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Abstract: Neutrosophic Set is an extension of Fuzzy set theory dealts with uncertain environments in Transportation,
Decision-making etc. Finding the shortest path for an uncertain environment is one of the most challenging tasks, many
heuristic algorithms play a vital role in releasing this task. This research article an heuristic algorithmic approach using
graph theoretical methods helps the researcher to crack the challenge and which type of algorithm can use the type of
score functions are discussed. Especially, the interval-valued Neutrosophic transportation problem (IVNTP) is considered
for finding the shortest path which is a real-world decision-making problem in an ambiguous (uncertain) environment.
Providing the shortest and finest way to address this ambiguity leads to the success of researcher to the organization.
The algorithm used has been introduced for determination of interval-valued Neutrosophic shortest path (IVNSP) from
the origin node to all other nodes by de-neutrosophicated edges using score functions. An illustrative Interval-valued
neutrosophic transportation problem explains the algorithm’s efficacy and authenticity to find optimum result; this research
article discusses about the nature of score functions, and some score function were taken into consideration. Further, the
heuristic algorithm used is applicable for both positive and negative weighted edges; it was elaborated and compared with
existing algorithm results, and it also provided all pair of shortest path. Future study and brief study of this article was
disclosed in conclusion.

Keywords: score function, interval-valued neutrosophic number, ranking, de-neutrosophicated number, interval-valued
neutrosophic shortest path problem
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NSP Neutrosophic Shortest Path
SVNS Single-Valued Neutrosophic Set
IVNS Interval-Valued Neutrosophic Set
IVNN Interval-Valued Neutrosophic Number
IVNSP Interval-Valued Neutrosophic Shortest Path
IVNPW Interval-Valued Neutrosophic Path Weight
IVNMC Interval-Valued Neutrosophic Minimum Cost
IVNEW Interval-Valued Neutrosophic Edge Weight
IVNTP Interval-VAlued Neutrosophic Transporation Problem
HIEPA Heuristic Incident Edge Path Algorithm

1. Introduction
1.1 Transportation problem

In the contemporary landscape, determining the overall transportation expenses poses challenges due to the
intricate nature of various transportation system constraints that are impractical to incorporate into conventional
mathematical models. Transportation costs stand as a significant component of expenditures for any supply-chain
company, encompassing both supply-based transport costs and demand-related expenses. Additionally, transportation
costs exhibit variability influenced by factors such as traffic conditions, diverse road surfaces along pathways, contributions
to rural/urban communities during holidays, and imposed taxes on each vehicle.

This variability in transportation factors, including route and mode of travel, complicates the calculation of per-unit
transportation costs, further compounded by fluctuating fixed charges. In situations where unit transport costs and other
aspects of transportation delivery are ambiguous, the mathematical designs/models for total transportation system costs
become excessively complex. The complexity arises from numerous constraints and criteria, including demand, weather
conditions, distance, driver behavior, among others. Decision-makers (DMs) are tasked with selecting the appropriate
criteria for evaluating total transport costs.

Transportation is intricately linked to the movement of goods from diverse sources to multiple destinations within
the transportation system. For the transportation problem (TP), there is a plethora of potential effective implementations
that researchers are actively pursuing to enhance TP development.

1.2 Neutrosophic set theory

Zadeh [1] recommended the use of fuzzy sets (FS) to address decision-making challenges in situations where data
is inaccurate or ambiguous. Fuzzy sets involve a degree of membership ranging from 0 to 1. Atanasov [2] introduced
the concept of intuitionistic fuzzy sets (IFS) to address the issue of lacking perception for non-membership degrees. IFS
allows for the representation of uncertainty without specifying a precise membership value. While Fuzzy Set theory
evolved into Intuitionistic Fuzzy Sets (IFS), it still falls short in handling other forms of ambiguity, such as incompatible
and undefined information.

For instance, consider a statement declared as true with a possibility of 0.5, or if it appears false with a possibility of
0.6, or if it is uncertain with a possibility of 0.2. These challenges exceed the capabilities of fuzzy and intuitionistic fuzzy
sets, necessitating the development of new theories. Various computational tools have been devised to address real-world
problems and tackle impreciseness in different structural forms.

The neutrosophic theory emerged as a superior alternative when fuzzy sets and fuzzy logic could not handle false
membership data, and intuitionistic fuzzy logic and intuitionistic fuzzy sets struggled with indeterminacy information.
Neutrosophic theory accommodates ambiguous and imprecise content, including opposing and neutral information. The
term ”neutrosophic” is derived from the philosophical term ”neutrosophy,” introduced by Smarandache in 1995 as a
new variant of vague philosophy. Neutrosophy explores various additional aspects of the nature, origin, and scope of
neutralities [3].
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A Neutrosophic set is a generalization of both fuzzy sets and intuitionistic fuzzy sets. In neutrosophic logic, a
proposition has degrees of membership functions for truth (T ), indeterminacy (I ), and falsity (F ). In 1965, Zadeh
asserted that fuzzy set (FS) theory assigns a degree of membership function to each element, representing its level of
involvement in an ambiguity problem. In 1989, K. Atanassov extended this idea with Intuitionistic Fuzzy Sets (IFS),
introducing a degree of non-membership function alongside the degree of membership, ensuring TX (x)+FX (x)≤ 1 for
each element x ∈ U .

Smarandache further expanded this concept by introducing the neutrosophic set, which includes a degree of
indeterminacyIX (x)∈ [0, 1] in addition to degrees of membership and non-membership functions, addressing uncertainty
problems. The neutrosophic set concept became a reality with the establishment of neutrosophy.

While fuzzy and intuitionistic fuzzy sets struggled with ambiguous relations, the neutrosophic set effectively handled
indeterminate data. The neutrosophic set comprises three elements: truth (T ), indeterminate (whether untrue or true) (I ),
and falsity (F ). UnlikeT ,I , andF having intervals, they can be any sets, including intersections or unions of the initial
sets, discrete, continuous, open, closed, or partially opened half-closed intervals.

2. Literature review
Smarandache [3] and [4] originally conceived the notion of a Neutrosophic Set (NS) from a metaphysical perspective.

This concept proved adept at handling uncertain, inadequate, incompatible, and inconclusive data more precisely [5]. The
NS concept represented a broader scope than both fuzzy set theory [1] and [2] and intuitionistic fuzzy set theory [6],
encapsulating only three membership degrees: truth, indeterminacy, and falsity, bounded within the objective standard or
non-standard unit interval [−0, 1+].

However, applying the principle of a Neutrosophic Set in real-world engineering and scientific domains posed
considerable challenges. Recognizing this, Smarandache [3] introduced the concept of a Single Valued Neutrosophic
Set (SVNS), where truth, indeterminacy, and falsity functions are restricted within [0, 1]. In such contexts, the precise
definition of truth, indeterminacy, and falsity memberships regarding a given statement is often elusive, yet they can be
expressed as a range of feasible interval values.

Wang et al. [7] and [8] expanded on this foundation by proposing the concept of an Interval-Valued Neutrosophic
Set (IVNS), which offered greater specificity and flexibility compared to the SVNS. The IVNS generalizes the SVNS,
with all three membership functions being interdependent, and their values falling within a unit interval [0, 1].

Further exploration of Neutrosophic sets, IVNS, and their applications across various disciplines is available in [9].
Additional insights on interval-valued neutrosophic sets and ranking methods are provided in [10] and [11].

2.1 Application review of Neutrosophic Set

The shortest path problem (SPP) is a widely recognized challenge in graph theory, with various algorithms designed
to address it. This problem is prevalent in diverse fields, including transportation, road mapping, and other applications.
SPP can be classified into three types according to Sengupta et al. [12]: determining the minimum (shortest) path from a
single source, calculating the shortest path from the origin vertex to all other vertices in the graph, and solving the single-
source shortest path problem, where the decision-maker’s goal is to identify the shortest paths among all connected nodes
in the network. Another variant involves determining the shortest path between any two vertices, aiming to compute the
shortest paths for all pairs in a given transportation problem (TP).

SPP in a network entails finding the shortest path from a source vertex to another with the least weight, where
the edge length of the network may represent real-world quantities such as time or cost. In traditional shortest path
problems, decision-makers are presumed certain about parameters like time and distance among nodes. However, real-
world scenarios introduce uncertainty regarding these parameters between various nodes. Numerous algorithms [13–
18] have been developed to calculate the shortest path under various input element classifications, including fuzzy sets,
interval-valued fuzzy sets, interval-valued intuitionistic fuzzy sets, and vague sets.
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Dijkstra’s Algorithm [18] is a well-known method for solving SPPs, particularly the single-source SPP, which
computes the shortest path from the origin node to all other nodes in a network and [19]. Recent publications on
Neutrosophic graph theory [20–28] focus on interval-valued Neutrosophic sets. Additionally, Broumi et al. [29–32]
presented algorithms for finding the shortest path in a graph with arc weights represented as neutrosophic numbers, as
well as Single Valued Neutrosophic Sets (SVNS) [33], Interval Valued Neutrosophic Numbers (IVNNs), and Bipolar
Neutrosophic Numbers. Broumi et al. [34–36] pioneered a methodology for determining the shortest path (SP) within a
triangular fuzzy and Single-valued trapezoidal Neutrosophic context [37]. They also introduced an alternative approach for
solving the Shortest Path Problem (SPP) in a network using trapezoidal Neutrosophic numbers in [38]. The same authors
devised an algorithmic method to find the SP in a setting involving bipolar Neutrosophic numbers [39]. Additionally,
Broumi et al. [40] outlined an approach relying on a score function, employing an algorithm from a different paper.
The Neutrosophic Shortest Path Problem (NSPP) was addressed for a graph with Interval Valued Neutrosophic Numbers
(IVNN) as edges.

Liu et al. [41] proposed operators for the Interval Neutrosophic Muirhead average operator, implemented in group
decision-making with multiple attributes. Consequently, numerous papers on Neutrosophic sets involving single, interval
and bipolar neutrosophic sets with problems [42–55] have been published. Akash et al. [56] utilized the MAPE software
to predict transportation costs, providing the minimum transportation cost through the fuzzy hierarchy process for an
artificial neural network. They conducted an analysis using regression for approximately 50 trapezoidal Interval-valued
Neutrosophic nodes with IVNNs. Smarandache [57] presented a paper introducing definitions and theorems related to
neutrosophic sets and numbers, offering examples for better comprehension. Akram [58] authored a book chapter focusing
on the application of Single-Valued Neutrosophic Sets in soft graphs for decision-making. In another work, Akram et al.
[59] delved into the exploration of r-uniform single-valued neutrosophic soft hypergraphs, examining their direct sum,
lexicographic product, and costrong product. The discussion extended to exploring applications in the human nervous
system, involving artificial intelligence and decision support systems. Akram [60] explored concepts such as regular,
totally regular, perfectly regular, full regular, perfectly irregular, as well as hyperedge regular, totally hyperedge regular,
perfectly hyperedge regular, full hyperedge regular, and perfectly hyperedge irregular single-valued neutrosophic soft
hypergraphs. The presented model, illustrated through an application showcasing the multilateral relationships among
Asian countries through various regional organizations, demonstrates the versatility of the proposed hypergraphs in
fields such as genetics, human activities, and applied sciences. Saba Siddique et al. [61] introduced a sophisticated
neutrosophic set designed to address periodic nature, utilizing the generalized complex neutrosophic set of type 1 along
with its properties. The authors illustrated the application of this set in decision-making through examples and conducted
a comparative analysis of its results against existing models.

2.2 Motivation to the article

The main aim of this study was to introduce an iterative and alternative algorithmic method for discovering the
shortest path (SP) in a network within an indeterminate domain. This approach is designed to be straightforward and
efficient, particularly in handling both positive and negative weighted neutrosophic edges in real-world applications.
Additionally, various score functions developed by different researchers were examined and analyzed to determine their
applicability across all aspects of graphical algorithms.

2.3 Main objective of the paper

The paper focuses on the Neutrosophic Shortest Path (NSP) within a Neutrosophic network, where each link/arc
length is assigned an Interval-Valued Neutrosophic Number (IVNN) instead of a real or fuzzy number. To determine the
Shortest Path Problem (SPP) in an indeterminate domain and present the shortest path, the Incident Edge Path algorithm
proposed by Kanchana et al. [62] was extended and applied within the realm of Neutrosophic set theory to discover
the NSP. This algorithm is versatile, applicable to various types of neutrosophic sets, including Single-valued, Interval-
valued, Bipolar, SuperHyper graph, Plithogenic neutrosophic sets, etc. For this study, Interval-valued neutrosophic sets
were specifically considered. The direct sum was employed to add the IVNNs corresponding to the arc distances for
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a path, determining the path length between pairs of nodes/vertices. Throughout this work, our aim is to address the
SPP by introducing a heuristic algorithm for a network where IVNNs represent arc distances between nodes, and the
characteristics of score functions were analyzed using a numerical example.

The study unfolds as follows: Sections 1 and 2 provide an overview of existing work and a review of neutrosophic
set theory. Section 3 includes basic definitions and considerations about neutrosophic sets, introducing the interval-valued
Neutrosophic set and describing the algorithm. In Section 4, the algorithm is detailed in steps and flowcharts, accompanied
by an analytical illustration through iterative steps, along with a comparative study of the heuristic algorithm. Section
5 concludes the study by employing existing score functions introduced by different authors, presenting them as a line
graph, and evaluating the efficacy of these score functions for application in various algorithms. Finally, Section 6 offers
conclusions and outlines potential future work.

3. Preliminaries
In this section, the basic definitions used and involved are given and refered from [3, 5, 7, 8, 27].
Definition 1 [3]: Consider U to be a space of objects. The set X is Neutrosophic which has an object defined as

X = {< x: TX (x), IX (x), FX (x) >, x ∈ U } where T , I , F : X → ]−0, 1+[ are defined as the functions of degree of
Truth membership function, degree of indeterminacy membership function and degree of falsity membership function
respectively, of ∀x ∈ X to the set X with the condition, −0 ≤ TX (x)+IX (x)+FX (x)≤ 3+.

Logically, the N.S. takes the points from the real non-standard or standard subset ]−0, 1+[ . SoRather ]−0, 1+[ one
should consider the interval as [0, 1] for applications in a technological field, since ]−0, 1+[ is strenuous to implement in
real-life applications such as engineering and scientific network problems.

Definition 2 [5]: Consider U as the universe of discourse with global objects noted by x. A single-valued
Neutrosophic set (SVNS) is defined by Xand the global elements of set X are ∀x ∈ U , TX (x), IX (x),
FX (x) ∈ [0, 1]. The SVN set X is defined as

X = {x, TX (x), IX (x), FX (x)> |x ∈ U }.

Definition 3 [7]: Consider U as the universe of discourse with global objects noted by x. The set X is an IVNS
Interval-valued Neutrosophic set and is represented by membership functions such as truth indeterminacy and falsity
denoted byTX (x), IX (x), FX (x) respectively. {∀x ∈ U , TX (x), IX (x), FX (x) ∈ [0, 1]} and IVNS X is defined by

X = {< [T L
X (x), T U

X (x)], [I L
X (x), I

U
X (x)], [F L

X (x), F
U
X (x)]> |x ∈ U }

Where the membership functions truth, Indeterminacy and falsity are defined as interval-valued Neutrosophic set by
TX (x) = [TX

L(x), TX
U (x)], IX (x) = [IX

L(x), IX
U (x)] and FX (x) = [FX

L(x), FX
U (x)].

−0 ≤ supTX (x)+ supIX (x)+ supFX (x)≤ 3+

3.1 Interval-valued Neutrosophic numbers (IVNN)-mathematical operations

Definition 4 [8]: Consider X1 and X2 as two inter-valued neutrosophic numbers defined by
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X1 =
⟨
[T L

X1
(x), T U

X1
(x)], [I L

X1
(x), I U

X1
(x)], [F L

X1
(x), FU

X1
(x)]> |x ∈ U

⟩
and

X2 =
⟨
[T L

X2
(x), T U

X2
(x)], [I L

X2
(x), I U

X2
(x)], [F L

X2
(x), FU

X2
(x)]> |x ∈ U

⟩
then the following are the direct sum and direct product of IVNN,

X1 ⊕X2 =

⟨[(
T L

X1
(x)+T L

X2
(x)−T L

X1
(x)∗T L

X2
(x)
)
,
(
T U

X1
(x)+T U

X2
(x)−T U

X1
(x)∗T U

X2
(x)
)]

,[
I L

X1
(x)∗I L

X2
(x), I U

X1
(x)∗I U

X2
(x)
]
,
[
F L

X1
(x)∗F L

X2
(x), FU

X1
(x)∗FU

X2
(x)
] ⟩

(1)

X1 ⊗X2 =

⟨
[(

T L
X1
(x)∗T L

X2
(x), T U

X1
(x)∗T U

X2
(x)
)]

,
[(

I L
X1
(x)+I L

X2
(x)−I L

X1
(x)∗I L

X2
(x)
)
,

(
I U

X1
(x)+I U

X2
(x)−I U

X1
(x)∗I U

X2
(x)
)][(

F L
X1
(x)+F L

X2
(x)−F L

X1
(x)∗F L

X2
(x)
)
,

(
FU

X1
(x)+FU

X2
(x)−FU

X1
(x)∗FU

X2
(x)
)]
⟩

(2)

For γ > 0 of Neutrosophic number X

γX =
⟨[

1−
(
1−T L

X (x)
)γ
, 1−

(
1−T U

X (x)
)γ
][

(I L
X (x))

γ
,
(
I U

X (x)
)γ
]
,
[
(F L

X (x))
γ
,
(
FU

X (x)
)γ
]⟩

(3)

X γ
=
⟨[

(T L
X (x))

γ
,
(
T U

X (x)
)γ
]
,
[
1−
(
1−I L

X (x)
)γ
, 1−

(
1−I U

X (x)
)γ
][

1−
(
1−F L

X (x)
)γ
, 1−

(
1−FU

X (x)
)γ
]⟩

(4)

Definition 5 Let X =
⟨
[T L

X (x), T U
X (x)], [I L

X (x), I
U
X (x)], [F L

X (x), F
U
X (x)]

⟩
be an interval-valued Neutrosophic

number. Iff T L
X (x) = 0, T U

X (x) = 0, I L
X (x) = 1, I U

X (x) = 1 and F L
X (x) = 1, FU

X (x) = 1, then, IVNN X is known to be
zero IVNN and denoted by

0n = {⟨x, ⟨[0, 0], [1, 1], [1, 1]⟩⟩ : x ∈ U }

3.2 De-Neutrosophication of IVNN using score functions

Comparison must be made to find the least IVNN among two IVNNs X1 and X2 . Such a comparison can be made
by score functions. Some of the general de-Neutrosophication formulae according to authors [24, 33, 41, 42, 53, 57] are
listed below from the literature review,
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SBoulturk(X) =

{
T L

X (x)+T U
X (x)

2
+

(
1−

I L
X (x)+I U

X (x)

2

)
∗I U

X (x)−
F L

X (x)+FU
X (x)

2
∗
(
1−FU

X (x)
)}

(5)

SRidvan(X) =
1
4
{

2+T L
X (x)+T U

X (x)−2
(
I L

X (x)+I U
X (x)

)
−
(
F L

X (x)+FU
X (x)

)}
(6)

SPeng(X) =

{
2
3
+

T L
X (x)+T U

X (x)

6
−

(
I L

X (x)+I U
X (x)

6

)
−

F L
X (x)+FU

X (x)

6

}
(7)

SLiu(X) =

{
2+

T L
X (x)+T U

X (x)

2
−

(
I L

X (x)+I U
X (x)

2

)
−

F L
X (x)+FU

X (x)

2

}
(8)

Sharish(X) =
1
8



4+
(
T L

X (x)+T U
X (x)−2

(
I L

X (x)+I U
X (x)

)
−
(
F L

X (x)+FU
X (x)

))
∗
(
4−T L

X (x)−T U
X (x)−F L

X (x)−FU
X (x)

)


(9)

SFSmaran(X) =
1
6
(
4+T L

X (x)+T U
X (x) −

(
I L

X (x)+I U
X (x)

)
−
(
F L

X (x)+FU
X (x)

))
(10)

SN(X) =
1
2
[
T L

X (x)+T U
X (x)−

(
I L

X (x)∗I U
X (x)

)
+
(
I U

X (x)−1
)2

+FU
X (x)

]
(11)

Hence, the ranking between X1 and X2 satisfies the following:

a) X1 < X2, if; S (X1)< S (X2)

b) X1 > X2, if; S (X1)> S (X2)

c) X1 = X2, if; S (X1) = S (X2) (12)

Definition 6 [27] An Interval-valued Neutrosophic Network N (V , E , ei j) is defined with |V |= n number of
vertices and |E |= m number of arcs. ei j be the interval-valued Neutrosophic edge weight from node vi to v j.
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Definition 7 [27] Let a network N (V, E) with n number nodes/vertices and m number of arcs/links. Let the edge
weight be an interval-valued neutrosophic number and it is denoted by

ei j =
⟨
[T L

N (x), T U
N (x)], [I L

N (x), I
U
N (x)] , [F L

N(x), F
U
N (x)]

⟩
(13)

from node i to j, where j = 1, 2, 3, ..., m and i = 1, 2, 3, ..., n for i ̸= j.
Definition 8 [27] Let Ei be the incident edge set of an interval-valued Neutrosophic network N (V , E ) defined by

Ei = {edges incident withnodevi}, i = 1, 2, 3, ..., n.

4. Heuristic algorithm for finding IVNSP with IVNMC
4.1 Algorithm description

Construct a network with interval-valued Neutrosophic edge weights and convert IVNN to a crisp weight using the
score function formulae. In this paper score function defined by Nagarajan abnd Harish et al. was used for further solution
process. Consider Ei as the collection of incident edges of vi in a network. Find E1 = {edges incident with node v1} and
calculate the Interval-valued Neutrosophic path weight (IVNPW) P(v j) for all edges of E1, initially there is no path so
P(v1) = 0. Similarly, find the set of all edges incident with node v j, and calculate the path weight. Proceed the process
until Ei = {}, i.e., there isn’t any edges incident with the preceeding node; which says that the destination node has been
reached.

4.2 Heuristic Incident Edge Path Algorithm (HIEPA)

Step 1: De-Neutrosophication of all Interval-valued neutrosophic edge weights (IVNEW) into a crisp weight using
the score function and label it as S (ei j).

Step 2: Find E1 = {edges incident with node v1} if E1 = {} is empty go to step 6 otherwise, go to step 3.
Step 3: Calculate the INVMC for IVNSP using the direct sum of IVNS. Initially IVNPW P(v1) = 0 of source node

v1, find the Path weight (cost)P(v j) = {P(v1)+S (e1 j)} of node v j, ( j = 2, 3, ..., n) and select the respective shortest
path.

Step 4: Find E2 = {edges incident with node v2}, if E2 = {} go to step 6 otherwise, go to step 5.
Step 5: Calculate the INVMC for IVNSP using the direct sum of IVNS. The corresponding IVNPWP(vi) of nodevi,

find the Path weight (cost)P(v j)= {P(vi)+S (ei j)} of node vi, (i ̸= j, j = 2, 3, ..., n) and select the respective shortest
path without negative weight with cycle.

Step 6: Proceed steps 2 to 5 untill Ei = {}.
Step 7: Interval-valued nuetrosophic shortest path with minimum cost obtained, so stop the process.
Figure 1, briefly explains the working principle of the proposed heuristic Incident Algorithm (HIEPA).

The following illustration was used to demonstrate the proposed HIEPA and also analysis of various score functions for
the same illustration help to understand about the nature of score function.
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Figure 1. Flow chart of the proposed algorithm

5. Numerical example
The chosen numerical example for validating HIEPA involved a directed Interval-valued neutrosophic network

sourced from Nayankumar et al. [55]. Subsections 5.2 and 5.3 subsequently detail the iterative process for various score
values encompassing both positive and negative weighted edges. This is followed by outlining the algorithm steps and a
comparison of the results obtained.

Network
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Figure 2. Neutrosophic network with edge label

Figure 2 represents the network diagram of the considered numerical example with edge label and edge weights as
crisp numbers calculated using the score function.

The Table 1 consisting of interval-valued neutrosophic edge weight and its score function valuesS (ei j) used for the
calculation of the proposed algorithm for Figure 2. Score function used in HIEPA was from equation (11) [53].

Table 1. Table shows the crisp number for IVNSP calculated using the score function for the taken IVN network

Edge ei j (IVNEW) Interval-Valued Neutrosophic Edge Weight Crisp number (SN )

(e12) ⟨[0.5, 0.6], [0.1, 0.2], [0.2, 0.3]⟩ 1.01

(e13) ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 0.615

(e14) ⟨[0.3, 0.4], [0.2, 0.3], [0.1, 0.4]⟩ 0.765

(e23) ⟨[0.2, 0.3], [0.4, 0.5], [0.5, 0.6]⟩ 0.575

(e24) ⟨[0.3, 0.4], [0.2, 0.3], [0.1, 0.2]⟩ 0.665

(e34) ⟨[0.6, 0.7], [0.2, 0.3], [0.1, 0.2]⟩ 0.965

(e35) ⟨[0.3, 0.4], [0.5, 0.6], [0.6, 0.7]⟩ 0.63

(e45) ⟨[0.6, 0.7], [0.3, 0.4], [0.1, 0.2]⟩ 0.87

5.1 Analysis of Score function of IVN network

The Table 2 provides different score function values (crisp numbers) for considered numerical example, the used
score functions were introduced by various authors. The indication of author names with score function was displayed
under each notation used along with the values [55].
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Table 2. Crisp numbers of IVNEW for Considered IVNN by various score functions listed in section 3.2

Score function by authors e12 e13 e14 e23 e24 e34 e35 e45

Boulturk (S.B.) 0.645 0.15 0.425 0.195 0.545 0.845 0.165 0.88

Ridvan (S.R.) 0.5 0.1 0.3 −0.1 0.35 0.5 −0.2 0.4

Peng et al. (S.P.) 0.72 0.48 0.62 0.42 0.65 0.75 0.32 0.72

Liu et al. (S.L.) 2.1 1.45 1.85 1.25 1.95 2.25 1.15 2.15

Nagarajan et al. (S.N.) 1.01 0.615 0.765 0.575 0.665 0.965 0.63 0.87

Smarandache et al. (SFS) 0.72 0.48 0.62 0.42 0.65 0.75 0.38 0.72

Harish et al. (S.H.) 0.5 −0.06 0.4 −0.22 0.275 0.5 −0.2 0.38

Figure 3. Line graph representation for each edge weights of considered network

Figure 3 was the line graph representing crisp numbers calculated by various score functions; and it helps to
understand the minimum crisp weights for the considered IVN network.

5.2 Calculation process by proposed HIEPA for IVNN by using SNagara jan

The follwoing iterations were made as per the algorithm and score funciton used for caculation was introduced by
Nagarajan et al.

Iteration 1:
E1 = {e12, e13, e14} Initially, the IVNPW P(v1) = 0, i = 1 , j = 2, 3, 4

Table 3. Iteration 1

Edge ei j P(v j) = {P(v1)+S (e1 j)} IVNMC IVNSP

(e12) P(v2) = {P(v1)+S (e12)},P(v2) = 0+1.01 = 1.01 ⟨[0.5, 0.6], [0.1, 0.2], [0.2, 0.3]⟩ v1 − v2

(e13) P(v3) = {P(v1)+S (e13)},P(v3) = 0+0.615 = 0.615 ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ v1 − v3

(e14) P(v4) = {P(v1)+S (e14)},P(v4) = 0+0.765 = 0.765 ⟨[0.3, 0.4], [0.2, 0.3], [0.1, 0.4]⟩ v1 − v4
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Table 3, shows the IVNSP from initial node v1 to succeeding nodes; it was calculated using the proposed algorithm.
P(v2),P(v3) andP(v4) are the crisp path weights and IVNMCwas calculated using the direct sum between teh selected
nodes.

Iteration 2:
Table 4 carries the edges incident with node v2 to succeeding nodes. It was calculated as follows E2 = {e23, e24}

was the incident edge set, IVNPW of v2 was P(v2) = 1.01, i = 2 , j = 3, 4.

Table 4. Iteration 2

Edge ei j P(v j) = {P(v2)+S (e2 j)} IVNMC IVNSP

(e23)
P(v3) = {P(v2)+S (e23)},
P(v3) = 1.01+0.575 = 1.585 ,
P(v3) = min{0.615, 1.585}= 0.615

⟨[0.6, 0.72], [0.04, 0.1], [0.1, 0.18]⟩ v1−v3 is shortest path than
v1 − v2 − v3

(e24)
P(v4) = {P(v2)+S (e24)},
P(v4) = 1.01+0.665 = 1.675,
P(v4) = min{0.765, 1.675}= 0.765

⟨[0.65, 0.76], [0.02, 0.06], [0.02, 0.06]⟩ v1−v4 is shortest path than
v1 − v2 − v4

P(v3) and P(v4) are the crisp path weights and IVNMC was calculated using the direct sum between the selected
nodes. From Table 3 and 4 we got two crisp path weights for v3 and v4. So, the minimum crisp weight and IVNMC of
respective selected path was taken and the selected path has fixed as IVNSP.

Iteration 3:
Table 5, briefly provides the calculation process of succeeding node incident with v3 and processed as follows E3 =

{e34, e35}, IVNPW P(v3) = 0.615, i = 3 , j = 4, 5.

Table 5. Iteration 3

Edge ei j P(v j) = {P(v3)+S (e3 j)} IVNMC IVNSP

(e34)
P(v4) = {P(v3)+S (e34)},
P(v4) = 0.615+0.965 = 1.58 ,
P(v4) = min{0.765, 1.58}= 0.765

⟨[0.65, 0.76], [0.02, 0.06], [0.02, 0.06]⟩ v1−v4 is shortest path than
v1 − v3 − v4

(e35)
P(v5) = {P(v3)+S (e35)},
P(v5) = 0.615+0.63 = 1.245 ⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩ v1 − v3 − v5

From the Table 4 and 5, path weight of node v4 has to be calculated by taking the minimum amoung them as done in
Table 5 and the minimum crisp weight, IVNMC and IVNSP ahs been fixed for node v4.

Iteration 4:
Proceeding from iteration 3, Table 5; the crisp path weight was fixed and proceeds as follows for the succeeding

nodes from v4

E4 = e45, IVNPWP(v4) = 0.765, i = 4 , j = 5.

Table 6. Iteration 4

Edge ei j P(v j) = {P(v4)+S (e4 j)} IVNMC IVNSP

(e45)
P(v5) = {P(v4)+S (e45)},
P(v5) = 0.765+0.87 = 1.635 ,
P(v5) = min{1.245, 1.635}= 1.245

⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩
v1 − v3 − v5 is
shortest path than
v1 − v2 − v4 − v5
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From Table 6, we could see that the destination node has reached and the crisp path weight, IVNMC and IVNSP has
been cacluated by proposed algorithm. Here the node v5 has more than one path weight so the minimum amoung them
has selected for further calculation.

Iteration 5:
E5 = {}, i = n = 5 reached hence the destination reached, the process has to stop. There are no incident interval-

valued Neutrosophic edges. Hence, The Shortest path was obtained. Iterations 1 to 5 and Table 3 to 6 explains how the
algorithm works for considered IVN network.

5.3 Calculation process by proposed HIEPA for IVNN by using SHarish

The score values were calculated and displayed in Table 2; the following iterations explains about the working
principle of negative weighted edges by HIEPA for IVNN problem. The score fucntion introduced by harish et al. is
defined by equation (9),

Iteration 1:
E1 = {e12, e13, e14} Initially, the IVNPW P(v1) = 0, i = 1 , j = 2, 3, 4

Table 7. Iteration 1

Edge ei j P(v j) = {P(v1)+S (e1 j)} IVNMC IVNSP

(e12) P(v2) = {P(v1)+S (e12)},P(v2) = 0+0.5 = 0.5 ⟨[0.5, 0.6], [0.1, 0.2], [0.2, 0.3]⟩ v1 − v2

(e13) P(v3) = {P(v1)+S (e13)},P(v3) = 0−0.06 =−0.06 ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ v1 − v3

(e14) P(v4) = {P(v1)+S (e14)},P(v4) = 0+0.4 = 0.4 ⟨[0.3, 0.4], [0.2, 0.3], [0.1, 0.4]⟩ v1 − v4

Table 7, shows the IVNSP from initial node v1 to succeeding nodes; it was calculated using the proposed algorithm.
P(v2),P(v3) andP(v4) are the crisp path weights and IVNMCwas calculated using the direct sum between the selected
nodes.

Iteration 2:
Table 8 carries the edges incident with node v2 to succeeding nodes. It was calculated as follows E2 = {e23, e24}

was the incident edge set, IVNPW of v2 was P(v2) = 0.5, i = 2 , j = 3, 4

Table 8. Iteration 2

Edge ei j P(v j) = {P(v2)+S (e2 j)} IVNMC IVNSP

(e23)
P(v3) = {P(v2)+S (e23)},
P(v3) = 0.5−0.22 = 0.28 ,
P(v3) = min{0.28, −0.06}=−0.06

⟨[0.6, 0.72], [0.04, 0.1], [0.1, 0.18]⟩ v1−v3 is shortest path than
v1 − v2 − v3

(e24)
P(v4) = {P(v2)+S (e24)},
P(v4) = 0.5+0.275 = 0.775,
P(v4) = min{0.4, 0.775}= 0.4

⟨[0.65, 0.76], [0.02, 0.06], [0.02, 0.06]⟩ v1−v4 is shortest path than
v1 − v2 − v4

P(v3) and P(v4) are the crisp path weights and IVNMC was calculated using the direct sum between the selected
nodes. From table 7 and 8 we got two crisp path weights for v3 and v4. So, the minimum crisp weight and IVNMC of
respective selected path was taken and the selected path has fixed as IVNSP.

Iteration 3:
Table 9, briefly provides the calculation process of succeeding node incident with v3 and processed as follows E3 =

{e34, e35}, IVNPW P(v3) =−0.06, i = 3 , j = 4, 5.
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Table 9. Iteration 3

Edge ei j P(v j) = {P(v3)+S (e3 j)} IVNMC IVNSP

(e34)
P(v4) = {P(v3)+S (e34)},
P(v4) =−0.06+0.5 = 0.44 ,
P(v4) = min{0.44, 0.4}= 0.4

⟨[0.65, 0.76], [0.02, 0.06], [0.02, 0.06]⟩ v1−v4 is shortest path than
v1 − v3 − v4

(e35)
P(v5) = {P(v3)+S (e35)},
P(v5) =−0.06−0.2 =−0.26 ⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩ v1 − v3 − v5

From the Table 7 and 8, path weight of node v4 has to be calculated by taking the minimum amoung them as done in
Table 5 and the minimum crisp weight, IVNMC and IVNSP ahs been fixed for node v4.

Iteration 4:
Proceeding from iteration 3, Table 9; the crisp path weight was fixed and proceeds as follows for the succeeding

nodes from v4

E4 = e45, IVNPWP(v4) = 0.4, i = 4 , j = 5.

Table 10. Iteration 4

Edge ei j P(v j) = {P(v4)+S (e4 j)} IVNMC IVNSP

(e45)
P(v5) = {P(v4)+S (e45)},
P(v5) = 0.4+0.38 = 0.78 ,
P(v5) = min{−0.26, 0.78}=−0.26

⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩
v1−v3−v5 is shortest path
than
v1 − v2 − v4 − v5

From Table 10, we could see that the destination node has reached and the crisp path weight, IVNMC and IVNSP
has been cacluated by proposed algorithm. here the node v5 has more than one path weight so the minimum amoung them
has selected for further calculation.

Iteration 5:
E5 = {}, i = n = 5 reached hence the destination reached, the process has to stop. There are no incident interval-

valued Neutrosophic edges. Hence, The Shortest path was obtained. Iterations 1 to 5 and Table 7 to 10 explains how the
algorithm works for considered negative weighted IVNN.

5.3.1 Interval-valued Neutrosophic Shortest path (IVNSP)

The Table 11 provides crisp number calculated by score function, Interval valued neutrososphic minimum cost and
its respective IVNSP from a origin node to all other nodes by HIEPA.

Table 11. Interval-valued Neutrosophic edge weight for the considered IVN network

IVNSP from origin IVNMC (SNagara jan) (SHaris)

v1 − v2 ⟨[0.5, 0.6], [0.1, 0.2], [0.2, 0.3]⟩ 1.01 0.5

v1 − v3 ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 0.615 −0.06

v1 − v2 − v4 ⟨[0.65, 0.76], [0.02, 0.06], [0.02, 0.06]⟩ 0.765 0.4

v1 − v3 − v5 ⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩ 0.947 −0.26
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Figure 4. Graph of Score values between Nagarjan and Haris et al. for SP

The line graph in Figure 4 explains the value difference between the score functions from different authors. The path
v1 − v3 − v5 is IVNSP for the considered sample interval-valued neutrosophic network.

5.4 Discussion of different crisp numbers by different score functions for IVNSP

Score functions play a crucial role for decision-makers, field analysts, researchers, etc., enabling them to make
informed decisions by comparing results and selecting the minimum value to achieve the optimum outcome. This article
specifically addresses interval-valued neutrosophic networks, where the abundance of score functions proves valuable.
In the context of neutrosophic set networks, score functions become essential for comparing neutrosophic numbers,
particularly in graphical algorithms aimed at finding the shortest path. Some graphical algorithms encounter challenges
in solving networks with negative edge weights. Hence, this section aids researchers in identifying useful score functions
for algorithms, especially when comparing edge weights.

The example network examined in this paper involves IVNN, with a negative edge weight when applying score
functions proposed by Ridvan et al. and Harish et al. Consequently, the well-known Dijkstra Algorithm cannot solve this
numerical example network when using such score functions, as Dijkstra’s algorithm is explicitly designed for positive
edge-weighted network problems. The algorithm, which does not shy away from negative weights, accommodates score
functions that produce negative crisp numbers, making it suitable for the considered example in this paper. Thus, the
proposed algorithm is applicable to negative-weighted network problems, offering flexibility for utilizing any relevant
score function to find the shortest path.

Table 12. Table shows the crisp number for IVNSP calculated using the score function for the taken IVN network

Score function proposed by authors Optimum Cost (S (ei j)) for IVNSP v1 − v3 − v5

Boulturk et al. 1.22805

Ridvan et al. 0.435

Peng et al. 0.67

Liu et al 2.01

Harish et al. 0.4181

Smarandache et al. 0.67

Nagarajan et al. 0.947
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Figure 5. Graph representation for the table 7 value

Table 12 and Figure 5 elucidate the crisp weights of IVNSP obtained from the proposed algorithm. These weights are
calculated using different score functions proposed by various authors. The article concludes that decision-makers have
the freedom to select any score function for ranking and finding the SP. Several score functions are listed and tabulated,
along with discussions on the types of graphical algorithms to which each score function can be applied. The numerical
problem serves as an implementation example for the proposed algorithm, utilizing the score function from Nagarajan et
al. [53]. The algorithm yields an IVNSP for all nodes from the source node, and the results, including the optimum cost
and path for each iteration, are tabulated.

A line graph illustrating the crisp weights obtained for the considered network using various score functions provides
insights into which type of score function is suitable for graph algorithms with both negative and positive edge-weighted
directed graphs.

5.5 Comparative study of the proposed algorithm

The proposed algorithm facilitates the determination of SP for all nodes originating from a specified source node.
The evaluation process is straightforward, and subsequent calculations yield all pairs of the shortest paths to each node
from the origin. Each iteration provides clarity on the SP with the minimum cost for the entire network. In comparison,
Nayankumar et al. [55] employed the transition path matrix in Floyd’s Algorithm to identify all pairs of INVSP for the
network. The proposed algorithm incorporates a score function by Nagarajan et al. to determine the minimum interval-
valued cost of IVNSP. Table 13 in this paper presents all possible paths from a source node to a destination with IVNMC
and its corresponding score value.

This article addresses both positive and negative weighted IVNTP using HIEPA, while Broumi et al. only discussed
positive weighted IVNTP in their article.
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Table 13. Table shows the crisp number for IVNSP calculated using the score function for the taken IVN network

Multiple paths to reach destination node v5 IVNMC (SNagara jan) ranking (SHaris) Ranking

a: v1 − v3 − v5 ⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩, 0.947 1 0.4181 1

b: v1 − v2 − v3 − v5 ⟨[0.72, 0.83], [0.02, 0.06], [0.06, 0.126]⟩ 1.2792 4 0.8407 5

c: v1 − v2 − v4 − v5 ⟨[0.86, 0.52], [0.1, 0.18], [0.24, 0.35]⟩ 1.1922 3 0.5583 2

d: v1 − v3 − v4 − v5 ⟨[0.87, 0.95], [0.01, 0.04], [0.004, 0.02]⟩ 1.3806 5 0.9570 6

e: v1 − v2 − v3 − v4 − v5 ⟨[0.89, 0.98], [0.002, 0.012], [0.001, 0.72]⟩ 1.78306 6 0.6974 3

f : v1 − v4 − v5 ⟨[0.72, 0.82], [0.12, 0.24], [0.01, 0.08]⟩ 1.0844 2 0.7162 4

Figure 6 illustrates all conceivable paths leading from the origin node to the destination. The nodes in the graph
depict path weights of all possible routes to reach the destination, and the proposed algorithm calculates minimum path.
This minimum path is then compared with all other potential paths, and the conclusion is drawn that the obtained path
represents the Shortest Path.

Examining Figure 6, node a stands out as the minimum compared to all other nodes. Consequently, the corresponding
path for that node, v1−v3−v5, is identified as the required IVNSP. The crisp weight for this path is 0.947 based on IVNMC
⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩.

Figure 6. Line graph for all possible paths from origin node to destination node

Table 14. Comparison between existing method and proposed HIEPA

Method IVNMC IVNSP Score values

Broumi et al. [39] ⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩ v1 − v3 − v5 0.95 and 0.42
Proposed HIEPA ⟨[0.37, 0.52], [0.1, 0.18], [0.24, 0.35]⟩ v1 − v3 − v5 0.947 and 0.4181

Table 14 depicts the result obtained by HIEPA and Broummi et al., algorithm for finding the shortest path, it is
verified by Table 13 data; also the score function used provided that the result obtained by HIEPA was minimum. This
article gives the case study about score function with the help of HIEPA and its result is tabulated.
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6. Conclusion
This article concludes that decision-makers have the flexibility to choose any score function for ranking purposes and

determining the Shortest Path. Various score functions are listed and tabulated, and the discussion delves into which type
of score function is suitable for specific graphical algorithms. The proposed algorithm is implemented using a numerical
problem, employing the score function by Nagarajan et al. [53]. It yields an Interval-Valued Neutrosophic Shortest Path
(IVNSP) for all nodes from the source, tabulated with the optimal cost and path for each iteration.

A line graph illustrating crisp weights for the considered network using different score functions clarifies which
type of score function is applicable for graph algorithms involving both negative and positive edge-weighted directed
graphs. The line graph detailing all possible paths provides comprehensive insights into the Shortest Path obtained by the
proposed algorithm, elucidated through a numerical example network with interval-valued Neutrosophic weighted edges
from Nayankumar et al. [55]. The algorithm doesn’t solely focus on the IVNSP from the source to the destination node
but also considers all other nodes.

This article introduces a novel algorithmic approach to solving Interval-Valued Neutrosophic network problems,
analyzed through a numerical problem encompassing both negative and positive weighted edges. The HIEPA method
proves valid for both Single-Valued and Interval-Valued neutrosophic transportation network problems, covering both
negative and positive weighted networks. In contrast, Broumi et al. discuss positive weighted edge NS in their algorithm
but not negative weighted ones, while the new HIEPA addresses both aspects of edge weights. This is briefly elaborated
with examples and graphs.

Furthermore, the article provides a study on score functions, exploring which types can be applied to the nature of
graphical algorithms. In the future, this algorithm will be implemented in plithogenic graphs, Neutrosophic hypergraphs,
Neutrosophic soft graphs, etc.
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