

(λ2 −λ4)

B2
Sm), 1

}
,

u3(t) =min
{
max(0,

(λ5 −λ6)

B3
I), 1

}
. (38)

Proof. By obtaining partial derivatives of the Hamiltonian H given by (35) with respect to the corresponding state
variables, the adjoint equations defined by the non-autonomous system (36) are derived.

dλ1

dt
=− ∂H

∂Sc
,

dλ2

dt
=− ∂H

∂Sm
,

dλ3

dt
=− ∂H

∂Sr

dλ4

dt
=−∂H

∂E
,

dλ5

dt
=−∂H

∂ I
,

dλ6

dt
=−∂H

∂R
,

dλ7

dt
=−∂H

∂P
,

with transversality conditions (37). Also, the optimal control characterization given by (35) is determined by solving the
following partial differential equations:

∂H
∂u1

= 0 for u∗1,

∂H
∂u2

= 0 for u∗2,

∂H
∂u3

= 0 for u∗3.

Therefore, using standard control arguments involving control boundaries,

u∗i =


0, if u∗i ≤ 0,

u∗i , if 0 ≤ u∗i ≤ 1,

1, if u∗i ≥ 1,

(39)

for i = 1, 2, 3 and
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u∗1 =
(λ1 −λ4)

B1
Sc,

u∗2 =
(λ2 −λ4)

B2
Sm,

u∗3 =
(λ5 −λ6)

B3
I.

8. Numerical simulation and discussion of results
The state equations (2) along with the adjoint equations (36) containing the starting points at t = 0, as well as the final

conditions (37) and the characterization of the optimum control (38), make up the 14-dimensional the optimal state system.
Using an iterative sweep method and a fourth-order forward-backward Runge-Kutta scheme, this optimality system is
solved. Using an initial guess for the controls across the simulated time, the state equations (2) are solved forward in
time, because of the terminal conditions, the adjoint system is solved backward in time using the state equations’ current
iteration respond to (36) (see [37] for more details on the numerical procedure).

To illustrate the impact of different optimal control intervention strategies on the transmission of black pod in a pod
population, the following control measures to curtail the transmission of cocoa black pod disease are considered.

(i) Strategy 1: Using u1 = 0, u2 = 0, u3 = 0,
(ii) Strategy 2: Using u1 = 0, u2 ̸= 0, u3 ̸= 0,
(iii) Strategy 3: Using u1 ̸= 0, u2 = 0, u3 ̸= 0,
(iv) Strategy 4: Using u1 ̸= 0, u2 ̸= 0, u3 = 0,
(v) Strategy 5: Using u1 = 0, u2 = 0, u3 ̸= 0,
(vi) Strategy 6: Using u1 ̸= 0, u2 = 0, u3 = 0,
(vii) Strategy 7: Using u1 = 0, u2 ̸= 0, u3 = 0,
(viii) Strategy 8: Using u1 ̸= 0, u2 ̸= 0, u3 ̸= 0.
The parameter values fromTable 1 are used such thatR0 = 11.91825458with initial conditions Sc(0)= 1500, Sm(0)=

0, Sr(0) = 0, E(0) = 0, I(0) = 0, R(0) = 0 and P(0) = 30. The weight constants values are carefully chosen such that
B1 = 30, B2 = 30, B3 = 30, W1 = 20, W2 = 20, W3 = 20. The choice of the initial conditions were based on mere
ecological observation. Likewise, finding the optimal weight values can be an iterative process, and there may not be a
single ”correct” answer, the goal is to choose weights that lead to a solution that best reflects the desired trade-offs and
priorities of the specific optimal control problem. The maximum value of u was considered (0 ≤ u ≤ 1), this is necessary
to attain a optimal result.

We will delve into the key results presented in Figure 3 to 17. The research intends to determine the impact of optimal
control on the transmission of cocoa black pod disease, i e. to control the rate of transmission from the infected pods to
the susceptible pods. The control is applied in 90 days which implies that the final time T = 90. The simulations were
carried out using the values taken from the literature, as presented in Table 1 and with the use of MATLAB software.

Serving as the foundation of this study, Figures 3-9 depict the impact of various optimal control interventions on
cocoa black pod disease transmission dynamics.
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Figure 3. Plot of control strategy 1 against the infected compartment

Figure 4. Plot of control strategy 3 against the infected compartment

Figure 5. Plot of control strategy 4 against the infected compartment
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Figure 6. Plot of control strategy 5 against the infected compartment

Figure 7. Plot of control strategy 6 against the infected compartment

Figure 8. Plot of control strategy 7 against the infected compartment
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Figure 9. Plot of control strategy 8 against the infected compartment

Figure 10. Combined control strategies to curtails the disease spread

Figure 11. Cherelles against time
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Figure 12. Young and mature pods against time

Figure 13. Ripe pods against time

Figure 14. Exposed pods against time

Volume 5 Issue 2|2024| 2011 Contemporary Mathematics



Figure 15. Infected pods against time

Figure 16. Removed pods against time

Figure 17. Pathogens against time
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Figure 10 represents the effect of the 8 control strategies on the infected pods, strategy 2, strategy 3, strategy 5 and
strategy 8 has a reduced number of infected pods when compared with strategy 1, strategy 4, strategy 6 and strategy 7 as
reveal by the plot, this signifies that strategy 2, strategy 3, strategy 5 and strategy 8 are more effective in the control of
the disease, The study recommends that control measure u3 which is rouging (pod removal) and any one of the remaining
control measures for the treatment of cocoa black pod disease caused by Phytophora Megarkaya.

Figure 11 presents the plot of Cherelles compartment (Sc) against time with and without control measures, the plot
signifies no significant effect with the application of control measures on the Cherelles compartment.

Figure 12 presents the plot of young and mature pod compartment (Sp) against time with and without control
measures, the plot signifies no significant effect with the application of control measures.

Figure 13 presents the plot of ripe pods compartment (Sr) against time with and without control measures, the plot
signifies no significant effect with the application of control measures.

Figure 14 presents the plot of exposed pod compartment E against time with and without control measures, the plot
signifies no significant effect with the application of control measures.

Figure 15 presents the plot of infected pod compartment (I) with and without control measures, the plot reveals a
significant effect with the application of control measures on the effected pod compartment, thus signifies the effectiveness
of the control measure applied.

Figure 16 presents the plot of removed pod (harvested) compartment with and without control measures, number of
harvested pods increases significantly due to the control measure applied.

Figure 17 presents the plot of the Pathogen compartment P with and without control measures, there is a little
significant effect with the application of control measures.

9. Conclusion
This study investigated the application of mathematical modeling and optimal control strategies to cocoa black pod

disease, caused by the fungal pathogen Phytophthora megakarya. We developed a mathematical model that captures
the key dynamics of the disease cycle. Using optimal control theory, we explored various control strategies to minimize
disease prevalence and mitigate pod losses.

Our simulations as illustrated in Figures 3-17 demonstrated that optimal control strategies can significantly reduce
cocoa black pod transmission compared to uncontrolled scenarios. The results highlight the potential of pod removal,
fungicide application and sanitation practices to effectively manage the disease as supported by the findings of [7, 14, 20,
24].

Furthermore, the sensitivity analysis revealed factors critical for successful disease control. This information is
valuable for tailoring intervention strategies to specific growing regions and farm practices.

In conclusion, this study presented a mathematical framework for analyzing and controlling cocoa black pod disease.
The findings advocate for the integration of optimal control approaches into integrated disease management programs for
cocoa production. Future research could explore the economic viability of these strategies and investigate their broader
application across diverse farming landscapes.
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