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Abstract: The numerical investigation of the Darcy-Brinkman convective problem with gravity fluctuations in a Local 
Thermal Nonequilibrium (LTNE) model is conducted. Utilizing linear stability analysis, the convective problem is 
explored, and the numerical values of the Rayleigh and wave numbers for onset convection are computed through 
the one-term Galerkin approach. Three distinct types of gravity fluctuations (linear, parabolic, and exponential) are 
considered. The results show the Darcy number and gravity parameter delay the onset of convection. The porosity-scald 
conductivity ratio and interface heat transfer coefficient have a significant effect on the stability of the configuration. 
Graphical representations depict the effects of various parameters, highlighting the significant impacts of incorporating 
gravity fluctuations and non-equilibrium conditions in determining convection stability thresholds.
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Nomenclature
d		  Depth of the layer
β		  Coefficient of expansion
μ		  Fluid viscosity
q 		  Velocity vector 
θ		  Fluid phase in the basic conduction state temperature
Da		  Darcy number
ϖ 		  Stream function, dimensionless
R		  Rayleigh number
Θ		  Perturbation state temperature
 p		  Pressure
H		  Interface heat transfer coefficient
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κ		  Thermal diffusivity
δ		  Gravity parameter
T		  Temperature
ρ		  Density
Ψ		  Perturbation of the stream function 
ε		  Porosity
G( y)	 Variable gravity function
χ		  Porosity-scald conductivity ratio
k		  Horizontal wave number
α		  Diffusivity ratio
ϕ		  Fluid phase in the conduction state temperature

1. Introduction
The Brinkman effect in LTNE porous convection is applied in geothermal systems and underground energy storage 

to model and optimize heat transfer and fluid flow through porous media, influencing energy extraction and storage 
efficiency. Scientific investigations into the fluctuations in gravity are focused on several aspects of geophysics and basic 
physics experiments related to gravity, including gravitational wave observations. These variations are often regarded in 
geophysics as a signal that conveys data about phenomena like fault ruptures and changes in air density. It manifests as 
ambient noise in investigations involving basic physics, which must be avoided or reduced (see Harms [1]). Vafai [2, 3], 
Straughan [4], Panfilov [5], Wu [6], Xu et al. [7], and Nield [8] provide excellent reviews on thermosolutal convection 
in porous channel. The LTNE model takes into account the fact that the fluid and the solid porous matrix are at different 
temperatures. Many researchers worked in this field because of the better agreement with the physical situation using the 
LTNE model: Kuznetsov [9] used the porous medium to investigate forced convection under a thermal non-equilibrium 
approach. Banu and Rees [10] used the Darcy model to investigate the outset of convection using an LTNE assumption. 
Assuming LTNE, Bhadauria and Agarwal [11] studied the nanofluid-saturated porous layer. The Brinkman model for 
Bénard convection and heat transfer in the presence of LTNE was further studied by Saravanan and Sivakumar [12], 
Celli et al. [13], Nield and Kuznetsov [14], Kuznetsov and Nield [15], and Siddheshwar and Siddabasappa [16]. While 
Gandomkar and Grey [17] studied the relationship between LTNE and heat conduction in a porous channel, Parhizi et 
al. [18] used an LTNE approach in a porous channel to find a non-constant Biot number under a fully developed flow.

By studying the porous bed arrangement’s gravity fluctuation with internal heating, Alex and Patil [19] found that 
a delay in the gravity factor makes the structure more stable. Suma et al. [20] and Gangadharaiah et al. [21] studied 
the effects of linear gravity fluctuation with throughflow and internal heating in a porous bed design using the regular 
perturbation approach. For the porous channel, Nagarathnamma et al. [22] used the Galerkin method to study the effects 
of a gravity variation and Yadav [23] investigated the effects of a magnetic field and a throughflow. It is quite surprising 
that researchers have paid so little attention to the consequences of altering gravity in a fluid layer. When convective 
motion occurs due to non-uniformity in the thermophoresis parameter, Mahajan and Tripathi [24] investigated the 
effects of gravity fluctuation on the stability of a thermosolutal convective flow. Gangadharaiah et al. [25, 26] have 
examined the penetrative solutal convective motion in a fluid layer arrangement with dynamic gravity and throughflow 
and temperature-dependent viscosity with changing gravity about cross-diffusive terms. When a heat source and thermal 
profiles were present, Varalakshmi et al. [27] investigated the effects of LTNE on a two-layer structure. There are several 
studies available for composite systems without LTNE [28-30].

Examining the consequences of gravitational force fluctuations and the LTNE phenomenon at the start of Darcy-
Brinkman porous convection was the primary goal of this study. This investigation encompassed an examination of 
three distinct categories of gravity fluctuation. The application of the one-tern Galerkin technique enables the numerical 
solution of the eigenvalue problem. The visual representation showcases the effect of the gravity parameter and LTNE 
on the Rayleigh number. A comprehensive explanation of the detailed conclusion is provided.
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2. Problem statement
The simplified configuration of Darcy-Brinkman convection is depicted in Figure 1. The infinite porous bed 

bounded by the lower surface y = 0 and upper surface y = d with a downward gravity fluctuation g( y) = (1 + δh( y))g. 
Under the assumption of substantial form-drag and boundary effects, with an isotropic porous medium and the exclusion 
of local thermal equilibrium, the governing equations consist of the continuity equation, a suitably expanded Darcy’s 
law, and the energy equation incorporating the Boussinesq approximation.

Figure 1. Physical configuration

The governing equations for the present model (see Postelnicu and Rees [31] and Postelnicu [32]) are
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Examining the two-dimensional example, we delve into the fundamental conduction profile and explore its stability 
in this investigation.
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3. Methodology
An approach based on Galerkin-type weighted residuals is used to find a numerical solution, in which three 

variables, f1, g1 and h1 are considered as

1 1 1 1 1 1
1 1 1

,   and    1, 2, 3....
N N N

i i i i i i
i i i

f f g g h C h n
= = =

= Α = Β = =∑ ∑ ∑

where Ai, Bi and Ci are constants. The one-term Galerkin approach has been applied, the trial functions f1, g1 and h1 are 
assumed as f2 = y2(1 − y)2, g2 = y(1 − y), h2 = y(1 − y) satisfying the boundary conditions (21) is mentioned above. Using 
trial functions f1, g1 and h1 and integrating over [0, 1] to get system of homogeneous equations, solving which we obtain 
the expression for Rayleigh number for marginal stability
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4. Results and discussion
A study examines how variations in gravity affect the onset of LTNE convection in a porous bed that is laid flat. To 

determine the onset convection, the one-term Galerkin method is used to precisely find the values of the Rayleigh and 
wave numbers values. The following types of gravity fluctuations are considered, the first model is linear h( y) = −y, the 
second model is parabolic h( y) = −y2, and the third model is exponential h( y) = − (e y − 1).

Figure 2 displays neutral steadiness curves with the influence of gravity variations between the Rayleigh and wave 
numbers. Any kind of disturbance below this curve always results in a stable configuration; however, some specific 
wave number values above this curve cause the configuration to become unstable. Further, it is observed that the 
gravitational fluctuation of the exponential type is more stable than that of the linear and parabolic types.

(18)

(19)

(20)

(21)

(22)

(23)



Contemporary MathematicsVolume 5 Issue 1|2024| 1115

Figure 2. Impact of R verses k for all three types of gravity fluctuation with Da = 0.001

Figures 3, 4, and 5 depict the variation of Rayleigh number R against the wave number k for different values of 
the gravity parameter δ across all three types of gravity fluctuation functions. The trends show that an increase in the 
gravity parameter corresponds to a higher eigenvalue R, signifying a stabilizing impact on the system configuration. 
Additionally, it is observed that the stability of the system is more pronounced with exponential-type gravitational 
fluctuation compared to linear and parabolic fluctuations.

Figure 3. The effects of R verses k for different values of δ for linear model h( y) = −y gravity fluctuation with χ = 0.3
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Figure 4. Effect of R verses k for several values of δ for parabolic model h( y) = −y2 gravity fluctuation with χ = 0.3

Figure 5. The variation of R verses k for various values of δ for exponential model h( y) = −(e y − 1) gravity fluctuation
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of gravity fluctuation functions; it can be seen from this figure that the same trend of exponential-type gravitational 
fluctuation is more stable than the other two types of gravity fluctuation.

Figure 6. Impact of Rc verses Log10H for various values of χ for linear model h(y) = −y gravity fluctuation

Figure 7. The effects of Rc verses Log10H for all three types of gravity fluctuation with χ = 0.3
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impact. This facilitates the smoother flow of the fluid, ultimately leading to a decrease in Rc. Further, it is also noted that 
exponential-type gravitational fluctuation is more stable when compared to linear and parabolic-type fluctuation.

Figure 8. Effects of R verses k for various values of Da for linear model h( y) = −y gravity fluctuation

Figure 9. Variation of R verses k for various values of Da for parabolic model h( y) = −y2 gravity fluctuation
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gravitational fluctuations. We conducted a comprehensive analysis of gravity functions and the effects of LTNE. 
Exploring the impact of different parameters on the system’s stability is achieved through the utilization of linear 
instability. We utilized the one-term Galerkin approach to obtain numerical results. Based on the information provided, 
the following conclusions can be drawn:

• When Da is increased, the system configuration becomes more stable.
• At smaller amounts of R, convection begins when H drops or χ rises.
• A more stable system is the result of raising the value of the gravity parameter δ.
• The exponential-type gravitational fluctuation is more stable when compared to linear and parabolic-type 

fluctuation.
• This study’s findings might be useful in several areas of geophysics and fundamental physics studies pertaining to 

gravity, such as gravitational wave observations, are the primary foci of scientific inquiries into the variations in gravity. 
• In the future, it is important to consider the onset of convection with LTNE with other rheologies, including the 

gravity fluctuations, and Brinkman effect. For industrial applications as well as for crystals growing applications, it 
would also be important to investigate other types of boundary conditions. The approach developed here can be applied 
to those problems as well.

Figure 10. The impacts of R verses k for various values of Da for exponential model h( y) = −(e y − 1) gravity fluctuation

Conflict of interest
The authors do not have any competing interests to declare.

References 
[1]	 Harms J. Terrestrial gravity fluctuations. Living Reviews in Relativity. 2019; 22(6): 1-154.
[2]	 Vafai K. Handbook of Porous Media. Hoboken, NJ: CRC Press; 2015.
[3]	 Vafai K. Porous Media, Applications in Biological Systems and Biotechnology. CRC Press; 2010.
[4]	 Straughan B. The Energy Method, Stability and Nonlinear Convection. Springer; 2004.
[5]	 Panfilov M. Physicochemical Fluid Dynamics in Porous Media: Applications in Geosciences and Petroleum 

Da = 0.01

0

0.001

1 2 3 4 5

k

0

30

60

90

120

150

R



Contemporary Mathematics 1120 | R. Udhayakumar, et al.

Engineering. Wiley-VCH; 2018.
[6]	 Wu YS. Multiphase Fluid Flow in Porous and Fractured Reservoirs. Gulf Professional Publishing; 2016.
[7]	 Xu P, Sasmito AP, Mujumdar AS. Heat and Mass Transfer in Drying of Porous Media. CRC Press; 2020.
[8]	 Nield DA, Bejan J. Convection in Porous Media. New York: Springer-Verlag; 2006.
[9]	 Kuznetsov AV. Thermal non-equilibrium forced convection in porous media. In: Ingham DB, Pop I. (eds.) 

Transport Phenomenon in Porous Media. Elsevier, Oxford; 1998. p.103-129. 
[10]	Banu N, Rees DAS. Onset of Darcy-Benard convection using a thermal non-equilibrium model. International 

Journal of Heat and Mass Transfer. 2002; 45: 2221-2228.
[11]	Bhadauria BS, Shilpi A. Convective transport in a nanofluid saturated porous layer with thermal nonequilibrium 

model. Transport in Porous Media. 2011; 88: 107-131.
[12]	Saravanan S, Sivakumar T. Onset of thermovibrational filtration convection: departure from thermal equilibrium. 

Physical Review E. 2011; 84: 1-13.
[13]	Celli M, Lagziri H, Bezzazi M. Local thermal non-equilibrium effects in the Horton-Rogers-Lapwood problem 

with a free surface. International Journal of Thermal Sciences. 2017; 116: 254-264.
[14]	Nield DA, KuznetsovAV. Local thermal non-equilibrium and heterogeneity effects on the onset of convection in a 

layered porous medium. Transport in Porous Media. 2014; 102: 1-13. 
[15]	Kuznetsov AV, Nield DA. Local thermal non-equilibrium and heterogeneity effects on the onset of convection in an 

internally heated porous medium. Transport in Porous Media. 2014; 102: 15-30.
[16]	Siddheshwar PG, Siddabasappa C. Linear and weakly nonlinear stability analyses of two-dimensional, steady 

Brinkman-Bénard convection using local thermal non-equilibrium model. Transport in Porous Media. 2017; 120: 
605-631.

[17]	Gandomkar A, Gray KE. Local thermal non-equilibrium in porous media with heat conduction. International 
Journal of Heat and Mass Transfer. 2018; 124: 1212-1216.

[18]	Parhizi M, Torabi M, Jain A. Local thermal non-equilibrium (LTNE) model for developed flow in porous media 
with spatially-varying Biot number. International Journal of Heat and Mass Transfer. 2021; 164: 120538.

[19]	Alex SM, Patil PR. Thermal instability in an anisotropic rotating porous medium. Heat Mass Transfer. 2000; 36: 
159-163.

[20]	Suma SP, Gangadharaiah YH, Indira R. Effect of throughflow and variable gravity field on thermal convection in a 
porous layer. International Journal on Engineering, Science and Technology. 2013; 3: 7657-7668.

[21]	Gangadharaiah YH, Suma SP, Ananda K. Variable gravity field and throughflow effects on penetrative convection 
in a porous layer. International Journal of Computer Applications in Technology. 2013; 5: 172-191.

[22]	Nagarathnamma H, Gangadharaiah YH, Ananda K. Effects of variable internal heat source and variable gravity 
field on convection in a porous layer. Malaya Journal of Matematik. 2020; 8: 915-919.

[23]	Yadav D. Throughflow and magnetic field effects on the onset of convection in a Hele-Shaw cell. Revista Cubana 
de Física. 2018; 35: 108-114. 

[24]	Mahajan A, Tripathi VK. Effects of vertical throughflow and variable gravity field on double-diffusive convection 
in a fluid layer. Ricerche di Matematica. 2021. Available from: doi: 10.1007/s11587-021-00669-y. 

[25]	Gangadharaiah YH, Ananda K, Aruna AS. Effects of throughflow on thermosolutal penetrative convection in a fluid 
layer with a variable gravity field. Heat Transfer. 2022; 51: 7584-7596. 

[26]	Yeliyur Honnappa G, Narayanappa M, Udhayakumar R, Almarri B, Elshenhab AM, Honnappa N. Darcy-Brinkman 
double diffusive convection in an anisotropic porous layer with gravity fluctuation and throughflow. Mathematics. 
2023; 11(6): 1287. Available from: doi: 10.3390/math11061287.

[27]	Balaji VK, Narayanappa M, Udhayakumar R, AlNemer G, Ramakrishna S, Yeliyur Honnappa G. Effects of 
LTNE on two-component convective instability in a composite system with thermal gradient and heat source. 
Mathematics. 2023; 11(20): 4282. Available from: doi: 10.3390/math11204282.

[28]	Manjunatha N, Yellamma, Sumithra R, Verma A, Punith Gowda RJ, Madhu J. The impact of the heat source/sink 
on triple component magneto-convection in superposed porous and fluid system. Modern Physics Letters B. 2023; 
38(7): 2450020.

[29]	Yellamma, Narayanappa M, Udhayakumar R, Almarri B, Ramakrishna S, Elshenhab AM. The Impact of heat 
source and temperature gradient on Brinkman-Bènard triple-diffusive magneto-marangoni convection in a two-
layer system. Symmetry. 2023; 15(3): 644. Available from: doi: 10.3390/sym15030644.

[30]	Yellamma, Manjunatha N, Amal A, Umair K, Sumithra R, Harjot SG, et al. Triple diffusive marangoni convection 
in a fluid-porous structure: Effects of a vertical magnetic field and temperature profiles. Case Studies in Thermal 
Engineering. 2023; 43: 102765. Available from: doi: 10.1016/j.csite.2023.102765.



Contemporary MathematicsVolume 5 Issue 1|2024| 1121

[31]	Postelnicu A, Rees DAS. The onset of Darcy-Brinkman convection in a porous medium using a thermal non-
equilibrium model. Part 1: stress-free boundaries. International Journal of Energy Research. 2003; 27: 961-973.

[32]	Rees AS. The onset of Darcy-Brinkman convection in a porous layer: an asymptotic analysis. International Journal 
of Heat and Mass Transfer. 2002; 45(11): 2213-2220. Available from: doi: 10.1016/s0017-9310(01)00332-5.


